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We investigate shock discontinuities that involve a conversion of hadronic matter into quark-
gluon matter and vice versa. Such discontinuities may develop when nuclear matter is compressed
to energy densities beyond the deconfinement transition and in the hadronization of an expanding
quark-gluon plasma. In these investigations we study the inhuence of various phenomenological
equations of state. Consequences for entropy production in heavy-ion collisions are discussed and
estimates of inclusive particle ratios at freezeout are given. We find that antiparticle-to-particle ra-
tios may be enhanced by an order of magnitude if a quark-gluon plasma is created during the col-
lision compared to a purely hadronic collision scenario.

I. INTRODUCTION

In nucleus-nucleus collisions at ultrarelativistic ener-
gies the properties of matter at very high energy densities
can be studied. One of the primary motivations for these
studies is the possibility that matter in a color deconfined
phase, i.e., a quark-gluon plasma (QGP), could be formed
in such collisions, as predicted by lattice simulations of
quantum chromodynamics (QCD). On the theoretical
side, models of the reaction dynamics have been
developed, which provide a framework for studying sig-
nals for the creation of a transient plasma. Many of these
models are based on the assumption that hydrodynamics
applies for the dynamical evolution of a heavy-ion col-
lision. The hydrodynamical approach is justified if the
mean free path of the constituent particles is much small-
er than the size of the system under consideration, which
is a reasonable assumption in the case of large and dense
systems.

Once one is convinced of the validity of the hydro-
dynamical description, the actual calculation of the reac-
tion dynamics is simple in principle: One has to supple-
ment the equations of relativistic hydrodynamics with a
reasonable equation of state for the matter under con-
sideration and solve them (if one is interested in dissipa-
tive phenomena one has to additionally specify transport
coefficients and use the more general equations of dissipa-
tive hydrodynamics). However, numerical evaluation is
rendered more difficult by the fact that a violent reaction
may cause very strong gradients in all thermodynamic
quantities and the matter flux velocity (in ideal hydro-
dynamics, these gradients may in fact be infinite). The
possibility, that such discontinuities (shock waves) may
occur in high-energy nuclear collisions, was discussed al-

ready some time ago. Experimental data indicate '

that shock waves can indeed play a role in the reaction
dynamics of a heavy-ion collision.

The mathematical treatment of these discontinuities is
particularly simple in a one-dimensional steady-flow ver-
sion of the equations of ideal hydrodynamics. In view of
this and because of possible experimental relevance many
authors have investigated physical consequences of shock
discontinuities in the compression stage of a reac-
tion ' ' and in the hadronization phase transition be-
tween a quark-gluon plasma and hadronic matter. '
However, in most publications only the case of baryon-
poor rnatter (ptt =0) is investigated or other simplifying
assumptions are made.

In this paper we extend these investigations to finite
baryon density and include strange degrees of freedom.
Furthermore quantum statistical properties of the con-
stituent particles are taken into account. We study gen-
eral aspects of the resulting shock solutions (e.g. , stabili-
ty). As an application, we discuss entropy production in
the shock discontinuities and the consequence for observ-
ables (particle ratios). Entropy can be produced in the
compression stage of the reaction and, provided that a
QGP was created, also in the expansion stage, if combus-
tion shock fronts are formed (we neglect dissipative phe-
nomena in the late expansion stage, immediately preced-
ing freezeout, since a correct treatment would require
more accurate knowledge of the transport properties of
nuclear matter, of the actual expansion geometry, and of
chemical reactions between hadrons). We show that the
additional entropy produced may enhance, in turn, the
antiparticle-to-particle ratio by a factor of 10 compared
to a purely hadronic collision at the same bombarding en-
ergy.
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%e employ various nuclear-matter equations of state.
Two di6'erent phenomenological functional forms are ap-
plied for the compressional part of the hadronic energy
per baryon. Both equations of state are studied in a
strange as well as a nonstrange scenario, i.e., with and
without strange particles in the quark and hadron phases
(cf. Table I). Moreover, in some of our calculations a
nonlinear o-co model' is used as the hadronic equation of
state.

The course of the paper is the following. In Sec. II the
phenomenological equations of state are presented and a
simple reaction model is sketched. Section III deals with
general aspects of shock phenomena in the compression
stage of a collision and of combustions in the nonequili-
brium phase transition between the QGP and hadronic
matter. In Sec. IV the results of Sec. III are applied to
calculate the entropy produced in our simple collision
picture and the consequences for experimentally observ-
able quantities at freezeout are discussed. Section V con-
cludes this work with a surnrnary of our results.

TABLE I, Hadrons and hadronic resonances used in the cal-
culation of thermodynamic quantities of the hadronic phase
with equations of state (10) and (11). The corresponding an-
tiparticles are not shown.

II. THK NUCLEAR-MATTER EQUATION OF STATE
AND A SCHEMATIC REACTION PICTURE

A general nuclear-matter equation of state, which cov-
ers the perturbative as well as the nonperturbative regime
of QCD, is still lacking. Therefore we apply a phenome-
nological form for the hadronic "part" of the nuclear-
matter equation of state and perturbative QCD (Ref. 17)
with an MIT bag pressure term' for the QGP part. Both
equations of state are amalgamated via Gibbs equilibrium
conditions. In the case that no strange quarks are
present the plasma part is, as usual' (A'=c = 1),
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All thermodynamical quantities are obtained from the
pressure p$ using standard relations:
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If we additionally have strange quarks, a term
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(4)

is to be added to (1), and, lacking an expression for a, for
massive (m, =150 MeV), interacting quarks at finite T
and p, we put u, =O in this case. Equations (3) are
modified to

pq=
Bp

dllq r I,

s= 8
e +p —Ts+pqpq +psps

(5)

Although hadronic rnatter is, in contrast with the plas-
ma, directly accessible to experiments, our knowledge of
its properties is extremely vague except around the satu-
ration state. A simple model of nuclear matter far away
from the ground state is that of a quantum gas consisting
of noninteracting point particles. This picture is, howev-
er, not consistent with the concept of a phase transition
to decon6ned quarks and gluons at high temperatures
and densities. The important feature to be accounted for
is the short-range hadron-hadron interaction, which
many authors ' introduce in the form of an eigenvo-
lume correction following Hagedorn:
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density of point particles
density=

1+e ~i'/48
(6)

T
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where e ~~ is the energy density of hadronic pointlike par-
ticles and 48 the ground-state energy density of hadrons
in MIT bag model. ' The correction factor ensures that
thermodynamic densities converge towards finite values
while the corresponding point-particle densities approach
infinity. This restrains the hadronic pressure so that the
quark phase is thermodynamically stable at high T and p.

However, equation of state (6) causes a problem when
one tries to estimate the energy density of nuclear matter
in the hot, compressed region in a relativistic heavy-ion
collision. This estimate requires (a) a reasonable assump-
tion on how much of the available bombarding energy is
converted into internal (c.rn. ) energy per baryon e/ps
and (b) a suitable model for the dynainics of the compres-
sion stage.

Such a model [e.g. , a one-dimensional relativistic hy-
drodynamical shock model, i.e., the Rankine-Hugoniot-
Taub-adiabat (RHTA) equation] relates thermodynamic
variables in the compressed zone (e.g., the energy density
e and the net baryon density ps ), such that the state of
the fireball becomes a unique function of, e.g. , the energy
per baryon e/ps and thus, through (a), of the bombard-

ing energy. However both energy density and baryon
density are limited for the equation of state (6), for in-

stance, e 48. Consequently, the range of bombarding
energies compatible with the equation of state (6) and the
shock model is constrained. Thus, a reasonable compar-
ison (to arbitrary bombarding energies) of some observ-
able obtained in a "purely" hadronic shock and a shock
leading to plasma formation is not possible. Another

ZQQ—
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FIG. 1. Phase-transition line and RHTA's for a shock into
QGP and hadron matter described by equation of state (6),
B =250 MeVfm ', A=100 MeV. Arrows indicate increasing
bombarding energy.

consequence is the peculiar behavior of the shock adiabat
shown in Fig. 1.

We therefore decided to take hadronic short-range in-
teractions into account by means of an effective phenom-
enological interaction potential U(pz} acting between
baryons, where p~ is the net baryon density. This en-
ables us to treat hadronic matter as a mixture of quantum
gases consisting of point particles. To ensure consistency
with genera1 thermodynamical relations the grand poten-
tial density AH( T,ps ) (in the nonstrange case) must be of
the form

AH = —
pH = —Tgg, 8, +in(1+8; expj 13[e;(k) b—;(ps —X)—]]}+u—XPs,

where 8;=+1 ( —1) for fermions (bosons), g; being the spin-isospin degeneracy of particle species i, e;(k) the corre-
sponding relativistic, free one-particle energy (k +m, )'~, b; the baryon number of particle species i, and 2 =du /dps,
u = U(ps }ps/Xs, ps =3@,

q
in chemical equilibrium for nonstrange baryons. Equation (7) is formally equivalent to the

corresponding expression in the mean-field approximation of a relativistic quantum field theory. ' In the case that
strange particles are present, too, strangeness is also conserved, since weak decays play no role on the time scale of a
heavy-ion collision. Thus one obtains

coH = —
PH = —Tgg;8;g ln(1+8; exp f

—p[e;(k) —z'(p —X/3) —z,'(p, —X/3)] I )+u —Xps,
i k

where z,' and z~ are the strange and nonstrange (net)
quark content of hadronic species i. Note that, although
the baryonic interaction X seems to modify both chemi-
cal potentials p,p„ there is no effect on strange mesons.
To make this clear, rewrite

zq'(pq 2/3)+z (p 2/3) zqp +z p —,'(z +z )2

and note that —,
' (z ' +z,' ) = b; which vanishes for all

mesons. Thus in this model, e.g. , kaon condensation sets
in when p —p, mz. The consequences, e.g. , for the

phase boundary between quark and hadron matter are
discussed in Ref. 24.

The potential U(pz ) is chosen so that the properties of
nuclear matter are reproduced. To retain a close connec-
tion to the concept of compressional energy in nuclear
physics we parametrize U in the following way:

U
(pa }=Wc(pa }—W„;„(pa, T=O)+ WR,

where 8'& is the compressional part of the total energy
per baryon, Wz the rest-mass part, and W„;„(ps, T=O)
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the kinetic energy and rest mass per baryon at T =0 (the
latter two are approximated by using only the nucleonic
expressions ). For alternative parametrizations, see, e.g.,
Refs. 10, 24, and 27. Equation (9) is constructed in a way
that for T =0, E /Xz —=8'c+ 8'„. In order to fix
nuclear-matter properties, one has to make an appropri-
ate choice of 8'c. We consider two different phenomeno-
logical functional forms for W&. The first is the well-
known ansatz

The equation of state (11) has the advantage that it is
continuously differentiable for all x and, depending on
the value of A, arbitrarily "stiff" at high pz, while it
simultaneously allows for reasonable values of Ep. Thus,
in this respect it can compete with the common linear
and nonlinear meson field theories. ' The disadvantage
of (11) is that for high x (and T=0) the sound speed
squared

C
(Pe po}—+'0 pe&p'= . 18pop

I
ape' ps —p

(10)

C2-
S

p (T=O)=dp/d
Be de/dx

32x%'[I —R(1+%) /(yx+R) ]'2 (13)

Wc(x)=16MeV R x+ —(1+%), (11)
(1+4')
x+

which is well behaved at low densities. In Eq. (11)
x =pe/po, where po is the ground-state density and%' is
a dimensionless parameter, which controls the stiffness of
the equation of state. The ground-state incompressibility
of this equation of state is

Kp =288 MeV
JY

1+% (12)

Equation (12}implies that Ko cannot exceed 288 MeV for
positive JV. For negative JY again the absolute minimum
of the energy of nuclear matter is not at pp=0. 17 fm

p'=pa/(1 98—0/C), a =C[1—(po/p') ]/18po, pa=0. 17
fm, Bo= —16 MeV. This equation of state has the ad-
vantage that it is causal at all densities, i.e., the velocity
of sound is less than the velocity of light,
c, =+(Bp/Be) &1. However, in order to get similar
stiffness in the high-density region as in meson field-
theoretical models' one is forced to choose values for C
in the range 800 MeV ~ C ~ 5000 MeV. A value of C in
this range yields a compressional energy in rough agree-
ment with intermediate-energy heavy-ion experiments.
Nevertheless, at low densities the equation of state is
much too stiff; the empirical value for the incompressibil-
ity at the saturation point is Ep =200-300 MeV
(Refs. 31 and 32), while for the above equation of state
Ep =—C &&300 MeV. Thus, such a simple ansatz cannot
describe nuclear matter both at high and low densities.
However, as was argued in Ref. 9, if one restricts oneself
to the hadron-matter —QGP phase transition, i.e., to high
densities and/or high temperatures, the equation of state
(10) is reasonable, with an appropriate choice of the
constant C.

Nevertheless, another flaw of (10) will become evident
when calculating the sound speed c, (cf. Appendix) in or-
der to determine the Chapman-Jouguet (CJ) point (see
Sec. III). This involves the second derivative of Wc,
which is not continuous at pz =p'. Hence c, is not con-
tinuous, which leads to ambiguities (cf. Figs. 5 and 6).

Consequently, Eq. (10) is expected to yield a good
description of hadronic matter at high densities, while
the low-density behavior is not well reproduced. %'e also
study the consequences of a new ansatz,

16 R 2x+%'
X+A

—(I+%) +939

exceeds the causal limit' if %'& v'939/4 —1=6.66 or
Eo&288(1—4/~939) MeV =250.4 MeV. The value of
x, at which this happens, decreases with increasing
stiffness of the equation of state, i.e., with increasing%'.
For R «939/4 —1 the ansatz (11) is causal for all x. In
Fig. 2(a) we compare the ansatz (11) with (10) and in Fig.
2(b} we show c, as a function of x for various values of%'.
Note that the tiny region at low densities where the speed
of sound is imaginary (dp/dpi' &0), corresponds to the
well-known instability with respect to formation of drop-
lets.

In order to obtain a stiffness of the equation of state at
high densities comparable to that of typical meson field
theories we restrict ourselves to R values between 4.875
and 12.125, which corresponds, in the nonlinear 0-co
meson field theory, to values of the vector coupling con-
stant c'between 10and 17 [or, in the ansatz(10), to 1400
MeV& C:ED &3500 M—eV]. With this choice of parame-
ters the ground-state incompressibility lies in the range
239 MeV &Ko &266 MeV for (1 1). For the values of R
used in most of the following (%'=6.25), noncausality is
never a problem. For A'&6. 66 the ansatz (1 1) becomes
noncausal, but for the corresponding value of x, at which
this happens, we expect to be well inside the region where
the QGP is thermodynamically stable. Only for R & 12 is
this value of x of the order of the phase transition density
[cf. Figs. 2(b) and (c)]. Thus, in some sense Eqs. (10) and
(1 1) complement each other, the first one being more real-
istic at high densities, the second one at low densities.
For comparison some of our calculations were also done
with the common nonlinear version of the o.-co field
theory' as equation of state for hadronic matter.

Let us now outline a simple picture of a heavy-ion col-
lision: the two nuclei collide forming a hot, dense zone of
nuclear matter which might contain a blob of quark-
gluon plasma, provided the bombarding energy is
sufficiently high. We suppose that the formation of this
zone can be approximated by a hydrodynamic process,
i.e., a compression shock wave. Since we further assume
that there is neither heat exchange with the surroundings
nor evaporation of particles, the fireball, which is sup-
posed to be in global thermodynamical equilibrium, ex-
pands isentropically until freezeout (we also neglect dissi-
pative phenomena in the last stage of the hydrodynamical
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FIG. 3. Schematic T-p diagram displaying possible expan-
sion paths of a fireball consisting of a QGP. A nonequilibrium
hadronization phase transition during the expansion, i.e., a
combustion shock (o&=7.5~o~=10), is compared to an
equilibrium phase transition (0 =20=const) along the phase
coexistence curve. It is assumed that the QGP is supercooled
and that the shock ends in superheated hadronic matter. Stars
mark the freezeout of the system in the hadronic phase.
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FIG. 2. (a) Equation of state (11) compared to (10) at the
same ground-state incompressibility Eo =270 MeV. (b) The ve-
locity of sound of equation of state (11) as a function of
x =pz /po for j:o=239, 248, 260, 266 MeV (W =4.88, 6.2, 9.28,
12.09). (c) T-x diagram for the equilibrium phase transition be-
tween QGP and hadron matter with compressional energy (111.

expansion). However, if the fireball initially contains
some quark matter rather than pure hadronic matter, ad-
ditional entropy can be produced in the hadronization of
the plasma, which may be a nonequilibrium process, e.g.,
spontaneous combustion. The combustion proceeds
through propagation of a shocklike discontinuity. In Fig.
3 we sketch this process in comparison with an equilibri-
um phase transition. The mathematical description of
such a combustion front is identical with that of the
compression discontinuity, where the plasma is created,
the only difference being that the equations of state of
matter in the initial and anal state of the shock have to be
exchanged. It should be emphasized that no shock is
possible in the expansion of ordinary hadronic matter,
i.e., when we assume that no QGP was created. We note
at this point that we do not consider hadronizing shocks
going into or out of the so-called mixed phase, ' ' where
hadronic matter and the QGP coexist.

Let us now briefly discuss a possible consequence of the
above model for heavy-ion collisions. It is well known
that any physical shock must produce entropy because of
highly dissipative processes inside the front of the shock
discontinuity. This is the case in the compression stage,
independently of whether a plasma is created or the sys-
tern remains within the hadronic phase. However, the
amount of entropy created does depend on the equation
of state of the final (shocked) state. Since entropy is ap-
proximately conserved during the expansion stage, a
significant difference between, e.g. , the plasma and the
hadronic equation of state would thus lead to a difFerent
chemical constitution of the system at freezeout. Conse-
quently, the observed particle abundancies may give in-
formation on the initial state of the 6reball, i.e., whether
or not a plasma was created. Moreover, if we have a
nonequilibrium phase transition between the plasma and
hadrons by means of a combustion shock, additional en-
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tropy is created, probably enhancing the efFect on the
particle abundancies at freezeout.

III. SHOCK DISCONTINUITIES IN THE
COMPRESSION AND REHADRONIZATION STAGE

In this section we study the properties of shock discon-
tinuities in the compression and hadronization stage in
the framework of ideal relativistic hydrodynamics. We
confine our investigations of the shock front to one-
dimensional steady flow. In that case, thermodynamic
quantities on both sides of the shock front are related by
the RHTA equation

along the compression Taub adiabat. The stability of the
RHTA for a shock from the ground state of nuclear
matter into a QGP was already investigated in Ref. 11.

Many authors have considered shocks into a mixed
phase of hadron and quark matter during the compres-
sion stage of the collision. ' ' The mixed phase is
thought to consist of many small bubbles of hadronic
matter in the plasma or vice versa. The length scale of
the inhomogeneities is assumed to be small compared to

(X,ps, )
—(X2ps z) +(p2 —p, )(X, +X&)=0, (14)

which follows from conservation of energy, momentum
and net baryon number across the discontinuity. Here
X=(e+p)/ps is the generalized volume. The RHTA
equation in this form is well defined only for finite net
baryon density (however, an analogous equation for

ps =0 was derived in Ref. 39). Let us first consider non-
strange quark and hadron matter. For calculating the
compression shock, matter flowing into the shock front
[denoted by, e.g. , subscript 1 in (14)] is assumed to be in
the ground state of nuclear matter, p &

=0, pz, =p0=0. 17
fm, X&=5429 MeVfm, while matter in the final,
"shocked" state (pz, ps&, X2) is either excited hadronic
matter or quark matter. The final shock state is deter-
mined by employing the corresponding equation of state
and by fixing the bombarding energy per baryon, E&",'b, in
the laboratory. The laboratory energy is related to the
c.m. energy per baryon in the shocked state, E2/Ns2,
(assuming no energy loss through flow phenomena) via

'2
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m0=923 MeV being the rest energy per baryon in the
ground state of nuclear matter. The results of the
compression shock calculations are shown in Fig. 4, for
hadrons (h), quark matter (q), and a mixture (m) of both
phases (see comments below) in the final shock state.

In the scenario where hadronic matter is in the final
state we have a simple compression shock, without a
change of the equation of state across the discontinuity.
In the case of quark matter in the final state the chemical
constitution is changed inside the shock front. This pro-
cess is endothermic, in contrast with a combustion
discontinuity, where quark matter is converted into ha-
dronic matter (see below).

Since the equations of state of the two phases show no
abnormalities, a stability analysis of the shock yields
stable shocks for all relevant bombarding energies. For
the hadronic shock this is immediately clear by inspec-
tion of Fig. 4 and by applying, for instance, the stability
criteria given in Ref. 41. These criteria can be derived
from the condition

600-

0
OP

200-

0 I I j I

0 1000 2000 3000 4000 5000 6000

X t: Mevfm3 ]

FIG. 4. RHTA's for hadronic (h) and quark matter (q), and
a mixed phase (m), (a) for equation of state (10) and B =250
MeVfm ', A=O: solid line, C=1200 MeV; dashed, C=1800
MeV. Dotted lines for the parts of the RHTA's, which corre-
spond to superheated hadrons and supercooled QGP, respec-
tively. (b) As in (a), for equation of state (11) and B =250
MeV fm, A =0 MeV. Full line, JR=6.25; dashed line, JR=9.
Dotted lines as in (a).
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ez =e&5+ e~(1 —5),
pa, z=P g5+P e(1 —5» (17)

To determine this additional parameter one has to solve
the Gibbs phase equilibrium condition

the size of the system, so that the mixed phase can be
treated as a homogeneous mixture. However, for coexist-
ing quarks and hadrons this length scale is on the order
of the nuclear dimension, since the bubbles must contain
several quanta to ensure therrnodynarnical equilibrium.
Furthermore, the thickness of the shock front into a
mixed phase must exceed the size of the inhomogeneities,
to allow thermodynamic equilibrium to be established
behind the shock. On the other hand, the thickness of
the shock front must be less than the size of the system,
otherwise it cannot be treated as a sharp discontinuity.
Thus, the concept of a mixed phase, and in particular
shock waves into a mixed phase, seem to be of limited
value in nuclear collisions. Nevertheless, to make con-
tact with related calculations, ' ' we also study this case.

The stability of such shocks against decay into double
shocks depends crucially on the compressional part of
the hadron matter equation of state. Gorenstein et al. '

found that with the equation of state proposed in Ref. 27
one obtains stable single shocks into the whole mixed
phase regime, while for the linear Walecka model shock
splitting occurs for shocks going into the phase transition
region. In general we find that the stability of shock
waves in the mixed phase is governed by the stiffness of
the hadron equation of state (Fig. 4); for a sufficiently stiff
equation of state the mixed phase emerges from the shock
front with a velocity exceeding c, '"', which implies that
the shock is unstable. Thus, for the equation of state (10),
which is hard and resembles the Walecka model, shock
splitting occurs [Fig. 4(a)], while for a sufficiently soft
equation of state, e.g. , (11) with %=6.25, single shocks
are always stable, as for the equation of state of Ref. 27
[cf. Fig. 4(b)]. For a harder version of the equation of
state (11), e.g., %'=9, a part of the mixed phase Taub adi-
abat becomes unstable with respect to shock splitting
[Fig. 4(b)].

A mixed-phase adiabat can help to determine the bom-
barding energy, at which stable single shocks into the
QGP become possible (via the usual geometrical con-
struction in the p-X diagram or via the criterion of Ref.
41). At lower bombarding energies (E,g, —1 —15
GeV/nucleon) one should allow for the possibility of dou-
ble shock formation (the particular range of energies,
where shock splitting occurs, depends on the equation of
state). However, we will not further pursue this question
and restrict ourselves to the investigation of single shocks
[we checked that for almost all sensible parameter
choices one has stable single shocks into the QGP for
bombarding energies in the range of interest (15—200
GeV/nucleon)].

A technical remark concerning the calculation of the
mixed-phase adiabat should be added: An additional pa-
rameter, the volume fraction occupied by the QGP,
5= Vg/( V&+ V~), has to be specified to compute ther-
modynamic densities in the mixed phase:

J Q 2&PB, 2 PH( ~2&P'B, 2) (18)

in addition to (14). Inserting (17) and (18) into (14) and
setting p, =0, P~, =po, X, =e, /p~, =eo/po yields a
quadratic equation for 6 with the solution

b 4ac
2a b~

1/2

a =(eg —ea) (P—g
—Pa)

5 =p&(e& e&—)+2[~~(&g —&~ )
—P~(pg —p~ ],

c =e a —p &+e&pg

pa, sp;= '
Qeo(co+@&), i=Q, H .

po

(19)

Having determined the equilibrium phase boundary via
(18) one inserts the obtained quantities p&, e&, Pa &, ez,
pa & along the phase boundary into (19). All real 5 that
are between 0 and 1 correspond to physical solutions of
the RHTA Eq. (14) in the mixed phase.

We briefly sketch the procedure when also strange par-
ticles are considered. Then the net strangeness flux
through the discontinuity j,=p, vy is conserved in addi-
tion to the net baryon, energy, and momentum current.
Since the ground state of nuclear matter contains no
strangeness, p, =0 in any final state of the compression
shock. In this case, the effect on the RHTA is small (cf.
Fig. 11 below).

After presenting general aspects of compression shocks
in relativistic heavy-ion collisions we now proceed with
the evolution of a collision and assume that the QGP ex-
pands adiabatically along trajectories in the T-p plane
(Fig. 3) conserving the entropy produced in the compres-
sion stage (cf. Figs. 10 and 11). Combustion discontinui-
ties may occur at the boundary of the QGP, where the
plasma is converted into hadronic matter. ' ' Since the
hydrodynamic expansion time sale is comparable to that
of hadronization processes (5t„,d-A '=1 fm) the plas-
ma is probably supercooled appreciably before hadroni-
zation sets in.

We assume that, once the hadronization of the plasma
is completed by means of a combustion shock front, the
system expands isentropically until freezeout. Note that
the entropy does not increase substantially during the ex-
pansion, even if the assumption of chemical equilibrium
is relaxed. ' '

Formally the mathematical description of the combus-
tion process is completely equivalent to that of the
compression stage, except that now QGP is in the
"unshocked" and hadron matter in the "shocked" state.
Nevertheless there are two major differences between
these processes.

(a) The initial state of the combustion discontinuity on
the QGP isentrope a & =const is determined by the dy-
namics of the problem. In other words, the degree of su-
percooling of the plasma depends on the relative size of
the hadronization and expansion time scales. For the
compression-shock problem in heavy-ion collisions, the
system is initially in the ground state of nuclear matter.
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(b) The final state of the combustion discontinuity in
the hadronic phase is in general not uniquely determined
by the boundary conditions. For compression shocks, the
final state is determined by the collision energy and the
initial state of the matter.

Thus, within the framework of ideal hydrodynamics,
we can only determine which discontinuities are con-
sistent with conservation laws and stability criteria, but
not whether they will actually develop. To study the ac-
tual evolution of such a collision, and in particular the
possible development of discontinuities, a dynamical cal-
culation, including relaxation effects, is needed.

If a certain initial shock state on the plasma isentrope
0.

& is given, the physically allowed, mechanically stable
spacelike solutions of the corresponding RHTA equa-
tion for hadronic matter must satisfy the conditions

(I) ~ & j'=(Privy)'~0,

(II ) her =o H
—o &

~ 0,
(IIIa) v&

~ c, &, vH & c, H (detonation shocks),

deft

2-

0
0

i I

4

&~ad~B

detonations

or (20)

(p'g pH )(pg, H—+eH, g )

Ug, H
(eg eH )(pa, g+eg, H )

(IIIb) v&
~ c, &, vH ~ c, H (defiagration shocks),

where

FIG. 5. e&-e& diagram illustrating the physically allowed re-

gions of spacelike detonations and deflagrations [equation of
state (10) with C =2650 MeV, B =208 MeV fm ', A=O,
a&=15, without strange particles]. Note the discontinuity in

the CJ line vH =c, H near the deflagration region. As discussed
in Sec. II, this is caused by the fact that the ansatz (10) is not
twice continuously differentiable at p& =p'.

For each point on the QGP isentrope o & one consequent-
ly finds a region of physically accessible shock states in
the hadronic phase. As noted above, there is in general
no definite final state for a given set of boundary condi-
tions. However, often a unique steady-state solution, cor-
responding to the Chapman-Jouguet point, can be
found, ' ' but it is not clear whether, in a heavy-ion col-
lision, there is suScient time available for such a solution
to develop.

Let us note that, in the presence of additional strange
degrees of freedom, the value of the net strangeness per
baryon, (S/A)&=(p, /ps)&, in the initial state of the
shock must also be specified. Furthermore, in addition to
solving (14) one has to ensure the conservation of the net
strangeness flux j, across the discontinuity. In our calcu-
lations we can simply put (S/A)& =j, =0, since we do
not consider effects of, e.g. , kaon evaporation from the
surface of the fireball.

In the following we will first investigate possible had-
ronization discontinuities in general. In Sec. IV we wi11

then present an illustrative calculation to estimate the en-

tropy production in a combustion shock discontinuity.
According to (20) we find, for a given RHTA centered

at Io&, T&, (S/A)&)I, the points, where j =oo, j =0,
ho. =O, and UH=c, H, i.e., the points which form the
boundaries of the physically allowed regions for spacelike
hadronization shocks. The procedure is then repeated
for every QGP state on the isentrope o &. The physically
allowed regions in the e&-eH plane' are shown in Fig. 5.
Here a RHTA is a line parallel to the eH axis. We note
that j =00 implies, according to the definition of j

(Ref. 36), X&=XH, while j =0 implies p&=pH (contact
discontinuity). In the Appendix we show how the last
condition ( vH =c, H ) is solved as a function of T and ps
(or T, p~, and }tt„when strangeness is included). We re-
mark that the Chapman-Jouguet lines are essential for
determining the region of physically allowed detonations
and deflagrations.

In Fig. 6 we show the influence of the parameters of
our model equation of state on the physically allowed re-
gions. These grow, when B or A is increased or when C
(R) is decreased. Furthermore, in all cases the plasma
energy density e&, where the physically allowed region
sets in (her =0), depends strongly on the entropy per net
baryon tr &

in the initial (quark) phase. For given eH, this
value of e& is smaller if cr & is larger.

The position of the (ho =0) line is an essential feature
of the e&-eH diagrams in Fig. 6. Since the (j = ~ ),
(j =0), (vH =c, H ) curves do not shift appreciably in the
region of physically allowed final states, it is this curve
which determines the size of these regions. In general it
is true that the larger the region is, the larger is the max-
imurn possible hadronic entropy in this region. In Fig. 7
we illustrate this, displaying curves of 7%, 15%, and
25% entropy increase compared to the initial (quark) en-
tropy, ' calculated with a nonlinear version of the Walec-
ka model for the hadronic part of the nuclear equation of
state. We mention that this equation of state yields quan-
titatively the same results as the other, phenomenological
equations of state. This is due to the fact that the vector
part of the potential energy in the meson field theory
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resembles strongly the interaction potential U, while the
reduction of the effective nucleon mass has the same
effect as adding resonances to the system.

We remark, however, that one cannot quantify the re-
lation between the value of the maximum possible entro-

py and the size of the region by a simple linear propor-
tionality. For instance, two completely different parame-

ter sets C,B,A, o.&, which yield regions of physically al-

lowed states of the same size, do not necessarily produce
the same value for the maximum possible entropy in this
region.

The influence of the new equation of state (11) is illus-

trated in Fig. 8. Since it is relatively soft (see above)
compared to (10) in the energy density range of interest
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FIG. 6. The influence of varying the parameters cr&, C, B, and A on the e&-eH diagram for equation of state (10). (a) C =2650
MeV, B =208 MeV fm, A =0:dotted, o & =20; solid, o &

= 10. (b) a &
= 10, B =208 MeV fm, A =0:dotted, C = 1200 MeV; solid,

C=3500MeV. (c) cr =10 C=2650 MeV, A=O: dotted, 8 =140 MeVfm; solid, B =400MeVfm '. (d) o&=10, C=2650MeV,
8 =208 MeV fm: dotted, A =0:solid, A =200 MeV. No strange particles are considered.



120 RISCHKE, FRIMAN, WALDHAUSER, STOCKER, AND GREINER 41

FIG. 7. Curves showing an entropy increase of 7%, 15%,
25% for a calculation with o.&=5, 8=744 MeVfm ', A=O
and with a nonlinear meson-field-theory equation of state
{Ko=300MeV mo =0 75 can=11 51)

(their stiffness can be made equal only for x ~~, while
around the phase transition [x 25, cf. Fig. 2(c}] this is
not possible}, the (Acr =0) curve is shifted upward at the
same cr& [cf. the influence in Fig. 6(b)]. This effect is

enhanced further by the presence of strange particles;
see Fig. 8. However, as mentioned above, this does not

necessarily imply that there is an appreciable increase in
the maximum entropy production, compared to the cal-
culation without strange particles or with equation of
state (10). This can be settled only by an explicit calcula-
tion (see Sec. IV).

The physical relevance of a combustion shock is con-
nected with the degree of supercooling of the plasma or
superheating of hadronic matter, respectively. To deter-
mine the region in the e&-eH diagram where the plasma is
supercooled or hadron matter superheated, one calculates
the energy density e & of quark matter at the intersection
of the equilibrium phase boundary with the quark isen-
trope o& in the T-p plane. Below this "critical" energy
density e & (arrow in Fig. 9) quark matter is supercooled.
The question whether a final hadronic state is superheat-
ed or not is more complicated. If it is superheated, eH
exceeds the value e H, which corresponds to the intersec-
tion of the RHTA with the equilibrium phase boundary
in the T-p plane. It is obvious that this value depends on
the respective RHTA and hence gives rise to the oc-
currence of a curue [rather than a straight line as for

p~ =0 (Ref. 13)] in the e&-eH diagram (Fig. 9).
The result of this analysis is that almost all denotations

and, under certain choices of the parameters, also
deflagrations end in superheated hadronic matter. De-
tonations, however, require large hadronic energy densi-
ties or strong QGP supercooling, respectively, probably
rendering these solutions physically irrelevant. On the
other hand, deflagrations can start from either normal or
supercooled QGP to end in normal (or superheated) had-
ron matter, depending on the position of the (b,o =0)
curve. (In Fig. 9 all deAagrations require supercooled

10

0
0 8 9 10

FIG. 8. Comparison between equations of state (10) and (11),
with and without strangeness at the same asymptotic stiffness.
Dashed line, (10) with C =1800 MeV; the other lines, (11) with
iV=6.25; solid line, with strange particles; dashed-dotted line,
without strange particles. 8 =250 MeV fm, S/3 =0,
og =10.

0
0

I

4
chad~~

FIG. 9. Below the arrow quark matter is supercooled and to
the right of the dashed curve hadronic matter is superheated;
parameters as in Fig. 5.
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QGP. This, however, is due to the choice of the parame-
ter set. For other sets, i.e., for larger values of 8,A and
smaller values of o&, also deAagrations from normal
QGP are possible. )

IV. ENTROPY PRODUCI'ION AND CONSEQUENCES
FOR PARTICLE RATIOS AT FREEZEOUT

In this section we point out a possibility to check, by
experimental means, the physical relevance of the above
investigated shock discontinuities in relativistic heavy-ion
collisions. We apply the general results of the last section
to calculate the entropy production in a collision. In the
above developed picture of the reaction there are two
sources for entropy production: the compression shock
discontinuity and, in case a plasma is created, the com-
bustion discontinuity in which quark matter rehadron-
izes.

Let us first consider entropy production in a compres-
sion shock. In Fig. 10 we show [for the equation of state
(10)] entropy production in single compression shocks
from the ground state of nuclear matter into excited ha-
dronic or quark matter (cf. also Refs. 8 and 9). The solu-
tion of the RHTA Eq. (14) is displayed in terms of the en-
tropy per baryon 0 as a function of the bombarding ener-

gy (15). In order to give an idea of the beam energies
necessary to produce a thermodynamically stable QGP,
the region corresponding to equilibrium phase coex-
istence is also plotted [again using (15) to convert the en-
ergy density at the phase boundary into E~",'b].

Following the arguments about stability of shocks
given in Sec. III, the part of the QGP RHTA to the left
of E,",'~ 5 15 GeV/nucleon corresponds to unstable single
shocks. However, when comparing entropy production
in a hadronic and plasma scenario we are interested in
larger bombarding energies. A detailed analysis of possi-
ble double shock formation would nevertheless be in-
teresting, but is outside the scope of this paper.

Our main result is that the entropy in a pure hadronic
scenario is determined by the parameter C which controls
the stiffness of the hadronic equation of state. While the
entropy production for stiff equations of state is about
20% smaller than in the QGP scenario [Fig. 10(b)], there
is almost no difference in entropy production for a soft
equation of state [Fig. 10(a)]. Under the assumption that
the nuclear equation of state is "stiff;" this result is some-
what encouraging, since it indicates that in the case of
QGP creation more entropy is produced than in a purely
hadronic collision scenario. This leads to changes in the
particle ratios at freezeout, which might, in turn, be used
as a signal for plasma formation. We note, that prelimi-
nary WA80 data agree, in the order of magnitude, with
our simple calculations. However, since we do not know
which value of C (or even which functional form for the
hadronic equation of state) to choose, an unambiguous
prediction of QGP creation through enhanced entropy
production in the compression stage is not possible. This
is confirmed when one calculates the entropy production
with the equation of state (11) (Fig. 11). Compared to
(10), it is relatively soft in the low baryon density region
and a similar stiffness is obtained only in the limit

gp
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FIG. 10. RHTA's for hadronic and quark matter as excita-
tion functions of the entropy per baryon for (a) a soft equation
of state (10), C =1400 MeV, and (b) a stiff equation of state,
C =3500 MeV. In both cases no strange particles are con-
sidered, B =250 MeV fm, A=100 MeV. For orientation also
the phase coexistence region is depicted (hatched area). Crosses
correspond to WASO data (Ref. 52) at CERN's 60-GeV/nucleon
and 200-GeV/nucleon experiments.

p~~ ~. Hence, with respect to entropy production, this
equation of state resembles a softer equation of state of
type (10), cf. Fig. 10(a).

In Fig. 11 we also show the inAuence of strange parti-
cles. In general adding more particles to the system in-
creases o. at a given bombarding energy. This explains
why similar calculations for the Walecka model, where
only nucleons are considered, yield large differences in
the entropy production between the plasma and the ha-
dronic scenario. On the other hand, in our model, where
in addition to the nucleons many resonances are included
(cf. Table I), there is almost no difference. It is probably
not realistic to assume that the heavier resonances can
reach thermodynamical equilibrium in a heavy-ion col-
lision. However, under the assumption that all reso-
nances are equilibrated, we obtain, according to the
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FIG. 11. RHTA's for hadronic and quark matter as excita-
tion functions of the entropy per baryon for equation of state
(11),%=6.25, 8 =250 MeV fm '. Solid lines for a calculation
including strange particles, dashed lines for a completely non-

strange scenario.

above arguments, an upper limit for the entropy pro-
duced in the hadronic scenario.

If one considers the compression stage alone, one can-
not resolve the question whether entropy production is
enhanced in the case of QGP creation. However, there is
also the possibility that entropy is produced via the
second source mentioned above: a combustion
(deflagration or detonation) shock. This additional en-

tropy increase might be suScient to lead to a significant,
i.e., observable change in an experimentally measurable
quantity. For vanishing net baryon density the entropy
increase does not exceed 7%%uo (Ref. 15). For a baryon-rich
scenario, however, this may be considerably larger.

In Sec. III we have shown that there are physically al-
lowed combustion processes in the phase transition from
QGP to hadrons. The main problem was, however, to
precisely determine the final hadronic state after the com-
bustion shock. This is in general not possible, since, as
mentioned above, one does not know (a) at which T& and

o& the combustion sets in and (b) where on the corre-
sponding RHTA it ends. We consider at first only the
nonstrange scenario. As a first step we calculate the
Taub adiabat with a fixed center T&,o.

& for a certain
choice of parameters C,B,A. By inspection of the RHTA
we then find the final shock state, which most probably
corresponds to maximum entropy production (the
deflagration CJ point). We then vary T&,o& over a plau-
sible range and calculate the entropy produced in such a
final shock state.

Concerning (a), let us first fix the parameters of our
model. We choose the values C=2650 MeV, B =400
MeVfm and, for the sake of simplicity, A=O MeV.
We then assume that the combustion sets in on the quark
isentrope o.

&
=25, which, in our compression model, cor-

responds to E,",'b =200 GeV/nucleon, using the same pa-
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FIG. 12. oH-eH diagram of a particular RHTA, o&=25,
T& = 160 MeV, C =2650 MeV, B=400 MeV fm, A =0,
without strange degrees of freedom. Below the horizontal line
(ho =0) shocks are forbidden, because the condition of entropy
increase across the shock front is violated. Hatched lines
demarcate physically forbidden shocks with j (0. To the right
of the dashed line hadron matter is superheated. The
Chapman-Jouguet points are marked with CJ. The conditions
of mechanical stability, (IIIa) and (IIIb) of Eq. (20), yield the
physically allowed regions of spacelike deflagrations and de-
tonations.

rameters. The temperature is T& =160 MeV, which cor-
responds to a supercooling of the QGP by b T= 10 MeV
below the equilibrium phase boundary along the isen-
trope. Note that, since we do not know the hadroniza-
tion time scale, this choice of 5T is almost completely ar-
bitrary. The above value is of the order of magnitude of
the value that is obtained under the reasonable assump-
tion that the plasma survives for 5t -A ' —1 fm, after
passing the equilibrium phase boundary in a three-
dimensional isentropic expansion.

To answer (b) we now calculate the RHTA correspond-
ing to (a&, T&)=(25, 160 MeV). We display the results
in a oH-eH diagram (Fig. 12) and observe that physically
possible detonations require unreasonably large energy
densities in the final hadron state, as was surmised above
(note the log scale in Fig. 12). Hence we assume that the
hadronization takes place in a deflagration front. In such
a process the maximum entropy is produced at the
Chapman-Jouguet point: o&=28.9, i.e., an increase of
60 =3.9=15% compared to an adiabatic expansion of
the QGP.

We remark that the general property of the CJ points,
namely, that they correspond to a local maximum of the
entropy for deflagrations and to a local minimum for de-
tonations, is nicely confirmed in Fig. 12. This is also
directly related to the fact that the CJ lines in Figs. 5, 6,
and 8 pass the local maxima and minima of the (b,o =0)
curves. Furthermore we note, that for the scenario of
Fig. 12 the maximum entropy produced in the hadroniza-
tion phase transition is independent of whether the pro-
cess is a deflagration or a condensation (cf. Ref. 54).

We now investigate the entropy production in
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tion at small 0.
& is fairly independent of the parameters,

while the region in o. where deAagrations are allowed
depends strongly on B and A.

We now discuss the effect of the entropy excess ob-
tained in our simple model on the final hadronic particle
ratios in a heavy-ion collision. We make the simple as-
sumption that the system freezes out below a certain
baryon density pz=pFO, e.g., 0.02 fm . In principle,
rather than the net baryon density, one should use the to-
tal particle density since it can be directly related to the
mean free path of the particles, which in turn gives a cri-
terion for decoupling if it exceeds the size of the system.
However, in the cases of interest to us Ps =p"'= g,p, is
a good approximation. We then calculate inclusive parti-
cle ratios (i.e., particle ratios after decay of resonances)
for a given value of the specific entropy o 8 at pz =pFp,
obtained under the assumption of thermodynamical equi-
librium.

For illustrative purposes we first return to the scenario
of Fig. 12, where we get a total entropy increase of about
25% compared to a purely hadronic scenario. Approxi-
mately half of the gain in entropy is produced in the
compression stage (for this choice of parameters}. We
have for the inclusive antinucleon-to-nucleon ratio in the
"pure" hadronic case

o H =21~ =7.36X 10(N)
N

(23)

and in the case that a QGP is created which decays spon-
taneously into hadrons

o'H =28.9~ =7.72X 10
(N)
(N) (24)

That an increase of about 25%%uo in o results in order-of-
magnitude effects is most easily understood by noting
that a change of o implies a change of p/T of the same
order (cf. the nonrelativistic Boltzmann gas case:
o —,' p/T), but —th—at antiparticle-to-particle ratios vary
exponentially with changes of p, /T [cf. the Boltzmann ap-
proximation of (N ) /(N ) —exp( 2p, z/T)]. Th—erefore
differences in cr are exponentiated by antiparticle-to-
particle ratios.

In Fig. 14 we show inclusive particle ratios as a func-
tion of oH at pF&=0.02 fm for the equation of state
(11), including strange particles. As anticipated above,
the ratios (N ) /(N ), ( A ) /( A ) are promising candi-
dates for detecting an enhancement in the entropy pro-
duction if a QGP is created; these ratios vary by about an
order of magnitude if the entropy is altered by only 5
units. The ratio (N)l( )qrshows a behavior similar to
that of the antiparticle-to-particle ratios, due to the fact
that —(m~+pI1 )/T increases more rapidly with increas-

ing cr than —m /T along p& =0.02 fm =const.
We note that (E)l(n)and (K)/(m. .) have only a

weak dependence on the entropy in the range of interest
and are therefore not significantly affected by excess en-
tropy production in the case of plasma creation. The ra-
tio (It )/(E) ( —exp[+2(pq —p )/T]} shows an in-
teresting behavior; the dependence on o is inversed, com-
pared to the other ratios. The reason is that for small cr

p —p, is positive and large, while for large o. it nearly
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FIG. 14. Inclusive particle ratios at freezeout (pFo=0.02
fm ') for equation of state (11).

vanishes along pz=const. Hence the ratio approaches
the ratio of the corresponding degeneracies gx /gg = 1. A
similar behavior was found in Ref. 24.

We remark that all ratios are independent of the value
of R in the representation chosen in Fig. 14, since the
equation of state (8) is constructed such that aH and p,.
depend only on T and P~, and not explicitly on A (Ref.
9).

To check the dependence of our results on p„o we re-
calculated the ratios for p„~=0.08 fm . Although the
absolute values of the ratios are up to an order of magni-
tude larger, the essential assertion, that the dijference be-
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tween ratios for entropies differing by -5 units may be
—1 order of magnitude, remains valid. The absolute
values should in any case not be taken too seriously be-
cause of the assumptions on the parameters and on the
dynamical evolution of our system. One cannot expect
the final particle ratios to be insensitive to these assump-
tions. Furthermore the influence of a more realistic
freezeout model ' and of nonequilibrium processes
(especially of chemical nature} ' ' should be investigat-
ed.

The point, however, is that, in the case of QGP
creation and rehadronization through a combustion
discontinuity, an appreciable increase of particle ratios
relative to a hadronic collision scenario could occur. It
would be especially helpful, if an excitation function of
these ratios becomes available by experiment. The
creation of a QGP would then be identified by a strong
increase in the above-mentioned ratios at a certain c.m.
energy density, which indicates the deconfinement transi-
tion.

In conclusion we would first like to remark that the
effect of enhanced antimatter production could be even
more dramatic than in our illustrative example, since the
increase in entropy may exceed 25% [cf. Figs. 13(b} and
13(c)]. Furthermore, we note that a combustion shock is
not necessarily a global phenomenon. It could occur lo-
cally, i.e., in certain rapidity intervals. One should thus
look for correlations between fluctuations in the dN/dy
distribution and enhanced particle ratios per rapidity in-
terval. Finally, considering only relative enhancements of
the entropy per baryon and per unit rapidity and relative
enhancements of the antiparticle abundancies would re-
move the dependence on quantitative details of our sim-
ple model of a relativistic heavy-ion collision.

drastically alter the chemical composition of the system
at freezeout. We found a strong dependence of
antiparticle-to-particle ratios on the final-state entropy.
Thus, in the case that a quark-gluon plasma is created,
enhancement of antiparticle-to-particle ratios by an order
of magnitude or perhaps even more may be observable.
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APPENDIX A: THE VELOCITY
OF SOUND (NONSTRANGE CASE)

The aim is to express the velocity of sound in terms of
p and T. We have, using the functional determinant for-
malism (we omit mean bars and indices)

r

Bp B(p, cr ) B(e,o ) B(s,p)
Be B(T,p) B(s,p) B(T,p)

The particular determinants are easily calculated with the
help of the first law of therrnodynarnics,

dp =s dT+pdp,
de = T ds+p dp,

Bp

Bp

V. CONCLUSIONS AND SUMMARY
Bs Bp

BT AT
(26)

In this paper we have studied compression shocks and
spacelike hadronizing combustion discontinuities of a
quark-gluon plasma in baryon-rich nuclear matter. The
quantum statistics of the constituents were consistently
taken into account and strange degrees of freedom were
included. We have proposed a new phenomenological
formula for the compressional energy of hadronic matter
to avoid shortcomings of an older ansatz. Both of these
forms, as well as a nonlinear meson field theory, are ap-
plied as a hadronic equation of state in the calculation of
shock discontinuities. We find that the results of the
shock calculations are not qualitatively affected by the
particular form of the hadronic equation of state. On the
other hand, the stability of compression shocks into the
mixed phase depends on the stiffness of the equation of
state.

As an application we have calculated the entropy pro-
duced in a shock model of a heavy-ion collision. The en-
tropy production in the compression stage is not
significantly larger in a plasma scenario as compared to a
purely hadronic collision scenario. However, if the phase
transition between quarks and hadrons takes place in a
combustion (i.e., deflagration} shock, starting from a su-
percooled QGP, excess entropy is created, which may

B(e,cr )

B(s,p)

B(s,p)
B(T,p)

Bs Bp
BT Bp

Bp Bs

BT Bp

yielding, with the help of Maxwell's relations,

2o (Bp/BT)„—(Bs/BT)„cr (Bp/Bp)—
Cs

[(Bp/BT )„] —(Bs /BT)„(Bp/Bp)
(27)

BT 1+u "f(p, , T)

Bp f(p, T)
Bp r 1+u "f(p t)

Bs
~ T u g'(pT)

BT '
1+u "f(p, T)

u" is the second derivative of the mean potential energy

The partial derivatives can now be calculated (since p and
s are explicitly given as functions of JLt and T):



126 RISCHKE, FRIMAN, WALDHAUSER, STOCKER, AND GREINER 41

density u. The functions f, g, h, given by

b2
f=g f dk k (n k) exp(PA },

2n T

g=g ' f dk k PA(n k) exp(PA),
2m' T

h=g
2 f dkk (PA)2(n I, )2exp(PA),

2m T

n '„=[exp(PA )+8, ]

(29)

APPENDIX B: THE VELOCITY OF SOUND
(STRANGE CASE)

In the strange case the calculation is by far more com-
plex . Let us now define o =s/pq, X =(e+p)/pq,
f, =p, /pq. Then

Bp

ae ss f
a(p, cr,f, ) a(e, o,f, ) a(s,p, p, )

(30)a(T,p, ,p, ) a(s,p, ,p, ) a(T,p, ,p, )

The determinants can be calculated, again using
Maxwell's relations and the 6rst law of thermodynamics,

A =Qk +in; —b, (p —X),

have to be integrated numerically.

dp =s dT+p dp +p, dp,

d8 —T ds+p dp +p dp

to yield

(31)

aPq aPs

aT aPs

Bs ~p

aT ass

apq apq

aT ass

Bs ~pq

aT ass

as aPq aPs

a T aPq ass

apq apq apq ap

ap, , aT aT al,

ap, ap, ap, ap,
ap, aT aT apq

~PS ~Pq ~PS

aT aT aT
+

apq ap

BPq BP

apq

aps

aPq aPq as
aT ap, , aT

aPs aPq aPs aPq aPq aPs aPq

aT al,
+

aT aT ap, , aT al,
(32)

For sake of simplicity we simply wrote, e.g., ap /aT for (ap /aT }„„.In the limit f,~O, ap, /ap, ~1 we regain the
PqsP~

result of Appendix A.
The explicit calculation of the various partial derivatives is similar to Appendix A, but quite more laborious. One has

II

1+u gb f gzqse + gzqse gzs&qbif& gzsqeigzq&sb&f&
l l 1 l J

1+u "Qb, f, ', g(z' ) f, + g(z' )2f, g(z&) f — gz'z, 'f,
Pq l I J l

II

1+u "gb; f; ', g(z,') f, + g(z') f,g(z )&fz— gz'z, 'f,
S l l J

1+u gb f gzqz f 'g(z ) f'g(z&) f gz'z f'
S l J l

. p —X/3 . p, —X/3
+Z'

l

. pq X/31+u "gb, f, 'ge, z'. .

l

. p, —X/3
+Z

T

. pq X/3+u" gb;d; —gb, d, gb f, z&

l l j

.p, —X/3
+z,j

+ ,'gz'e, gz&b f, — ,'gz, 'e;gz&b —f—
(33)

f; = ' f dk k (n 'k) exp(PA ), d,.= ' f dk k Qk +I; (n k) exp(PA ),
2 T 2 T 0
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. p~
—X/3 )tt,

—X/3
h,=,f dk k (k +m, )(n '„) exp(PA),

2m' T

. JM
—X/3 . p, —X/3

n '„=[exp(PA )+0, ] ', A =Qk +m, — z' +z,'
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