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A canonical quantization formalism for gauge fields is presented, based on massless nonlocal vec-

tor and second-rank tensor field Lagrangians. The Lagrangians describing quantum electrodynam-

ics, electroweak theory, and gravitation within the context of the nonlocal formalism are shown to
lead to finite, gauge-invariant, and unitary theories to all orders in perturbation theory. The gen-

eralized electroweak theory does not contain any gauge hierarchy problems, associated with the
Higgs-meson perturbation theory, and it describes a nontrivial field theory.

I. INTRODUCTION

A new field theory based on nonlocal fields has been
proposed. ' A perturbation theory was developed,
which was shown to lead to an ultraviolet-finite unitary S
matrix to all orders. The concept of microscopic causali-
ty, as formulated in strictly localizable perturbation
theory, was extended for certain classes of entire func-
tions that occur in the propagators. In the previous
work, an attempt was made to associate the nonlocal
fields with an internal, infinite-spin degree of freedom
called "superspin. " In the following, we shall devote our
attention to the nonlocal aspects of a gauge theory in-

cluding gravity.
The nonlocal scalar field 4(x ) was defined in terms of

softening coefficients c, which determine the growth be-
havior of the scattering amplitudes as p ~ao. The be-
havior of these coefficients for large j was determined by
an inversion formula in Euclidean space, combined with
suitable physical boundary conditions at x ~0 and
x ~ ao. The c 's for lower values of j are determined in
perturbation theory, thus leading to a specific nonlocal
field theory that can be used to predict cross sections.

In the following, we shall investigate the properties of
nonlocal quantum electrodynamics (QED), electroweak
theory, and gravitation. The S-matrix formalism in per-
turbation theory is developed within the standard canoni-
cal quantized scheme with a generalized Gupta-Bleuler
prescription for dealing with negative-norm states. The
Higgs sector in the nonlocal electroweak theory is shown
to be nontrivial, in the sense of Landau, for a chosen
value of the nonlocal energy scale Mit =1/lti, where lti
is the length scale associated with weak interactions. In a
separate work, it has been demonstrated in a calculation
of the vacuum-polarization processes in QED and quan-
tum chromodynamics (QCD} that the running coupling
constants tend to their "bare" charge values as p ~ Do,

leading to an ultraviolet fixed point in the P function.
Thus, nonlocal QED becomes a nontrivial field theory,
while nonlocal QCD is not an asymptotically free theory.

II. NONLOCAL QUANTUM ELECl'RODYNAMICS

Let us begin our study of massless gauge fields by con-
sidering the spin- —,

' and the spin-1 nonlocal fields. We

A„(x)=f d'y B(x —y)A„(y)=B(Cl, )A„(x),

ip(x }=f d y B(x —y)p(y)=B(Cl, )g(x),

(2.3a)

(2.3b)

where B( „) is a Lorentz-invariant operator distribu-
tion.

Our Lagrangian for QED is invariant under the gauge
transformations

SA„(x ) =a„X(x), (2.4)

5$(x ) =ie f d y d z V(x,y, z )A, (y )$(z )

+ie f d yd zd w U"(x,y, z, w)

X A, (y ) A„(z )f(w )+ (2.5)

Here, A, (x ) is an arbitrary scalar field and OA, (x ) =0.
we substitute the nonlocal field redefinitions (2.3a) and
(2.3b) into (2.2), then the Lagrangian is invariant under
the transformations (2.4) and (2.5), provided we include
the higher-order interactions contained in Xt. A detailed
proof of gauge invariance will be published elsewhere.
We refer to the representation of the Lagrangian involv-
ing the fields defined by (2.3a) and (2.3b) as the "B repre-
sentation. " The nonlocal nature of the Lagrangian be-
comes explicit in the 8 representation.

We can now set up a Gupta-Bleuler formalism with an
indefinite metric' for the A„(x) nonlocal gauge field.
The vacuum state is postulated to satisfy

shall construct an extended version of QED. The free
Lagrangian takes the form

Xo= —
—,'.t}„A"(x )t}"A, (x ):—:f(x)( i y"t}—„+m )f(x ):,

(2.1)

where A and lit are the local point-particle electroinagnet-
ic potential and Dirac electron field operators, respective-
ly. The interaction Lagrangian is given by

Xt =e M "(x )+(x )y„%(x):+Et, (2.2)

where Xt(g, A„) contains higher-order interactions
necessary to restore gauge invariance. The nonlocal
fields A„and ip are given in terms of the local point-
particle fields A„and P by
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(2.6) The causal electron propagator is given by

D;„„(x—y )=A„'(x )A'„(y )

=B(a„)B(O,)&0IT[&„(x)&„(y)]lo&

'qp d k II(k ) e'
(2m ) i —kz —ie

where A„(x ) is the usual free photon field:

(2.7)

&„(x) =(2m ) f i~2 [a„(p)e 'i'"+a„'(p)e'i'"] .
d p

(2.&)

where we have used the fact that [B(CI„),B ]=0. This is

the Gupta-Bleuler condition that is used to remove the
unphysical states in the interaction Lagrangian. The
quantization of the nonlocal fields could, of course, be
formulated using the modern methods of path integrals.
This will be considered elsewhere.

As in standard QED, we write the S matrix in the form
of Eq. (7.7), in Ref. 2. The "chronological" contraction
of the nonlocal fields implies the use of the causal propa-
gator. The causal propagator for the photon will have
the form

S;(x —y)=% (x)% (y)

=B(a, )B(O, )(ol T[y(x )y(y )]I0 &

1 d pII(p )

(2n) i m p'y
(2.9)

(2) [II(z)]'=II(z'),
(2.10)

(3) 11(x ) &0 for real x,
(4) f du II(U}(~ .

0

The S matrix is expanded in powers of the normal-
ordered operators of the nonlocal photon field A„(x } and
the nonlocal electron field %(x ) in the form

We now follow the same methods of constructing the
perturbation theory as developed for the nonlocal scalar
fields in Ref. 2. According to the results obtained, the
function II satisfies the following Efirnov conditions:

(1) II(z) is an entire analytic function

of the order —,
' y ~ 1,

f d4k, f d~k„ f d4p, f d'p fdq, fd q„

x G (ki, . . . , k„;p, , . . .,p;q„. . ,q„):A„.(k, ) A (k„)p(p, ) 'P(p )p(qi ) Wq„): .

(2.11}

Gauge invariance is satisfied to all orders, if the
coef6cient functions 6„.. .„ in the expansion obey theI' n

conditions

see this by expanding the functional integral

Z= f d[P]exp i fd"x[/0($)+XI(4)+84] (2.13}

k"'G ( )=o'I
n (2.12}

in powers of Xl. 8 is an external source current. The
divergence can be deduced from our interaction Lagrang-
ian Ll =g:W: to be of the form

These conditions are satisfied, given the gauge invariance
of our Lagrangian under the gauge transformation (2.4)
and (2.5), provided that the other momenta in the func-
tion G„„are on the mass shell and that the higher-~) ~n

order interactions in Xl are chosen correctly.
The perturbation series will be ultraviolet finite to all

orders and the proof of the unitarity of the S matrix fol-
lows from the Cutkosky rule, formulated in Euclidean
momentum space, using our regularization techniques
based on the Efimov regulating function R . Moreover,
the commutation relation for the nonlocal photon 6elds
A„(x ) leads to a local microcausality condition, as in the
case of the scalar superspin fields, provided certain re-
strictions are imposed on the entire functions II(p ).

As in standard QED, the perturbative expansion will
diverge because of the n! number of n-loop Feynman dia-
grams. However, in contrast with string theories, the
perturbation expansion is Sorel summable. The same
holds true of our scalar polynomial Lagrangian. We can

g ( —g )"[(p —2)n /2]!, (2.14)

which is Sorel summable, and indicates the existence of a
stable perturbative vacuum state. This is to be contrast-
ed with the bosonic string perturbation series that
diverges like gg "h!, where h denotes the number of han-

dles associated with the moduli space of Riemann sur-
faces. Such a divergence is similar to that of a g:P:
theory, consistent with the form of certain string field

theories, which leads to an unstable vacuum state.
Since our field theory is finite, there will not occur any

infinite counterterms in the perturbation theory. A finite
renormalization of our QED is performed by introducing
the physical coupling constant e, and the electron mass

m„, instead of the initial coupling constant e and the elec-
tron mass m.

We picture the photon and the electron as being ex-
tended objects. When II(p }-1, the nonlocal photon
and electron become pointlike and we obtain the stan-
dard ultraviolet-divergent QED.
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III. NONLOCAL ELECTROWEAK THEORY

X =Xo+X,+Xiii, (3.1)

Let us now consider weak interactions, restricting our-
selves here to the leptonic interactions. The Lagrangian
takes the form

g sin8~ =g'cos8~ =e (3.10)

and we use the normalization cos8ii, =g/(g +g' )'

The boson Lagrangian Xii is given by

gle. The electroweak coupling constants g and g' are re-
lated to the electric charge e by the standard equation

where Xo is the free lepton Lagrangian density given by

X =i[:f (x)y.Bf (x):+:fI(x)y.Bf", (x):

X~ = —
—,
' Q,„„(x)9","(x),

where

(3.11)

+:f"(x)y Bf„"(x):]. (3 2) 0""=F""+g e,b, '}V"'}V" (3.12)

Here, a summation over all different kinds of leptons is
understood: i =e, p, , . . . , and the field f (x ) denotes a
two-component left-handed lepton field:

f„(x)
f (x)= (3.3)

with f (x)=—,'(1 y&)f(x—) and f (x)=—,'(1+y5)f(x)
and, correspondingly,

f (x)=(f (x),f, (x)) .

The interaction is described by

Xl = —gran(x )'}V,„(x)+g'Per(x )S„(x)+XI . (3.5)

The cP, and aPr are the weak isospin and hypercharge
nonlocal currents:

and

F""=8'W" d"IV"—a a a (3.13)

%e can rewrite the interaction Lagrangian in the form

Xl = —9"' (x)A„(x }

—[ai" (x )'lV„(x )+at"(x )'}Vt(x )]
2 2

a""' (x ) = —e 4&(x )y"%1(x ) .

Moreover,

(3.15)

[d'",(x)—sin 8~cP' (x)/e]Z (x)+XI,
cos8 ii

P

(3.14}

where at"' is the nonlocal electromagnetic current:

g~(x)= —,'4 (x)y"r, % (x) (a=1,2, 3) (3.6) '}V„(x) = [}V,„(x) —i%Vs„(x )],1

2
(3.16a)

and

dier(x ) = —
—,
' 0 (x )y"qI (x ) +4"(x )y"4"(x ) . (3.7)

2—g g a".(x)}V, (x)= — [8"t(x)'}V (x)
2v2

4 (x ) and ql"(x ) are the nonlocal lepton field operators.
The Xl term in (3.5} is required to restore the gauge sym-

metries. The ~; are the 2 X2 Hermitian Pauli matrices

+(P(x )}Vt(x)],
(3.16b)

0 1

1 0
0 —i
i 0

1 0
7 i= 0 1

. (3.8)

and

cP(x}=2[(P(x)—id'(x)] . (3.16c)

'}V,„(x) =cos8ii Z„(x )+sin8ii, A„(x ),
X„(x) = —sin8s Z„(x )+cos8ii A„(x ),

(3.9a)

(3.9b}

where the angle 0+ denotes the Glashow-steinberg an-

The quark doublets can be incorporated into the scheme
by constructing a nonlocal quark field +q and including
the nonlocal quarks in the 8", and 8~r currents.

The 'lV, „and %„denote the intermediate charged-
vector-boson field and the real boson Geld, respectively.

The '}V&„(x) and %„(x) are linear combinations of the
two fields A„(x ) and Z„(x}:

Equation (3.14) is the SU(2) XU(1)-invariant Lagrang-
ian in the Glashow-Salam-Weinberg (GSW) theory,
which is written in terms of the nonlocal fields. The
second term in (3.14) is the intermediate-vector-boson La-
grangian with the coupling constant g=2&2gii where
(gii/ma. ) =GF/&2 and G~=1.027X10 /mp is the
Fermi weak coupling constant. The last term describes
the coupling of the weak neutral current to the Z boson
and sin 9~=0.227+0.014.

To make the model realistic, we must add to the La-
grangian (3.1) a Higgs-boson sector.

The Higgs Lagrangian has the standard form

&h =[D"f(x)] [D„f(x)]—p'f (x)f(x)—}(,[4t(x }4(x}]'

gI [ql& (x )4& (x )4(x—)+@(x )41 (x )4& (x )]—g„[ql& (x }4"„(x)@(x)+@ (x )4"„ql& (x }], (3.17)
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where 4(x ) is the nonlocal Higgs field defined in the 8
representation by @(x) =8(O„)P(x ). The covariant
derivatives are given by

&O~C(x)~0) =e,=
J

(3.19)

D "P& (x ) = [d"+ ,'ig—r,%",(x )8 (CI„)

,'—ig—'%"(x)8(U„)]i}/&(x ),

D "rg(x ) =[8" i—g'S"(x )8(U„)]g& (x ),

D"P„(x) =&'P" (x ),

D"P(x ) = [d"+ ,'ig r—,%'",(x )8(0„)

(3.18a)

(3.18b)
A"=sin8ii, "IV "+cos8~%", (3.20a)

(3.18c)
and

Z"=cos8 IV" sin8 S—" . (3.20b)

where v =( —p /A, )' is not invariant under SU(2)
XU(1) gauge transformations, but is invariant under the
U(1) gauge transformations of electromagnetism, thereby
preserving a massless photon. The photon field and the
Z meson field are given by the standard combinations of
'N "and S"fields

+ ,'ig'S—"(x)8(CI„)]P(x) . (3.18d)

In the quantized theory, SU(2)XU(1) will be spon-
taneously broken by the vacuum expectation value of the

Higgs field

The whole nonlocal formalism can be generalized to the
SU(3) X SU(2) X U(1) standard model including quantum
chromodynamics.

In our nonlocal Geld theory formalism, the chronologi-
cal contraction rules for the "IV and Z fields are

D;&„(x—y, ma ) ='1V„(x )'N„'(y ) =8(CI„)8(Cly ) &Ol T[ W„(x ) W„(y )]l0)

f d k II(k~)( —ri„„+k„k„/m )

(2n) i —k +m —ie
(3.21)

and

D,'„„(x—y, mz)=Z„'(x)Z'„(y)=B(CI„)8(CIy)&0~T[Z„(x )Z„(y)]~0)

d k II(k )( —ri„,+k„k„/m )

(2n. ) i —k +mz lE
(3.22)

For the nonlocal lepton fields, we have

S;(x —y, m, ) =q;(x )q;(y )

=8(CI. )8(CI, ) & Ol T[qi(x )pter(y )]IO)

4p II(p
2 )e fP ( x —y )

(2~)4j f m, —p.y ie—(3.23)

Here, the W„(x ), Z„(x ), and g(x ) are the point-particle
free fields. The Wand Z fields are given by

d k
W~( )=(2 )-'"f " g [et'(k)a„(k)e

(2 )1/2

+eP(k)b„*(k)e'"'"],

(3.24a)

Z"(x)=(2m) / f g [eP(k)c„(k)e
(2 )1/2

+eP(k )c„*(k )e '" '"],
(3.24b)

e, (k)e, (k)=5„, . (3.25)

and iA(x ) has the same form as Eq. (4.12), in Ref. 2. The
vectors e,"(k), r =1,2, 3, are a complete set of orthonor-
mal polarization vectors

These vectors satisfy the condition k e„'(k)=0 and the
completeness relation gives

3

g e„"(k)e„"(k)= ri"'+ k "—k "/m v, (3.26)

where mi denotes either the IV or Z particle mass. We
can define the %"ick theorem for our nonlocal field opera-
tors and solve the S matrix for the leptonic interactions
in the same way as was done for the nonlocal scalar fields.
The perturbation series will be convergent to all orders
and the S matrix will be unitary, since the function II(k )

satisfies the conditions (1)—(4) in (2.10). Thus, we can cal-
culate all the finite radiative corrections in our nonlocal
electroweak theory, using the generalized Feynman rules.

%e shall see in the next section, that our formalism can
lead to a finite quantum gravity theory. But this necessi-
tates picturing the graviton as an extended particle. It is
logical that we should then describe all the fundamental
particles of nature as extended particles, whereby we ar-
rive at our formulation of electroweak theory. Although
there is, as yet, no experimental confirmation of the
Higgs radiative corrections in the GSW theory, the pre-
dicted 8'and Z masses m~= —,'Ug and mz=m~/cos0~
agree well with the experiment.

In the standard renormalizable GSW theory, the renor-
malized Higgs-boson coupling constant A,„„is related to
the scale M~ by 1/1„,„=1/A,„„,+(3/16m. )In(Mii, /po),
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so that for a fixed value of A,b„„it follows that A,„„~Oas
M~~~ and the theory becomes trivial. Moreover,
since A,„„=mH/4U, then mH~0 as M~~ ao. The
Higgs-boson mass produced by the Higgs self-energy
graph is quadratically divergent in the standard GSW
theory. The electroweak perturbation theory is unstable
and we have to fine-tune the theory in an unnatural way.
This is known as the hierarchy problem. If, in our gen-
eralized electroweak theory, we set the physical elec-
troweak scale M&-300 GeV, and since the loop in-

tegrals in the region Ma & ~p ~

& ~ damp off exponential-
ly fast, we shall not encounter a gauge hierarchy prob-
lem. Let us choose, in Euclidean momentum space,
II(p ) =exp( —p /M~), a choice that is compatible with
the physical boundary conditions imposed on the propa-
gators, as described in Ref. 2. A calculation gives 1/A, „,„
=1/A, b„,+(3/16m. )In(M~/po). For M~)&pe, the P
function for the k:4: Higgs sector has the standard
form: namely, P= 3A, /16m, and the nonlocal elec-
troweak theory is nontrivial at all energies. In the stan-
dard GSW theory, if M~~ ~, then the renormalized
Higgs interactions are zero. If, on the other hand, M~ is
finite, then the theory can only be considered as an
egpctive theory, i.e., as the limit of an, as yet, unknown
more fundamental theory. In the generalized elec-
troweak theory, formulated using nonlocal fields, the
finite scale M~ is a physical quantity associated with the
length /a =I/M~, related to the size of the extended
particles, and the theory is fundamental at all energies.

Hopefully, future high-energy accelerators will be able
to check the radiative Higgs corrections predicted by the
nonlocal electroweak field theory, so that we can com-
pare them with those predicted by the GSW theory. The
details of the predicted radiative corrections in the nonlo-
cal electroweak theory will be presented elsewhere.

8
c

u
pP va pv aP (4.1)

Here, «=(16mG)', where G is the Newtonian gravita-
tional constant, g = ~g""~, g""=(—g )

' g"" and

(4.2)

Consider now an infinitesimal linear transformation

5x"=—g" 5'„~', (4.3)

where the coefficients co„satisfy co„„=—co„„. We define

5ga&t" '~=—
5~„„ag t'/ax~

tions wi11 be the only ones of experimental interest, since
it is inconceivable that we will ever obtain direct experi-
mental information about Planck-energy gravitational
phenomena. The whole method can be based on an ex-
pansion about an arbitrary classical background and a
curved spacetime.

The resolution of the gravitational problem, even for
weak fields, is central to the basic issues of the finiteness
of field theory, because no really attractive solution to the
infinities of quantum gravity has yet been found using
pointlike gravitons. Thus, a solution to finite quantum
gravity will affect the rest of field theory in a fundamental
way. The basic solution of quantum gravity, using the
extended graviton, leads to a nonlocal modification of the
field theories of the other forces of nature. Hopefully,
this fundamental modification will produce testable ex-
perimental predictions.

The Lagrangian density for Einstein's theory can be
taken as' '

IV. GRAVITATION

We shall now turn to a study of the gravitational field.
In the present work, we apply the nonlocal field-theory
formalism to Einstein s theory of gravitation. In a subse-
quent article, we will extend this work to the more gen-
eral nonsymmetric gravitation theory' (NGT).

The gravitational field has special problems associated
with it that are not encountered when considering other
forces of nature. Einstein s gravitational field is ex-
pressed in geometrical language using a Riemannian
spacetirne, and the field equations are highly nonlinear.
Much has been said about the difficulties of quantizing
the metric of four-dimensional spacetime, since it is
difficult to associate quantum-mechanical concepts such
as the Heisenberg uncertainty principle with spacetime
quantities. In the following, we shall not attempt to solve
these fundamental problems, choosing instead to con-
struct a finite perturbation theory of quantum gravity
along the lines of the scalar and QED nonlocal field

theory. We shall regard the Minkowskian spacetime as
the zeroth-order approximation to the Riemannian
spacetime. Such a solution should be physically valid for
all gravitational fields, save those at the Planck energy
—10' GeV and beyond. Weak gravitational field solu-

(4.4)

(4.&)

where

BEE8"„= Bg ~/Bx" 5~+E . —
ag t'/axy

(4.6)

The total energy-momentum tensor is obtained by adding
the rnatter-field energy-momentum-tensor density T" to
(4.5). This gives

&" =n""(T~+4) .

We shall now use the relation

(4.7)

BqR„"=—,'(T",+&"),

where

az, az,
a .P/axing .

8 P-/a g

(4.8)

(4.9)

The symmetrical gravitational pseudotensor density has
the form
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We also have

t" i'= —2(Rei"g" —Rii"rf' ) . (4.10)

g""=rii"+ay"' .

Here, y is given by

(4.18}

From these results, we obtain

a.ay~ i'g~" ~ ~g~ +~~"g i' ~»g ")=~'e~" . (4.11)

Let us assume the de Donder coordinate conditions'

y„„(x) =(2m), [a„(p)e 'i' "+a„'„(p)e'i'"] .
d'p
2'

(4.19)

a„g""=0 .

Then the field equations of gravitation become

Hg"'=a e"'

(4.12)

(4.13)

s„„(x) is the nonlocal graviton field operator, given in
terms of the local point graviton field y„„(x) by the equa-
tion in the B representation:

s„„(x) =Id y B(» —y )y„„(y)

On account of the conservation equations =8(Cl„)y„„(x) . (4.20)

a„e~"=o, (4.14)

the coordinate conditions (4.12) and the field equations
(4.13) are compatible.

After some reduction, the Lagrangian becomes

(4.16)

a~ Pp&z=
2

g" g g (2apS'pzac8 p 2aafp gpss4K

—a~„a~.,+a~„a~., ) . (4.1s}

To implement the de Donder harmonic gauge condi-
tion (4.12), we add to Xz the "noncovariant" term

~~"~,.~,g„y"(x)a„y»(x }

+ ,'ri""re ri —pB„yi'(x)a„y ~(x )

+,~„,a.y"(x )a,y "i'(x )] . (4.21)

The point-particle graviton field y„„(x) satisfies the
free field equation of motion

Since we have chosen g" as the interpolating field, the
additional X' only modifies the free part of the Lagrang-
ian, which takes the form

—,'[2' g y~i'(x)a y (x)

The total gravitational Lagrangian now becomes

KG=RE+X' .

We expand g" about Minkowski Aat space:

(4.17}

Oy„„——0

and the coordinate condition

a.y""=o

The interaction Lagrangian takes the form

(4.22)

(4.23)

Z, =—'[~,.~,~~"(» )a~ "(x)a„s»(x ) —~ ~„~.@~ (x }a„s'q» }a~.~(» )

+2~.,~,~ i'(x )a~ "~(x }a„s~"(x}+~~"~.,~.,~„~&(x)a„s i'(x )a~ "(x )

2ri&"ri „ri —rip~ ~(x )a~ "~(x }a„s"(»)]+2,( )+O( '}, (4.24)

where Xl(a) contains graviton diagrams that restore the

gauge invariance to order K.
The free Lagrangian that arises from Xz is invariant

under the infinitesimal gauge transformation

D,'„„iz=s„' (x)sz~(y)

=&(&„)&(&y)(Ol T[y„„(x)yi~(y )]~0)

1=(n„i.n.p+n„pn. i. n„.ni.,)—(2m. ) i

y„„(x) y„„(x)+a„A, (x )+a+„(x), (4.25)
(4.26)

where A,„(x) is an arbitrary vector field. By adding the
noncovariant (noncovariant with respect to general coor-
dinate transformations) piece X' to the Lagrangian, we
break the gauge symmetry in the usual way.

We can construct Feynman rules for the gravitons and
use (4.24) to solve for the S matrix, in the same way as for
the scalar nonlocal field 4(x ). A chronological contrac-
tion rule for the gravitons is defined by a.y"'""~~& =o (4.27)

To avoid any graviton states with negative probabilities
occurring, we must introduce an indefinite metric in the
Hilbert space for the components y;0 (i =1,2, 3} and y
where y =alii'"y„„This involv. es imposing supplementary
Gupta conditions of the form'
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and

(4.28)

for an arbitrary state vector
~
a &. These conditions

guarantee that only nine types of gravitons exist; In a
pure gravitational Geld only y&2 and y» gravitons exist,
because the other types of gravitons will be excluded by
the supplementary Gupta conditions. The vacuum state
must satisfy the conditions

(4.29)

[s„„(x),st(y )] =(vl„ill„p+rl„p

—rl„,rli )[II(0)] b, (x —y) . (4.30)

Thus, the nonlocal graviton field satisfies a condition of
microcausality for suitably chosen entire functions in the
propagators for spacelike separations greater in magni-
tude than the Planck length ~G = 1.6 X 10 i3 cm.

It would be interesting to repeat DuFS' loop-graph
calculation using nonlocal perturbation theory, to see
what quantum loop corrections are obtained for the tree-

graph "extended particle" Schwarzschild solution. It is
interesting that divergences occur in DuFS calculations
already at the tree-graph level, unless the material parti-
cles are assumed to have a finite structure. In our theory,
this finite particle structure appears as a basic feature
and, consequently, we do not have such divergences
occurring at the classical, tree-graph level of the calcula-
tions. Moreover, the nonlocal formalism provides a
meaningful way to perform the finite loop calculations to
all orders in quantum gravity.

and only two types of gravitons can physically exist in a
gravitational field.

The function II(k ) satisfies conditions (1)—(4), m

(2.10), and an analysis of the Feynman graviton diagrams
shows that they are all finite and that the S matrix
satisfies the unitarity condition to all orders in perturba-
tion theory. However, as Feynman' has pointed out, in

order to satisfy unitarity for the closed graviton loops, we

must include ("fictitious") Faddeev-Popov ghost parti-
cles. A calculation of the commutator of the nonlocal
graviton fields gives

also be included in the extended nonlocal field theory. A
breakdown of causality must be expected at the scale of
the size of the particle; e.g., for gravity this would occur
at the Planck length. If these noncausal effects are small
enough, then such a phenomenon is not unacceptable.

The nonlocal version of quantum gravity, based on
Einstein's gravitational theory can be extended to the
more general theory of spacetime described by the NGT
(Ref. 10).

Now that we have a consistent, finite theory of gravita-
tion that is solved using perturbation theory, how can we
check that nonlocality is the mechanism that produces a
finite field theory~ An interesting possibility is to investi-
gate the singularity structure of gravitational theory and
the effects of nonlocal field theory on the formation of
black-hole event horizons. However, such investigations
do not lead to any direct experimental tests and they may
suffer from the limitations of using perturbation theory.
A calculation of the radiative corrections in the nonlocal
electroweak theory could produce results that could be
tested in high-energy accelerators. There is at present no
experimental check of the radiative corrections in GSW
theory involving Higgs mesons. The latter could differ in
their quantitative behavior from the radiative corrections
in the nonlocal electroweak theory. The problem of the
origin of the fermion masses has to be investigated.

An important success of the nonlocal theory is that it
resolves the Geld-theory triviality problem, first raised by
Landau, and the gauge hierarchy problem in a natural
and fundamental way without introducing new observ-
able particles as in the case of technicolor models, which
introduce a new regime of strongly interacting particles
at E -1 TeV, and supersymmetric models with their pre-
dicted new supersymmetric partners. '

With the failure of point-particle field theory to resolve
the infinities in standard quantum gravity, we seem to be
forced into a theoretical picture in which particles are to-
pologically extended objects and field theory is intrinsi-
cally slightly nonlocal. The Geld theory developed here is
an example of a self-consistent Geld theory, based on non-
local fields, that can remove the unsatisfactory features of
standard strictly local field theory. More work remains
to be done to investigate many of the fundamental
ramifications of such a theory and its implications for fu-
ture particle physics.
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