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We reexamine the role that finite-temperature effects play in the dissipation of the initial anisotro-
py of the Universe. The issue was previously studied both in the zero- and finite-temperature cases.
Our results show that the finite-temperature corrections do not introduce new qualitative behavior
and that the anisotropy dissipation scenario is approximately the same as in the zero-temperature
case. We use a formalism that is based on the extension to finite temperature of the closed-time-
path method (it can be used to study systems out of thermal equilibrium). The effective equations
that we obtain are real and causal. We compare our results with others obtained in the zero- and
finite-temperature cases. We discuss some qualitative differences between the formalisms that are
more frequently used to study real-time processes at finite temperature.

I. INTRODUCTION

In recent years there has been some interest in studying
the modifications that quantum effects can produce on
the classical predictions of general relativity. It was
thought that these effects could provide a way out of the
singularity theorems that had been proven in a classical
context.! In the absence of a complete quantum theory
that includes quantum-gravity effects, there are some
heuristic approaches to these problems that find its
justification mainly through the use of “common sense.”
The semiclassical approach? consists in assuming the ex-
istence of a background space-time with a metric that is
treated classically. In this background, all the propaga-
ting fields are studied using the postulates of quantum
mechanics. The classical background metric is coupled
with the quantum fields through a set of ‘“‘semiclassical
Einstein’s equations,” the source of which is the expecta-
tion value of the energy-momentum-tensor operator of all
the existing fields (eventually including the contribution
of the metric fluctuations). Although it is still unclear
how these semiclassical equations arise from an approxi-
mation to the full quantum gravity theory, “common
sense”’ indicates that such a limit could exist (see Ref. 3
for an extended discussion on these issues). Many au-
thors have worked on this topic studying the kind of
solutions that the semiclassical equations possess. The
series of papers by Anderson* can be used as a catalog of
the properties that these solutions have in some particu-
larly simple cases. When the fields that are present in the
Universe are assumed to be free, massless, and confor-
mally coupled to the space-time curvature, the semiclassi-
cal equations can be written explicitly as an ordinary lo-
cal differential equation (if one also assumes that the
Universe is a Robertson-Walker one). There are some
free parameters in the equations that can be used to play
with. They are related not only to the number of fields
present in the model but also to the renormalized con-
stant associated with the R? term that should be present
in the gravitational classical action. The series of studies
summarized in Anderson’s papers conclude that among
the solutions that exhibit an asymptotic classical behav-
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ior (in the future) there could exist families of solutions of
the semiclassical equations that do not have an initial
singularity. There exist also many families of asymptoti-
cally classical cosmological solutions without event hor-
izons.

Thus, quantum effects can play an important role not
only in softening the initial singularity but also in ex-
plaining some of the observable features of our present
Universe. Many years ago, it was suggested that these
effects could be responsible for the isotropy of our
Universe (or, at least, they could be one of those responsi-
ble). Zel’dovich® proposed a mechanism that could have
helped to dissipate the initial anisotropy of the Universe.
The basic idea of the model was very simple: the aniso-
tropic expansion of the Universe can produce a large
amount of particles even for free, massless, and confor-
mally coupled fields. These particles react back on the
space-time metric via the semiclassical Einstein equa-
tions. The back reaction can introduce an effective dissi-
pation and help to damp away the initial anisotropy. The
mechanism was first studied by Zel’dovich and Starobin-
ski® and later by Hu and Parker.” A systematic study of
this same issue was done by Hartle and Hu.® In a series
of papers these authors computed the effective action for
the space-time metric (that incorporate the quantum
effects of the matter fields) in an expansion in powers of
the anisotropy. Writing the metric as

ds*=a*(n)dn*—e® dx'dx/) , (1.1
where B=PB(n) is a 3X3 matrix, they obtained the
effective action up to second order in 3. Using this result,
the effective equations that govern the dynamical evolu-
tion of the anisotropy were written and solved numerical-
ly (see also Ref. 9). The result was that the anisotropy
can be, in fact, dissipated away by the quantum effects in
an efficient manner.

After these pioneering works, some other results ap-
peared. A conceptually interesting approach was fol-
lowed by Calzetta and Hu in Ref. 10. In Ref. 8 the stan-
dard functional techniques of quantum field theory were
used in order to compute the effective action. These tech-
niques were developed in order to study scattering pro-
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cesses and are not designed to deal with problems that
are formulated in terms of initial-value-like boundary
conditions. As a consequence, the “effective equations”
that are derived by varying the usual effective action are
not causal. Moreover, the effective action can be com-
plex (its imaginary part is related with the probability of
creating particles) and, thus, the effective metric found in
Ref. 8 can be a complex quantity without a clear physical
interpretation. The dissipative process would be much
more understandable when studied using a method that
allows the use of boundary conditions posed in terms of
initial values. This method was first developed by
Schwinger and Keldish.!! It is known as the closed-
time-path (CTP) formalism. Calzetta and Hu applied
these formalisms to the anisotropy dissipation problem
and found effective equations that govern the dynamical
evolution of the (real) effective metric. These equations
are real and causal and when written in a Fourier repre-
sentation the dissipative effects can be analyzed in some
simple cases. In fact, the resulting equations have a form
that resembles that of a generalized damped oscillator
(see Ref. 12). The energy dissipated away during all the
process can be shown to be exactly the same as the ener-
gy carried by the created particles. A similar approach
based on the use of the CTP formalism was followed by
Jordan in Ref. 13. He also obtained the effective equation
for the evolution of the anisotropy. In his paper, he
showed that the effective equations have unstable modes.
The existence of these modes makes the numerical resolu-
tion of the equations a rather difficult task. The instabili-
ties do not show up when one works in the in-out formal-
ism since from the beginning one imposes in-out bound-
ary conditions that discard runaway solutions. The CTP
formalism, thus, has the virtue of generating real and
causal equations that allow a more intuitive interpreta-
tion but has also the major drawback of producing equa-
tions with runaway solutions. As emphasized by Jordan,
the existence of these unstable modes is telling us some-
thing about the inadequacy of the approximation used to
study the problem (one loop).

All the previous results were derived assuming that the
quantum state of all the matter of the Universe was a
pure one. However, as the early Universe seemed to have
been a very hot ‘“place,” finite-temperature effects are
worth studying. This was noticed by Amsterdamski'*
who analyzed the influence that finite-temperature effects
can have on the anisotropy dissipation scenario. Surpris-
ingly, the conclusion of his work was that the finite-
temperature corrections can drastically change the be-
havior of the solution to the effective field equations. Al-
though the anisotropy is still dissipated away, the role
that the particle creation mechanism has in this process
was obscured (Amsterdamski obtained some solutions
that at finite temperature exhibited a less rapid anisotro-
py dissipation with a much bigger amount of created par-
ticles than in the zero-temperature case). The finite-
temperature effects were incorporated into the formalism
by using the thermo field dynamics (TFD) approach.'
This well-known method (that implicitly imposes in-out-
like boundary conditions) is believed to be suitable when
one is interested in analyzing real-time processes in a sys-
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tem at finite temperature.

In this paper, we will restudy the effect of finite tem-
perature on the anisotropy damping mechanism by using
a different approach. The method that we are going to
use was designed to study systems out of thermal equilib-
rium. One of the points that we want to stress here is
that TFD (as presented in Ref. 16 and used in Ref. 14) is
a method that is only applicable if thermal equilibrium is
maintained.!” This can be understood as follows. In
TFD, the thermal averages are computed as vacuum ex-
pectation values by adding spurious degrees of freedom
and tracing them out. The notion of a “thermal vacuum”
plays a central role and the techniques of ordinary quan-
tum field theory (QFT) at zero temperature (namely, per-
turbation theory, Feynman rules, etc.) are used in order
to compute matrix elements of operator products be-
tween in and out thermal vacua. However, the results
obtained in this way are physically meaningful only if the
in thermal vacuum is the same state as the out thermal
vacuum. Otherwise, the trick does not work. The
thermal equilibrium needs to be preserved throughout the
evolution of the system. We will give some other argu-
ments on the nonapplicability of the usual functional ver-
sion of TFD to study systems out of equilibrium later [all
the conclusions that concern TFD are also applicable to
other methods that in essence are equivalent to TFD such
as the one presented by Niemi and Semenoff (NS) in Ref.
18].

Returning to the anisotropy damping problem, we
should say that in this case, as well as in many other
problems involving quantum fields in curved spaces,
thermal equilibrium is not maintained. The reason is that
the particles produced by metric evolution are not distri-
buted in general according to a thermal spectrum. These
kinds of problems should be studied by using techniques
that can deal with a system out of thermal equilibrium.
This is true in general although in many cases it is possi-
ble to assume the existence of a quasiequilibrium situa-
tion and use approximated schemes such as those
developed by Hu in Ref. 19. In our case, the equilibrium
is maintained “up to second order in the anisotropy.”
Thus, the calculations that we are going to present below
are not very much affected by the nonequilibrium situa-
tion since we will work up to this order assuming that the
anisotropy is small. However, the use of the nonequilibri-
um method allows us to obtain real and causal equations
(with the same benefits and disadvantages as in the zero-
temperature case). The method that we are going to use
is an extension of the zero-temperature CTP formalism.
It can deal with nonequilibrium situations since the only
input that it needs is information about the state of the
system at a given instant. The method can be applied for
general initial states and its main features were described
by Calzetta and Hu in Ref. 20. If one studies a system
whose density matrix describes an initial thermal equilib-
rium state, the method reduces to the one presented by
Weiss and Semenoff in Ref. 21.

We think that there is some confusion in the literature
about the applicability of the different finite-temperature
techniques. One can often read that TFD and NS
methods are equivalent to other closed-time-path formal-



1056

isms such as one that we use here or the ones described
by Weiss and Semenoff,?! Zhao et al.,'' etc. We hope
that this paper will help to clarify the issue. The first
class of formalisms can deal only with equilibrium sys-
tems. These methods are constructed by using the fact
that the system is in thermal equilibrium both in the far
past and the far future. The second class of methods can
be used to deal with nonequilibrium situations. No as-
sumption is made concerning the state of the system in
the far future region. This is a conceptual difference be-
tween the two classes of methods. In fact even when
equilibrium is maintained, the two classes of formalisms
are different in the same sense that the zero-temperature
in-out formalism is different from the in-in one. In fact,
by examining the zero-temperature limit one can realize
that the TFD-NS methods yield to the usual in-out for-
malism of QFT at zero temperature. The reason is that,
as we mentioned, in these approaches it is necessary to
assume the existence of an out vacuum state (that is also
assumed to be equal to the in vacuum state). It is worth
noting that the effective equations derived from these
methods are noncausal (since one is putting in-out bound-
ary conditions from the beginning). The second class of
formalisms (CTP, Weiss and Semenoff, and Zhao et al.)
yield to the in-in (Schwinger-Keldish) formalism of QFT
in the zero-temperature limit. Thus, the effective equa-
tions derived in this case are real and causal.

The paper is organized as follows. In Sec. II we
present our formalism. First, we describe the techniques
that we are going to use. No original results are included
here. The presentation is made trying to avoid the tech-
nical complications introduced by the matrix structure of
the CTP method. We prove a simple lemma that allows
us to easily compute the effective action from which the
effective equations can be derived. The lemma states the
following result: In the one-loop approximation, the
effective field equations in the CTP formalism can be de-
rived from an effective action I', that can be written

F=S—%trlnG+0(h), (1.2)
where
G(x,x")=(T[d(x)p(x")]) . (1.3)

This result is also true in the non-zero-temperature case.
It allows us to forget about some technical complications
introduced by the matrix structure of the CTP formalism
and makes the calculations needed to compute the CTP
effective action very similar to the ones done in the in-out
approach (a similar result was obtained by Jordan?? in the
zero-temperature case). Finally, in this section we discuss
some differences between the finite-temperature formal-
isms.

In Sec. IIT we are going to face the study of the anisot-
ropy damping problem. Assuming that the Universe is
filled only with a single scalar field (massless and confor-
mally coupled) we compute the CTP effective action at
finite temperature up to second order in the anisotropy
and derive the effective cosmological equations. This
equations are real and causal. The zero-temperature lim-
it of them coincides with the system obtained by Calzetta
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and Hu in Ref. 10 and by Jordan in Ref. 13. We compare
our results with the ones obtained by Amsterdamski.'*
There are conceptual and technical differences between
these results and ours. The technical ones are less in-
teresting but worth noting. The change in the behavior
of the solutions of the effective equation found in Ref. 14
is not found here due to a difference in the sign in some
terms of the equations (a technical problem that is
present in Amsterdamski’s paper). The conceptual
differences are related to the difference between our ap-
proach and the one based on the use of thermo field dy-
namics. Our main conclusion concerning the anisotropy
damping issue is that finite-temperature effects do not
modify the qualitative features of the mechanism. Tech-
nically, we can say that there are local and nonlocal
finite-temperature corrections to the effective equations.
The local corrections do not incorporate new effects (this
is where the difference in the signs of some terms is really
important and the origin of Amsterdamski’s wrong re-
sults). The nonlocal corrections can produce more dissi-
pation. It is possible to relate the “amount of dissipa-
tion” in the zero-temperature case with the finite-
temperature one. The easiest way to do it is by writing
the evolution equation for the anisotropy in a Fourier
representation. Doing this, we can relate the dissipative
effects with the imaginary terms present in this equation.
As was done by Calzetta and Hu in the zero-temperature
case, one can define a “viscosity function” v(w) by writ-
ing the imaginary term that multiplies B;/(w) as
iov(®)B;j(w). The viscosity function is the one that
determines, for example, the linear response behavior of
the system and can be readily identified as the source of
the dissipative effects. We will show that the viscosity
function at finite temperature can be related to the one at
zero temperature as
vT(w)=vo(w)coth|2—w% .
The finite-temperature equations have the same draw-
backs as the ones obtained in the zero-temperature case
in Refs. 10 and 13, namely, the existence of unstable
modes that prevents a successful numerical integration.
In Sec. III we comment more on this issue.
In Sec. IV we briefly summarize our results.

(1.4)

II. CLOSED-TIME-PATH FINITE-TEMPERATURE
FORMALISM

In this section we are going to introduce the main
features of our formalism. As we mentioned in the Intro-
duction it is a generalization of the closed-time-path
method. So, let us review the main features of the zero-
temperature case. In doing this, we are also going to
show how some useful results concerning the computa-
tion of the CTP effective action arise. We hope that these
results will be useful in order to demystify the CTP for-
malism and to convince people that it is as easy (or as
difficult) as the ordinary in-out one. The experienced
reader who is not interested in learning simple techniques
on the closed-time-path formalism can skip this part.

The generating functional for expectation values at
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zero temperature is defined not as the vacuum-to-vacuum
persistence amplitude under the action of a single source
but as the overlap between the states obtained by evolv-
ing the initial vacuum under the action of two different
sources. Thus

Z[J,,J,1=,,40[0),
=<O‘T exp [—if'chi)H
XT[exp [if’J,qs] ] |o> :

where ¢ is an arbitrary time. This generating functional
can be used to obtain all kinds of two-point functions
(time ordered, antitime ordered, etc.) by deriving with
respect to the currents and then replacing J; =0. For ex-
ample,

(2.1

) 8°Z[J,,J,]
VST ()8 (x)

=i(T[®(x)P(x")]),

Gll(x’x')z(
J,=J,=0

(2.2a)

) §2Z[J,,J,]
VT, (x)8J,(x")

=i(T[P(x)P(x")]) ,

Gzz(x,X' )=(

Jy=J,=0

(2.2b)

8°Z[J,,J,]
8J (x)8J,5(x") |4,=1,=0

=i{(D(x")P(x))

Gp(x,x")=(+1i)

=G, (x',x) . (2.2¢)

The generating functional has a standard functional rep-
resentation that can be obtained from (2.1) by using the
functional integral representation of the matrix element
of a time-ordered product of Heisenberg operators. The
equation for Z[J,,J,]is

Z[J,,J,]
= [ D®,D®exp({S[®,]—S*[®,]
+(J 1, ®))—(J5,®,)})

=exp(+iW[J,,J,]) . (2.3)

Here, the functional integral should be made by summing
over all the field histories ®; and ®, that coincide over
some spacelike hypersurface (usually taken as
t =T =+ o). The name closed time path found its ori-
gin in this last formula. In fact, the double functional in-
tegral can be thought of as being a single functional in-
tegral over a field that takes values in a closed “tem-
poral” axis. This field is equal to ®;, when — o0 <t <T
and to ®, when ¢ goes back from T to — . This way of
looking at the functional integral is not always the more
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convenient at the time of computing. There is another
approach that is worth using for computational purposes.
From Eq. (2.3) we can notice that Z[J,] could be inter-
preted as the generating functional for the theory of two
fields with a classical action defined as

S[®,®,]=S[®,]—S*[D,] 2.4)

(the notation S* means that the sign of the i€ factor usu-
ally added to the m? term should be also reversed).

We must stress that in this formalism we did not dou-
ble the number of degrees of freedom. Although we can
work as if we were dealing with the theory of two fields,
we must remember that we have to impose boundary con-
ditions on the functional integral. In fact, for a free field
theory, i.e., for a theory with a quadratic classical action,
we can show that taking into account the boundary con-
ditions, the generating functional can be written as

Z[J,,J,]=exp , (2.5)

éua Gopdy)

where we are summing over the index a and b and the
elements of the matrix propagator are the ones defined in
(2.3).

The usual techniques derived in the context of the in-
out formulation can be used almost directly in the CTP
formalism by using this two-component notation. We
can use many of the results obtained when working in the
in-out formalism with a doublet field. The contact with
the original single field theory is made when one relates
the propagator matrix G,, with the expectation values
defined in (2.2). This matrix structure and the prolifera-
tion of many indices is something that cause some con-
cern but, as we are going to show, the technical complica-
tions can be avoided in some cases. The CTP formalism
can be used in order to derive effective equations for ex-
pectation values. They are obtained from an object that
is analog to the usual effective action.

By doing a Legendre transform of W[J,] we can define
an in-in effective action (or CTP effective action) as

[¢,1=W[J,1-J,¢,) , (2.6)
where
SwW(J,]
b, :—m;;) 2.7)

Note that when J, =0, ¢, is nothing but the mean value
of the field. The effective equation for the mean value is
obtained as

8T'[¢1,¢,]

=0. 2.8
66,(x) @8)

¢]=¢2:¢(X)

So, in order to obtain the equation for ¢, we must derive
the effective action with respect to one of the fields treat-
ing the other as an independent variable and then replace
¢,=¢,=¢. Thus the effective equation is not derived
directly from a variational principle formulated entirely
in terms of ¢(x).

The computation of the effective action is not an easy
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task. The background-field method provides us with a re-
cipe that is particularly useful if we want to compute the
effective action in a loop expansion. The recipe states
(see Ref. 23) that if the classical action is S[®], the
effective action I'[#] can be written as

T[¢]=S[¢]—tr(InG)+0 (h), 2.9)

where G is the free propagator of the theory defined by
the classical action

Stx1=sie+x1-sle1— [ax2LL 1 0. a0

8¢(x) |45

It is worth noting that the propagator defined by (2.10)
is a functional of the background field ¢(x).

We can apply this recipe to compute the closed-time-
path effective action. In that case our starting point will
be the classical action (2.4). The propagator that appears
in (2.9) will be a matrix that solves the system

Ay Gy =—id, , (2.11a)
where
A= An(¢1)=§i(—x§—;§—’m o=s,’ (2.11b)
Ay(d))=— A}1(4,), (2.11c)
and
2= Ay =0. 2.11d)

A close observation of Egs. (2.11) can yield the con-
clusion that we stated in the Introduction. If we are in-
terested in deriving the effective equations we can use Eq.
(2.9) but forget about the matrix structure of the propa-
gator. In fact, the equations of motion for ¢(x) are ob-
tained by applying (2.8) to (2.9). The derivative of the
first term will give the usual classical field equation. The
second term can be derived as

[tr(lnG)]—— fdy dz G (z,9)———Gy\(,2)

8¢ 8¢( x)

(2.12)

=— [dydz G,,(zy)———G7' 1.2)

8¢()

[tr(InG,,)] - (2.13)

__ 29
8¢,(x)

As a consequence of this equation, we conclude that the
CTP effective action can be approximated as

r[¢1,¢2]=S[¢,]——é—tr(1nG” )+F+0(h), (2.14a)

where we can be assured that

SF
81(x) |4 =4,=0(x)

=0. (2.14b)

Thus, we demonstrated (in the zero-temperature case) the
lemma announced in the Introduction and obtained an

equation that very much resembles the one that we get in
the usual in-out approach: i.e.,

F[¢]=S[¢]~étr(lnGF)+0(h) .

By remembering (2.2a) the similarity is clear but it is
worth noting the difference. The only, but crucial, one is
in the boundary condition that defines the propagator
(2.3a) as an expectation value and not as an in-out matrix
element. The difference between the in-out and the CTP
result is much more clearly seen when one evaluates the
propagator perturbatively. Unfortunately, this is an un-
avoidable task since we can solve Eq. (2.11) only in some
extremely simple situations (free fields in flat space-time,
etc.). When the propagator cannot be found exactly one
should make use of some perturbative expansion that can
be implemented in the following way. We can write the
operator A appearing in Eq. (2.11) as

A=A4+V, (2.15)

where A is an operator whose propagators are known
and V contains all the perturbative terms. Let us define
the zero-order propagators 9, as

Ay 9y =8, (2.16)

Taking into account Egs. (2.11) we can be assured that in
general the matrix V will be diagonal (V_,=V,8,,) and
that the matrix element ¥V, will depend on the back-
ground field ¢,. The perturbative expansion for the
propagator reads as

iGll=gll_ganngnl+ganngnm Vmgml+
(2.17)

Note that this expression is different from the one that
one gets when computing the in-out expectation value.
The terms with n,m =2 are new and are caused by im-
posing the boundary conditions (note that all the terms
containing some 2-type index are solutions of the homo-
geneous equation). If we want to compute the effective
action using (2.14) we need to take the log and the trace
of (2.17). Making use of the Taylor expansion for the log-
arithm and noting that in general §;'9,,=0, we get

Pl$16:1=S[]— S trIn(=i)8y,

+‘;"tr( Vlg““%Vl gllyl g11+ Vl ngVZgZI)

+F+0O(h). (2.18)

Equation (2.18) clearly shows which is the only
difference between the perturbative evaluation of the
CTP and the in-out effective action. The term containing
the &, propagators is the only new one that contributes
to the ¢, equation. Moreover, it is quite simple to see its
eﬂ'ect When we derive (2.18) with respect to ¢; and put

=¢,=¢(x) it is easy to see that the contribution of the
last two terms in the first line of (2.18) is simply

éV’(x)fdy[Q%I(x,y)—g%z(x,y)]V(y) , (2.19)
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where V'(x)=[8V /8¢(x)]. The structure of (2..9) is
clearly causal. In fact, if the point y lies in the future
light cone of x, the time-ordered products are equal to
the ordinary ones and the two terms in (2.19) cancel. So,
the temporal integral in this equation goes until y,=x,,.

Thus, Eq. (2.18) is very useful when computing the
effective action with the closed-time-path formalism and
can be used in order to perform many computations
straightforwardly.

Let us now turn our attention to the non-zero-
temperature case. If the quantum state of the system is
described with a density matrix, the generating functional
for the propagators at finite temperature can be defined
by anaiogy with Eq. (2.1) as

£
0]

It is clear that this generating functional allows us to
compute ali kinds of real-time expectation values of
operator products. It is worth noting that in this case we
cannot interpret Eq. (2.20) as the “overlap” between the
density matrices evolving under the action of two
different sources (as we did with the generating functional
in the zero-temperature case). The functional representa-
tion of (2.20) can be written as

Z,[J,,J;]1= [ DO, DPexpli {S[®,]—S*[®,]

XT

exp (2.20)

+(J1¢1)_(J2®2)})
X {¢,(1o)lpldy(to)) ,

where the functional integral should be made now by
summing over all histories ¢ and ¢, that reduce to ¢,(¢,)
and ¢,(2,) at time ¢, and that satisfy ¢, =¢, at time ¢.

In order to make some computations we have to make
an explicit choice of density matrix. An interesting ap-
proach was presented by Calzetta and Hu in Ref. 20. It
consists in expanding the matrix element of p as a func-
tional of the configurations ¢,(¢y) and ¢,(¢y). In this way
one can study very general classes of states. The tech-
niques that one needs to use turn out to be very similar to
those developed first by Cornwall, Jackiw, and Tomboulis
when they introduced the generating functional for n-
particle irreducible diagrams at zero temperature.?*
Another possibility was exploited by Weiss and
Semenoff.?! It can be used if one considers a density ma-
trix describing an initial thermal equilibrium state. In
fact, if one assumes that

(2.21)

p=exp(—%,/T) , (2.22)

where 7 is the Hamiltonian of the system at time ¢, it
is possible to write a functional integral representation
for the matrix element that appears in (2.21):

(1(10)lpley(15)) = [ Dosexp[ —Sp(4y)],  (2.23)

where & is the Euclidean action defined as
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0
SE=f_1/Td77{0 .

The functional integral in (2.23) is made by summing over
all Euclidean histories that reduce to ¢,(¢,) when Eu-
clidean time is zero and to ¢,(¢,) when Euclidean time is
(—1/T). By replacing (2.23) into (2.21) one can think of
the generating functional as generated from an integra-
tion over a single field that takes values over a time path
that lies in a complex plane. The path goes forward in
time from ¢, to ¢ parallel to the real axis, then backwards
in time from ¢ to t, and then goes parallel to the imagi-
nary axis down to the point 7,—i/T that is identified
with #.

If the Hamiltonian in (2.22) is not quadratic in the
fields, it is necessary to introduce an extra current J; and
define Feynman rules involving also the field ®;. If, on
the contrary, #, is a quadratic functional of the fields,
the only influence that the presence of the density matrix
will have in (2.21) will be to change the propagators from
zero to finite temperature. Let us assume that % is
indeed a quadratic functional (in Sec. III we will deal
only with free fields) that can be written as

_fdkalak/Tk] N

where the operators a, and al are annihilation and
creation operators associated with the basis of Fock space
in which the Hamiltonian is diagonal. It is simple to
show that starting with the generating functional (2.20)
we can define an “effective action” I';[¢;,¢,] and use the
standard background-field method to establish the validi-
ty of Eq. (2.9). The only difference is that the propaga-
tors are now computed by using (2.2) but interpret-
ing the expectation value as thermal [i.e,
(+++)=tr(p---)]. The same arguments used in the
zero-temperature case can be used here to prove the
finite-temperature analog to (2.14), that is the lemma we
enunciated in the Introduction.

Finally, and for future convenience, let us write explic-
itly the finite-temperature propagators of a free scalar
field in Minkowski space time. The action is

S=1[dx[(3¢)—m?¢?] .

p=C exp

(2.24)

(2.25)

We assume that the density matrix is given by (2.24) with
T, =T (in this case, the creation and annihilation opera-
tors are the ones associated with the decomposition of the
field in plane waves). Thus the generating functional is
given by (2.5) with the propagators

Goy(x,x)=— [ (‘;;’;4 k== GT=Ok)+GL (k)]
(2.26a)
where the zero-temperature part is given by
GI=%k)=(k?’—m*+ie)™!
=GL7%k)*, (2.26b)
GI70%k)=(—2mi)8(k*—m?)0(k,)
=GI7%—k) (2.26¢)
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and the finite-temperature part is

GTk)=(—2mi)8(k*—m?)n (k) (2.26d)
with
n(k)y=(e %l T_1)-1 (2.26¢)

Note that all the propagators G,, have the same finite-
temperature part.

With this we finish the presentation of our method.
Now, let us discuss some aspects of the other class of
real-time methods that are frequently used to incorporate
finite-temperature effects in quantum field theory. Our
aim is to give clear evidence that shows that TFD (as
presented in Ref. 16 and used in Ref. 14) and other
equivalent methods can only be used to study systems for
which the thermal equilibrium is maintained. Among the
many ways of introducing TFD or NS formalisms, we are
going to use one that will allow us to understand the rela-
tion between the generating functional used in these
methods and the one we use here. As we said, the
definition of the generating functional (2.20) was inspired
in the zero-temperature one (2.1). Let us try to naively
generalize the usual in-out zero temperature generating
functional in the following way. If we have a system that
is described by a density matrix p;, (we work in the
Heisenberg picture) and we act with an external source J,
the density matrix will evolve according to

piJ,,(t)=T{exp [ift.hi) pﬂfoT[exp [—iftJ(ﬁ ] ] .
(2.27)

We can compute the “overlap” between this matrix and
the one that describes the out equilibrium state (of
course, we are assuming that the equilibrium is main-
tained) and define

g(J)=Tr(p{npout)

=Tr lT[exp [ifle)] ]pi’fo

XT[exp [—if‘J¢ ] ]poml .

This functional can be thought to be the generalization of
the vacuum persistence amplitude. However, it is evident
that £(J) is useless since its derivatives cannot be inter-
preted as expectation values of operator products (at least
in a general case). However, we can invent a new func-
tional by slightly generalizing {(J) as

exp [ift12¢} Jpﬂfo

(2.28)

Z(Jl,J2)=Tr

= t
XT[exp [if 7,6 ] ]pom] . (2.29)
Now, we note that by deriving Z with respect to one of
the currents and by evaluating the result in J,=J,=0,
we can generate expectation values of (time-ordered or
anti-time-ordered) operator products in the state defined
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by the density matrix

Pr=PinPout - (2.30)

We can notice that if our aim is to compute the Green’s
functions of a system that is described by a density ma-
trix p, we can use the generating functional defined in
(2.29). Moreover, we can freely choose the in and out
density matrices (that are artifacts of the formalism). If
the original system is in thermal equilibrium at tempera-
ture T, so that

HIT (2.31)

pr=e
then a particularly symmetric choice for the in and out
densities is

pinzpoutzpl/z . (2.32)

Replacing (2.32) in the original generating functional
(2.29) it is easy to show that the result is precisely the
same generating functional defined by Niemi and
Semenoff in Ref. 18. In fact, in this case, it is possible to
find a functional integral representation of Z(J,,J,).
The functional integral should be made by summing over
fields that take values on a complex time path that goes
from the point ¢y to t;—1/T after passing through the
points t;, t,, and t¢; that are defined as ¢, =y,
t,=t—1/2T, t;=t,—1/2T. The method based on the
use of this generating functional was proved to be
equivalent to thermo field dynamics (see, for example,
Ref. 16). Obviously, the choice (2.32) is not the only pos-
sible one. The freedom in choosing different in-out densi-
ty matrices was also exploited in the literature (see Ref.
25) and the results obtained by using other possible
“splittings” of p, were proven to be equivalent [as it is
obvious from (2.29)]. From the presentation we made
here it is evident that the NS method (and, as a conse-
quence, the TFD also) are only applicable if the system is
such that the equilibrium is maintained. Moreover, the
fact that in these methods one is imposing in-out bound-
ary conditions from the beginning produces the zero-
temperature limit to coincide with the usual in-out for-
malism. This can be seen by replacing p,, by |0,in)(0,in|
and p,,, by |0,0ut){0,out| in (2.29). The result is simply

Z(J,J)=Z(J)Z*J,), (2.33)

where Z(J) is the usual vacuum persistence amplitude
under the action of J.

It is quite frequent to find in the literature that the
zero-temperature limit of TFD or NS formalism is the
same as the zero-temperature limit of the CTP formalism
we presented before. As we showed here, this assertion
should be interpreted carefully.

III. THE ANISOTROPY DISSIPATION
AT FINITE TEMPERATURE

Let us consider now the anisotropy dissipation prob-
lem. We will suppose that the metric of space-time is
given by (1.1) and that the content of the Universe can be
modeled by a free massless scalar field conformally cou-
pled to the space-time curvature (we confess that this is a
rather unrealistic picture). The action is written as
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S=S,+S,, . (3.1)

The matter action is

Sm=7fd4x(—g)”2 gpua“¢au¢_%_¢2 . (3.2)

This action can be expanded in powers of the anisotropy
B. In fact, it is quite easy to arrive at the following equa-
tions:

S, =So+S,+S,, (3.3)
where
So=1 [ d*x(a®p#"3,$0,6—a"a¢?) (3.4a)
S = [d*x a?893,40;¢ , (3.4b)

a2¢2
12

S,=— [d*x |a*B*B}3,40,6+

BiB'* l . (3.40)

We are using the following notation:
Bij = Bij = B{

and a prime denotes the derivative with respect to the
conformal time 1. The gravitational action in (3.1) is

S,= [d*x(—g)'” [—%+61R2+62R”UR‘“’

+€3R e R | (3.5)

The constants that appear in (3.5) are the bare ones and
can be written as the renoimalized constants plus coun-
terterms. The counterterms are well known (see, for ex-
ample, Ref. 2) and for simplicity we will assume that the
renormalized €;’s constants are zero (this assumption is
not relevant in what concerns the anisotropy damping
mechanism). The expansion of the gravitational action
up to second order in the anisotropy and the use of the
standard counterterms yield

S,= [d*x Tr(K ~'a’B"?
+A{3B"*Inua —B'*[(a’ /a)*+(a" /a)]})

SR at T, (3.6

where the trace is an ordinary matricial one and
A=(28807%)" L.

The state of the system will be described by a density
matrix. The choice of the density matrix in our case is
not a trivial issue. In fact, it is a well-known fact that the
notion of the vacuum state (and thus the notion of parti-
cle) is not unambiguously defined in curved space-time
and then does not have special symmetries (such as a
timelike Killing vector) or asymptotic regions. This am-
biguity is directly translated to the density matrix choice.
If we decide to study a state described by a density matrix
written as (2.22) we still have to define what we mean by
the canonical Hamiltonian (i.e., we must choose a partic-

ular observer, that defines a global notion of time). In
our case, we will choose a density matrix such as (2.22)
where the Hamiltonian #, will be the one associated
with the action (3.4a) and the comoving observer in the
isotropic RW space-time. That is to say, we are choosing
a state that in the zero-temperature limit reduces to the
conformal vacuum (this was the state used by the authors
that studied the T=0 case and also the one used by Am-
sterdamski in Ref. 14).

We want to compute the CTP effective action in the
semiclassical. approximation. We are going to neglect
completely the metric fluctuations and quantize just the
scalar field (an assumption that can make sense if the
number of scalar fields that are present in the Universe is
large). So, we have to proceed exactly as explained in
Sec. II. We want to compute the effective action
I'[®,,P,] where the symbol ® denotes now the set of
fields {a,B,¢4}. As we are interested in computing the
effective action for the metric, we will fix the background
¢(x)=0 (that is a solution of the effective equations). We
can use Eq. (2.14a) and write

r[a,,Bl;az,ﬁz]:sg[al,ﬁl]—étrlnGH+F+0(h> ,

(3.7)

where F makes a vanishing contribution to the equation
for a and B while G, is simply the thermal expectation
value of the time-ordered product of the quantum field ¢.
Thus, the only thing that we need to do is to compute
G, perturbatively in 3. For that purpose, it is worth us-

ing the conformally transformed propagator defined as
G, (x,x")=a ()G (x,x")a " \(7n') . (3.8)

It is simple to show that the field equation for the prop-
agators G,, can be written as

A, Gy =18, , (3.9a)
where
A=A+V+W. (3.9b)

The matrices are all diagonal and have the following non-
vanishing elements:

A =—Ayp=n"9,9,, (3.10a)
_ _ 2
V11"Vll(a(n,.B(]))—";rﬁ(,-)a,-aj , (3.10b)
m
Wi =Wilay),Ba))
2 ik pj Bl
=- B Bl1x0:0; + —5— . (3.10c)
aty T eaf

V5, and W,, are obtained from (3.10b) and (3.10c) by
changing the sign and replacing a,, and B, by a(,) and

B2y
After defining the zero-order propagator as in (2.16),
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we can use (2.18a) to compute the effective action (the
only difference is that we are separating the first- and
second-order contributions to the perturbation and
denoting them as ¥ and W). The explicit form of the
zero-order thermal propagators is given in (2.26). It is
easy to show that we can split the effective action as

Ilaq),Buyaa)Ba]=Trwlag)]
+Tgla,B1)B)]

+F+0(h). (3.11)

Here I'gyy is the finite-temperature effective action for a
massless conformally coupled scalar field in a RW
universe (it does not depend on the anisotropy) and

= ,dow
Tp °[a,B(1,,B(z)]=Sg(B“,)—Trfdndn Ey.
3}\, 4 "2
where
w4
Lw)= 5 (In|o? /p?| —im) . (3.13b)
19207

The term proportional to (n —4)”! cancels with the

counterterms contained in S, (B) [see (3.6)].
The finite-temperature part of I'g can be written easily
from (3.12). Itis

Tila,B1,B2)]= étr( Vi9T+w, 8T—v 917, 9T
—2v, 877 %,¢7)
—%tr[VIQT(Vﬁ-ZVZ)QT]. (3.14)

It is simple to show that the last term in (3.14) involving
two thermal propagators does not contribute to the
effective equation and, thus, need not be computed. It is
also evident that the contribution to the effective equa-
tions coming from the first trace in (3.14) is of causal na-
ture. This can be proved by using arguments similar to
those used in Sec. II.

Now we will compute the relevant terms in (3.14). The
term proportional to ¥, is the easiest one since the result
is proportional to the trace of the matrix 8 that is zero.
The one proportional to W, is not vanishing. It is

4
4K 5(kn (k)
(2m)

St (W, 8N =—n [d*

X

.. 2
280 k;k; +TrBT

2 T*
45

2
I2T

B“’144

+B4, , (3.15)

=—Tr [dy
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Tgla,B1,B2)1= S, (B1))
+étr( ViSu+WwW,8n—3Vi9uVi9,

—V,91.V,%) (3.12)
is the anisotropy-dependent part of the effective action.
In (3.12), S, is the B-dependent part of the classical gravi-
tational action and the trace means the integration
f d*x(—g)!"? as well as the trace over the matrix in-
dices.

The effective action I'g can be divided into a sum of a
zero- and a finite-temperature part. The zero-
temperature part reads as (3.12) where we have to replace
the propagator by the zero-temperature one [see (2.26)].
It is not difficult to show that the result is exactly the
same one obtained by Calzetta and Hu in Ref. 10 and by
Jordan in Ref. 13. It reads

eiw("l_"l')B(”(n)[B(”(n’ )IT=O(CO)_4i0(ﬂ))ImIT=0((0)B(2)(7]l)]

(3.13a)

where we normalized the space volume to one.
Amsterdamski got a similar result'* but with a relevant
difference in the sign of this term. This sign difference
caused drastic changes in the behavior of the anisotropy.
The last two terms (the ones proportional to V?) are
not difficult to compute. By using the explicit form of the
propagators we get

i = Idw ioln—n'
— (v, 8] v, 97)=—Tr [dndny S

XBy By M w) ,

(3.16a)
where
IMw)= 2 quan(q)(w2—4q2+ie)_]. (3.16b)
1572
The identity

91,=%k)=—2i60(ko)Im 9T, =%(k)
allows us to write
- étr( V8L, 9T)=4i Trfdn dﬂ'%ei‘“‘"‘”')

XB“)(77)3(2)(11')O(w)lm[IT(a))] .
(3.16¢)

Thus, the final result for the anisotropy’s CTP effective
action can be written as
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2 T? T
Lol Bi1,Bi)]1=S; (B —Tr [ dn Bt%)m'*’ﬂ(zn?
do lm( —-7") : ’
——Trfdndn =B (B (M @) —4i0(0)ImL(w)B4)(7')] , (3.17a)
where
Io)=1""%)+1(w) . (3.17b)

From (3.17) it is easy to calculate the effective equation for the anisotropy 8. We just have to use (2.8). The resulting
equation will be nonlocal due to the existence of the last term in (3.17a). Explicitly we can derive (3.17) and obtain

2 ’
a” a T 1,25 —1
”n ”n ’ —_ — — m— -18
(3AB"'ua)’+ {AB + | S| K e (3.18a)
where
K(x)= [ 22eK (o) (3.18b)
and
K(o)=Kw)—2i0(0)Iml(w)= o’ Inlw/u 4¢%) ' +isgn(w) coth— o] . (3.18¢)
L 1920 2T
For future convenience it is worth defining the variables
M(x)=3Alnua , (3.19a)
a” a T —1g23 -1
=A |+ || - 1
k(x)=A a + p Taan K AT (3.19b)

In terms of these variables (that are n-dependent through the dependence on the scale factor a) Eq. (3.18a) is more com-

pact and reads

(MBII)II+(kBI)I_

— [ dwKn—n")By)=0

The equation is real and causal (as expected).

(3.20)

In fact, the kernel K(x) is real since the real (imaginary) part of its

Fourier transform is an even (odd) function of @. The causal structure of the kernel can be shown by noticing that all

the singularities of K(w) are on the upper-half complex plane.

These two properties were proven in the zero-

temperature case in Refs. 10 and 13. By using some simple tricks we can find a closed expression for the kernel that
makes more explicit its causal properties. In fact, we can show that

d IK( —_— I) ( I) nd l!ll )ln( ] —_— IIII( )
fn n—n")B(n 9602an (n")In(n—n’ 96023
i’ 2 2T4 ﬂ ’ "0
LB () B mz[f 7B gm—m) |, (3.21a)
f
where tive behavior of the system.
1 Equation (3.20) describes the evolution of 8 and is cou-
gx)=2xT> 3 (3.21b)  pled to the other cosmological equation that can be ob-

< n?+4xT?

It is worth noting that the first term in (3.21a) that carries
the zero-temperature contribution can be thought of as
being the n'=0 term of the sum defining g(x). This
shows that our finite-temperature result matches very
well with the zero-temperature one. This can also be no-
ticed from (3.18c) where we see that the finite tempera-
ture increases the imaginary part of K(w). As we will
see, this term can be related (in some cases) to the dissipa-

tained by deriving the effective action with respect to the
scale factor a (7). The resulting system is extremely cou-
pled and rather intractable. A further simplification can
be introduced if we solve the equation for the scale factor
by assuming a perfect isotropic space-time and then plug
the solution into the equation for the anisotropy. The
procedure is correct since we are assuming that the an-
isotropy is small (the solution should be consistent with
this assumption). The equation for a () is thus obtained
from
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da

The solutions of this equation are catalogued in
Anderson’s papers.* Their late-time behavior is dominat-
ed by the finite-temperature contribution to the effective
action and the Universe expands as an ordinary
radiation-dominated RW one. The early time behavior is
in turn dominated by the quantum effects that are incor-
porated by the anomalous terms in the effective action
I'kw. There are families of solutions that have an asymp-
totically classical behavior (in the far future) and do not
possess event horizons (the singularity occurs for 7— ).
Among them, the so-called “‘conformally complete” solu-
tion have an initial behavior like

(3.22)

a(n)=explan), (3.23a)
where
a=2nT. (3.23b)

For other families, the singularity takes place for a finite
conformal time 7y and the initial behavior is like

a(m)=(n—mny)¥, y>0. (3.24)

The solution that begins as (3.23) was used as the proto-
type to study the anisotropy dissipation®!* by people that
used the in-out approach (the singular solutions (3.24)
cannot be studied using the in-out method due to the
noncausal structure of the equations).

In what follows we will show that our Eq. (3.20) has
the same virtues and the same pathologies as the equa-
tions found in the zero-temperature case. First, we
should notice that if we want to solve the equation by
fixing some initial values on a given instant =1, as the
equation is nonlocal, we must provide the information on
the values of the function for all <7, As a conse-
quence, the matter of choosing initial values turns out to
be quite complicated. A possible way to proceed is to as-
sume that some of the terms in (3.20) dominate the early-
time behavior of the solution. In this way, one can find
an approximate solution to simulate the initial behavior
and use it for the nonlocal initial condition. Some au-
thors®® argued that the contribution of the nonlocal term
to the early-time behavior of the solution could be negli-
gible. Although the assumption is not very well justified,
we can just do it and see if the results that arise are con-
sistent. This approximation is known as the “local trun-
cation.” The local truncation of the zero-temperature
in-in effective equations is nothing but the real part of the
in-out analog. If one uses Eq. (3.23) in order to approxi-
mate the behavior of the scale factor, then the local trun-
cation of (3.20) can be written as follows (after integrating

once and neglecting the term proportional to T i.e., in
the low-temperature limit):

S V- ) B (3.25a)

dx |Fax?| 79T '
where

B'=q . (3.25b)

C is a constant matrix that fixes the initial orientation of
the rate of change of the anisotropy and x is the rescaled
time defined as x =T7. The constant o comes from the
contribution of the terms containing derivatives of a (%)
in (3.18) as well as from the one proportional to T2. It
takes the value

o=14m7/3 . (3.25¢)

The zero-temperature result is reobtained by putting
o =4m/3. Thus, it is evident that the finite temperature
does not affect the qualitative behavior of the solutions in
the local truncation approximation. In fact our results
are similar to the ones obtained by Hartle and Hu in the
zero T case® using the in-out approach. So, it is possible
to construct a solution of (3.25) that gives rise to a finite
probability for the particle production and to a finite lo-
cal term. The solution to the homogeneous equation
(3.25) is simply modified Bessel functions Hy(ox !/2) that
behave as plane waves times x !”* when |x| — . For this
kind of solutions the probability of particle creation
remains finite (we recall that the probability of particle
creation is related with the imaginary part of the in-out
effective action that, as can be easily proven, is propor-
tional to the integral of ¢'?). In Ref. 14, due to the prob-
lem with the sign in (3.15) that we discussed above, the
author used the value 0 = —2# in (3.25). In that case the
solutions of that equation do not generate a finite particle
production and the local truncation is useless. Here, us-
ing the local truncation it is possible to find solutions that
generate finite particle production probability and finite
nonlocal term both in the zero- and finite-temperature
cases.

Within the in-out approach (T=0), Hartle and Hu®
showed that, if it exists, there is a unique solution to the
full nonlocal equation with an asymptotically classical be-
havior (in the far future) and a finite particle production.
The solution that one finds with the local truncation is a
candidate to approximate the initial behavior of such
“unique” solution.

Let us now turn to some of the pathologies. It is easy
to show that Eq. (3.20) can be rewritten in general in
terms of g (if we neglect the term proportional to T*). In
fact, after integrating once, we can write

d d _
I deq +kq —Fg)=C (3.26a)
where
Flq]l= 96(1) 3 fxdx'q"'(x')ln(x —x')
240 3 f dx'q"(x")g(x —x')
fd“’ "“"K(“’) q(@) (3.26b)

and K(w) is defined in (3.18¢).

This equation is similar to the one of a generalized os-
cillator with time-dependent parameters (mass and spring
constant) and a generalized “friction” force. The friction
force is velocity dependent and history dependent. We
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see that the finite-temperature effects enhance the value
of the spring constant (increasing the initial natural fre-
quency of the oscillator) and add a new frictionlike term
[by changing the real and the imaginary parts of K(w)].
The study of Eq. (3.25) is rather complicated because of
the combined effects of the time dependent ‘“‘parameters”
and the friction terms. The most important problem is
that, as can be seen from the definitions (3.19), both the
“mass” and the spring ‘“‘constant” can be negative in
some region. This can cause instabilities to occur. In the
zero-temperature case, this fact was addressed by Jordan
in Ref. 22. In that paper, Jordan showed that the insta-
bilities are present in the classical regime. In fact, in that
case the scale factor grows as a?~n? (since the Universe
expands as if it were radiation dominated). So, the mass
is positive while k is negative. It can be shown [using the
Fourier-transformed version of Eq. (3.26a) obtained un-
der the assumption that M and k are constants] that the
instabilities are present for all values of u. In the quan-
tum regime, the situation is different but the instability is
still there. In that case, if we use the form of the scale
factor given by (3.23a), we see that k ~a%>0 while the
mass is proportional to In(ua). So the instability is
present since the mass can be negative. However, if we
choose the mass scale to be the Planck one (something
that is not obligatory at all) the instability takes place at
the Planck scale. These instabilities make the solution of
the system by numerical methods a rather difficult task.

In the case where both M and k are positive, the role of
the nonlocal term can be understood as generating dissi-
pation. The way in which this can be studied is by look-
ing at the Fourier-transformed version of Eq. (3.26)
(again, in order to use Fourier techniques we should as-
sume that the parameters are almost constants). In that
equation, we can see that there is an imaginary term that
plays a role that is similar to the one played by the term
generated by a force proportional to the velocity in the
equation for a damped oscillator. In fact, we can define a
“viscosity function” by writing

iviw)og(w)=i ImK(w)g (o) . (3.27)
The viscosity function at zero temperature is simply
__lo
volw) 19207 (3.28a)

The result for the finite-temperature case can be read
from (3.18¢) and is

vT(a))=v0(w)coth% .

(3.28b)

In order to relate this viscosity function with dissipa-
tion we can proceed to do two different calculations. The
same kind of analysis was done in Refs. 26 and 27 when
examining dissipative effects in quantum field theory in a
different context. The first calculation consists in exam-
ining the linear response of the system to an impulsive
force. We can perturb the system with an impulsive 8-
function source and see how it evolves. The dissipative
behavior should produce the damping of the initial per-

turbation. The short-time behavior of the system is dom-
inated by the large-o sector of the spectrum. An ex-
ponential damping arises because of the presence of the
imaginary term and the initial behavior can be roughly
approximated by

g(n)=e ", (3.29a)
where

7=32407Q " /?tanhQ /2T (3.29b)
with

Q’=k/M .

The finite-temperature effects increase both the viscosi-
ty function and the frequency () generating thus a de-
crease of the characteristic time 7 (we stress again that
this is valid only if M and k are positive).

The second calculation that could be done in order to
understand the role of particle creation in the dissipative
process is to compute the total energy dissipated by the
frictionlike terms in Eq. (3.25) and to compare it with the
energy carried by the particles produced during the pro-
cess. The zero-temperature calculation was carried out
in Ref. 20 (see also Ref. 27) and the finite-temperature
one can be done straightforwardly. This ends our discus-
sion on the anisotropy damping issue.

IV. CONCLUSIONS

Let us summarize what are the main results contained
in this paper. We restudied the cosmological anisotropy
damping mechanism proposed originally by Zel’dovich
assuming that the state of the matter in the Universe is
not the vacuum but describes a system that would be in
thermal equilibrium if the Universe would have been iso-
tropic (in the zero-temperature limit, this state reduces to
the conformal vacuum). We used the closed-time-path
formalism extended to include general quantum states.
The effective equations that we derived are real and
causal. In fact, the formalism deals with real mean
values and not with matrix elements such as the usual
functional in-out approach.

Our results show that the finite-temperature effects do
not qualitatively modify the features of the zero-
temperature anisotropy dissipation scenario. Some in-
sight on the initial behavior of the solution can be gained
by neglecting the nonlocal terms. In this way one obtains
a solution that generates finite particle production proba-
bility (and a finite nonlocal term). The cosmological
effective equations have instabilities that are related to
the presence of higher derivative terms in the effective
theory. The occurrence of such instabilities can be seen
as evidence against the approximated theory in which
this calculation is based (one-loop approximation to
quantum gravity). Finite-temperature corrections, as ex-
pected, add nothing to the solution of this problem. The
temperature can enhance the dissipative effects by in-
creasing the value of the imaginary term (or viscosity
function) in the effective equation for the Fourier trans-
form of the anisotropy matrix (and can also make more
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rapid the oscillations of the anisotropy rate of change).

Our result differs from the one obtained previously by
Amsterdamski. The main difference is caused by a
difference in the sign of Some terms in our equations that
cause qualitatively different behavior of the solutions of
the effective equations.

In this paper we also discussed the differences between
the most common methods used to incorporate finite
temperature and to deal with real-time processes. In this
particular aspect our results are not new but can serve in
order to make clearer a subtle issue. We stressed that
there are some methods that can be used to deal with sys-
tems out of thermal equilibrium. These methods are all
generalizations of the closed-time-path approach to
zero-temperature quantum field theory. As, in general,
when one studies quantum fields in a dynamical space-
time equilibrium is not maintained, we are obligated to
use these kind of techniques to attack cosmological prob-
lems. The other class of methods (that includes thermo
field dynamics, Niemi and Semenoff, etc.) can only be
used if the equilibrium is maintained throughout the evo-
lution of the system. As in these approaches one is obli-
gated to impose the equilibrium condition both in the in

and the out regions (far past and future, respectively) this
class of methods are conceptually equivalent to the usual
in-out approach to quantum field theory at zero tempera-
ture (which is the zero-temperature limit of TFD, NS,
etc.). Even if the system is such that the equilibrium is
maintained, the two classes of methods are different in
the same extent that the in-out and in-in formalism of
zero-temperature QFT differ (they are different tech-
niques designed to study different aspects of the same
physical phenomenon). We will continue with the discus-
sion on the different approaches to equilibrium and none-
quilibrium quantum field theory elsewhere.?®
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