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Quantum cosmological approach to the cosmic no-hair conjecture in the Bianchi type-IX spacetime
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The propriety of the cosmic no-hair conjecture to the Bianchi-type-IX spacetime is discussed
from a quantum cosmological point of view. It is shown that most, but not all, classical universes
which are created quantum cosmologically are inflationary. The probability of inflation among
such universes is also discussed.

I. INTRODUCTION

The observed large-scale isotropy, homogeneity, and
flatness of our Universe implies that it can be described in
terms of the Friedmann-Robertson-Walker (FRW) space-
time filled with energy nearly equal to the critical density.
It is an important cosmological problem to explain why
spacetime has such a highly symmetric and beautiful
structure. The conventional big-bang cosmology has no
answer. It merely resorts to a very unnatural fine-tuning
of the initial condition.

On the other hand, inflationary cosmology may pro-
vide an answer to this problem. ' Indeed if the Universe
experiences a sufficiently long period of accelerated ex-
pansion, the horizon and flatness problems are solved. In
studying inflation in the early Universe, one usually as-
sumes the FRW spacetime at the outset. In order to see
whether inflation provides a natural solution to the hor-
izon problem, however, we should start from an aniso-
tropic and inhomogeneous spacetime. If inflation is
shown to occur from a wide range of initial conditions,
we may conclude that inflation is a natural phenomenon
which leads to the large-scale spatial property of the
present Universe.

Concerning this problem, there is a conjecture called
the cosmic no-hair conjecture, which asserts that any
spacetime approaches de Sitter spacetirne if there existed a
positive (effective) cosmological constant A (Ref. 2). We
know, however, that all spacetimes do not always realize
de Sitter expansion. For example, closed FRW spacetime
may recollapse without inflation even if there is a positive
cosmological constant. Hence what is important to ex-
amine is the extent to which this conjecture is true.

For homogeneous but anisotropic spacetimes, which
are classified into several Bianchi types, Wald showed
that all the initially expanding Bianchi-type spacetimes
except type IX approach de Sitter spacetime in one ex-
pansion time. In the case of type-IX spacetime, some
approach de Sitter spacetime while others recollapse
without inflation. %aid also gave a criterion for inflation
in the Bianchi type-IX spacetime. That is, any type-IX
spacetime approaches the de Sitter spacetime if the fol-
lowing inequality is satisfied at some time:

(3)A& —,Rmax ~

where R','„ is the maximum of the spatial scalar curva-
ture with a fixed spatial proper volume which is realized
in the the isotropic case.

Although Wald's above argument is simple and con-
vincing, it is not satisfactory in discussing the generality
of inflation in type-IX spacetime for the following two
reasons. One is that the above inequality is a sufficient
condition for inflation and there may be many
inflationary solutions without satisfying the above cri-
terion at the outset. The other is that, even if we content
ourselves with the sufhcient condition (1), the measure
which satisfies inequality (1) is not yet certain in the pos-
sible initial phase space of classical universes.

In order to examine the naturalness of inflation in a
specific spacetime, it is in general necessary to define a
measure on the initial phase space and to assign the prob-
ability of their realization. It has been argued in the
literature how one should define a natural measure in the
configuration space of the cosmological solutions and the
probability of inflation has been discussed classically by
simply estimating the area of inflationary trajectories in
phase space in some simple spactimes.

In the case of the Bianchi type-IX spacetime, however,
it has been shown to exhibit a chaotic behavior near the
singularity with or without the cosmological constant,
like a particle moving in a triangle potential well. '

Hence it is impossible to predict which trajectory will
inflate if one sets the initial condition near the classical
singularity. This means that we cannot hope to discuss
the probability of inflation in this spacetime in terms of
the above method. But such a classical analysis may not
be valid in the early Universe before the onset of
inflation, especially near the singularity, because
quantum-gravitational effect may play an important role.

In the present paper we would like to discuss the natu-
ralness of inflation of the Bianchi type-IX spacetime with
a positive cosmological constant making use of the
essence of quantum cosmology advocated by Hartle and
Hawking or Vilenkin, that is, the creation of the
Universe from the Euclidean era and the avoidance of the
classical singularity.
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In the full quantum theory in which the quantum state
of the Universe may be described by the wave function 4,
it is rather fuzzy where classical universes emerge. As
will be shown below, however, since it is hardly possible
to calculate the wave function in the whole mini-
superspace, we will employ a semiclassical analysis. In
the present analysis based on the above spirit of quantum
cosmology, we boldly presume that each classical
universe starts its evolution on the boundary between the
Euclidean and the Lorentzian region, the surface on
which the superpotential vanishes, with a time-symmetric
configuration or with vanishing momenta. We calculate
the amplitude from the zero three-geometry to such a
classical configuration in terms of the stationary-phase
approximation of Klauder's coherent-state path integral'
and thereby assign a probability to each initial
configuration. Then we trace their classical evolution to
see if they inflate, so that we can examine the generality
of inflation among the universes thus created.

The rest of the paper is organized as follows. In Sec. II
after introducing the Wheeler-DeWitt equation in the
present mini-superspace, we discuss the applicability of
the proposed prescriptions for giving the boundary condi-
tion to the present problem. Then in Sec. III we intro-
duce our semiclassical approach. Finally Sec. IV is de-
voted to results and discussions.

and
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+
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a(U[P+, P ]—1)+a —=0 .

The standard procedure of canonical quantization
yields the Wheeler-DeWitt equation to the wave function
of the universe %[a,P+,P ],

(j2+
2 2 gp2 gp2

144m e[a,p„p ]

=—(G" B„Bs—&[a,P+,P ])%[a,P+,P ]=0,

respectively, by which the Hamiltonian constraint is ex-
pressed as
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II. BIANCHI TYPE-IX MINI-SUPERSPACE

A. Wheeler-De Witt equation

The metric of the Bianchi type-IX spacetime is written

where we have omitted terms with first-order derivatives
which depend on the operator ordering. " In the last ex-
pression G" ( A, B =a, P+, and P ) represents the su-

permetric of the minisuperspace and

y$ = —gg +a 2P .
(2)

144W'[aP+, P ]=— a U[P+,P ]—1+a-
K

where a differential one-form co' satisfies dN E'jkN QN

and the traceless tensor p,, is parametrized as

(P~ ) =diag(P++&3P, P+ —&3P, —
2P+ ) .

Then the Einstein action with a positive cosmological
constant A reads

S= f (R —2A)& —gd x+(surface term)= 1

2K

2

fdt aa' —a p+ —a p
K

+a ( U[P+,P ]—1)+a—

U [p+,p ]= 1+—', e + [cosh(4&3p )
—1]

(3)

+ —,
' e + ——', e +cosh(2&3P ),

where ~ is equal to 8m times the Newtonian gravitational
constant and an overdot denotes differentiation with
respect to the Lorentzian time. The Lorentzian rnomenta
conjugate to a, P+, and P are

is the superpotential.

B. Problems with boundary conditions

—Icl (8)

in the Euclidean region where the superpotential is
8'~0. In the Lorentzian region, where 8'~0, the wave
function is given by the analytic continuation of (8).

We can in principle determine the quantum state of the
Universe 0 by solving the Wheeler-DeWitt equation un-
der an appropriate boundary condition. There have been
two distinct proposals, in determining the wave function
the Universe: namely, the Hartle-Hawking and Vilen-
kin proposals. Let us see their applicability to the
present mini-superspace.

In the Hartle-Hawking proposal, the wave function 4
is given in terms of the Euclidean path integral over pos-
sible compact Euclidean manifolds. However, since we
cannot perform such an integration directly except for
some simple mini-superspace models, some prescriptions
have been given to obtain the wave function approximate-
ly. In the case of simple systems for which we can ex-
plicitly write down the classical Euclidean action I,], we
may approximate the wave function as
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= —du+dv+ +a dP+,2 2 (9)

P—
where u+ ——ae + and v+ ———ae +. We draw a con-
formal diagram of the mini-superspace. Figure 1 is an
example which illustrates the (u, v ) surface with p+
being constant. ' As seen there, the Cauchy null hyper-
surface lies in the Lorentzian region where we cannot
specify the wave function as (8) because there are no Eu-
clidean stationary paths which are regular at a=0.

The other proposal has been presented by Vilenkin, in
which the initial singularity is avoided because the classi-
cal universe emerges as a result of quantum tunneling
from "nothing. " In this picture the wave function should
possess only expanding mode at the boundary between
Euclidean and Lorentzian regions and only outgoing
modes at singular boundaries of the superspace. As seen
in Fig. 2, however, the Euclidean region of the present
mini-superspace becomes thinner as anisotropy increases.
Furthermore the classical singularity a=O is exposed to
the Lorentzian region with some large anisotropy. Thus
the naive tunneling analogy breaks down there.

Recently Del Campo and Vilenkin reported that they
have calculated the wave function in the present mini-
superspace in some limiting cases of large and small an-
isotropy based on the tunneling boundary condition with
the help of the finiteness condition of the wave func-
tion. ' However, their analysis is not satisfactory enough
to the present problem since they did not give the wave
function with moderate anisotropy which may be impor-

V U

Such an analysis of the present mini-superspace has
been done by Amsterdamski, ' where the condition that
the anisotropy parameters p+ should be small was inevit-

able to evaluate the semiclassical wave function analyti-
cally. In his approach the scale factor is assumed to
evolve in the same way as in the de Sitter mini-superspace
model, so that it is impossible to discuss the naturalness
of inflation there. General cases with a large anisotropy
are too complicated to allow analytic expression.

For those cases which cannot be treated analytically, it
has been prescribed to utilize expression (8) only to give
the Cauchy data for the Wheeler-DeWitt equation and to
solve the equation numerically. In the present mini-
superspace the supermetric reads

G„dX"dX = —da +a dP +a dP

Lore ntzian

clid

=0+

FIG. 2. The {a,p ) plane illustrating the Euclidean region
and the Lorentzian region in the present mini-superspace. The
superpotential vanishes on the line II and the line X indicates
the surface which corresponds to the maximum of a for the clas-
sical Euclidean four-geometries which are regular at a=0.

tant for discussing the naturalness of inflation.
Thus the Bianchi type-IX mini-superspace seems to be

too complicated for the usual prescriptions to be directly
applicable. A similar problem arises even in the isotropic
mini-superspace if a scalar field which is nonminimally
coupled with spacetime curvature is present. ' In the
next section we describe our semiclassical approach to
analyze the problem quantum cosmologically.

III. SEMICLASSICAL ANALYSIS

A. Quantum regime

As has been shown in some mini-superspace analy-
ses, ' ' ' the wave function 4 is monotonic in the Eu-
clidean region and exhibits an oscillatory behavior in the
Lorentzian region where 4 describes a set of classical
universes. As stated in the Introduction, though there is
no definite boundary between the Euclidean and the
Lorentzian regions, the wave function becomes oscillato-
ry near the surface H on which the superpotential 8'
changes it sign.

The present mini-superspace was first analyzed by
Hawking and Luttrell. " They conjectured that the clas-
sical universes which are created quantum cosmologically
start evolving near the surface II with small momenta.
Their qualitative analysis, however, should be comple-
mented by quantitative analysis in order to discuss the
naturalness of inflation in this mini-superspace.

Wright and Moss' proceeded the analysis by numeri-
cally calculating the wave function with semiclassical ap-

proximation (8), +=e ", where I,~
is the classical Eu-

clidean action

2

I,~= f dr —aa' +a P'++a P'
K

+a (U[P+,P ]—1)+a— (10)

FIG. 1. A conformal diagram of the Bianchi type-IX mini-
superspace with a positive cosmological constant. The (u, U )

surface is shown.

evaluated with the regularity condition at a=O, where a
prime denotes di6'erentiation with respect to the Euclid-
ean time ~=——it. They showed that the classical Euclid-
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ean paths extend beyond the surface II until a' vanishes
except for the isotropic case when a'=0 on II. Though
they did not evaluate the wave function in the oscillatory
region, they concluded that the surface X, on which a'
vanishes, not only corresponds the maximum of a for the
Euclidean four-geometries but also minimum value of a
for the bouncing Lorentzian four-geometries (see Fig. 2).

However, if we consider both Euclidean and Lorentz-
ian Hamiltonian constraints on X, it turns out that we
cannot set P, =O there except for the isotropic case.
That is, since they read, respectively,

P, + —2(Pp +Pp )+W[a,P+,P ]=0,

P, (P—tt +Ptj )+ W[a, p+, p ]=0,1

a +
(12)

P, =P, =0 inevitably implies that W=O on X, where P's
are the Euclidean momenta defined by

124, p 12m
QQ, p

=
2

0
K +

and

pp =, ap'12m

K

(13)

S =
z (pI qI

—qIdpI +q, p, —p,. q,. )

+I [-,'(p "q "—
p "q") &(p",q")]dt . —(14)

Here the action functional is expressed by the complex
solutions q" and p" of the classical Hamiltonian equa-

This suggests that the classical universes start on the
8'=0 surface II in the semiclassical approximation.
Thus we assume that each universe starts its classical
evolution on II with vanishing momenta or P, =Pp =0.

In order to estimate the probability amplitude of the
realization of the above initial state of classical universes,
we should calculate the transition amplitude from the
vanishing three-geometry or a=O to each of the above
configurations. However, we cannot estimate it in terms
of the conventional path integral because we are specify-
ing both the three-geometries (a,p+) and their momenta

(P„Ptt ) of the initial state of the classical universes.

Klauder has proposed the continuous-representation path
integrals in order to calculate such amplitudes. ' He
showed that this integral picks up the main contribution
in the transition amplitude between some specific states
specifying the average values of both configurations and
momenta. We may expect that this also true in our sys-
tem. Since no proper quantum-cosmological method
which is applicable to the present mini-superspace has
been developed so far, we adopt it and estimate the prob-
ability of the realization of each classical trajectory by
calculating the amplitude from a=0 to the initial state of
each classical universe with his stationary phase approxi-
mation.

In Klauder's formalism the dominant approximation
for the amplitude (pI, q&, tI ~p;, q, , t, ) is given by exp(iS),
where

tions of motion,

Nf a
(15)

Bp

subject to the boundary conditions q;"+ip,"=q; +ip; and
qf' —ipf"=qf —ipf. Such a solution may be found by ap-
propriately choosing the complex variable w, where
q;"=q;+m and p;"=p;+in, so that the time-evolved
solution satisfies qf" —/pf"=qf —

/pf
We proceed the above procedure to estimate the ampli-

tude

and p =—

((a,P~) on II, P, =Ptt =0~a =P+=O, P, =Pp =0),
where the initial state is so taken that it satisfies the regu-
larity condition. Indeed from the classical equations of
motion, which may be derived from the Hamiltonian
equations of motion (15),

~ ~a=

a 1 BU
P+ = —3-Pg-

a * 2a'BP~ '

——'a (p +p )+—'aA

(16)

where the sign in the exponent depends on how we rotate
the time axis. Since the Hamiltonian vanishes in the
present case, I is given by

( pcl icl p&cl cl+ pcl p&cl p&cl pcl
a a p+ + p+ +

+Pp' P'"—Pp" P" )dr,

where a", p~, P,", and P& are solutions of Euclidean

Hamiltonian equations which satisfy the appropriate
boundary conditions given by Klauder's prescription.
Thus we may assign the realization probability of the ini-
tial state of each classical trajectory in terms of

~
((a,P ) on II, P, =P& =0~a =P =O, P, =P& ——0)

~

B. Fate of the classical universe

Having specified the initial state of the classical
universes and their creation probability, we are now in a
position to investigate the fate of each classical universe.
We solve the Lorentzian equations of motion (16) starting
from the surface II with the initial condition that all the
momenta vanish. The calculation is done until either of
the following sufficient conditions is satisfied:

it is evident that regularity at a=O demands that U=O,
P+ =0, and a + 1 =0. That is, P+ =0, a =+i, and

P, =Pp =0. Since a is imaginary at the outset, our

starting point of the path integral must be in the classi-
cally forbidden or the Euclidean region. Hence we per-
form the Wick rotation t ~+i ~ and search for the com-
plex stationary paths in Euclidean spacetime numerically.

Thus the transition amplitude is formally expressed as

((a,P+) on II, P, =P& =0~a =P+=O, P, =P& =0)

=exp(+ I), (17)
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3
a )0 and A & inflate,

0
(19)

the creation surface of classical universes,
8 [a,P+,P ]=0, is projected on the (P+,P ) plane on
which the scale factor is given by

a
a &0 and A & 3 — recollapse .

a
Q0)

a =a, (p+,p )—=
3(1—U[P+,P ])

A
(22)

Condition (19) is nothing but Wald's sufficient condition
(1) and once it is satisfied, the spacetime always inflates.
On the other hand, the criterion (20) is derived from the
Raychaudhuri equation. From it we have

(21)

where E =3a/a is the trace of the extrinsic curvature
tensor. Thus if a&0 and A —E /3&0 or A&3(a/a), t't

will never become positive, so that the spacetime will
inevitably collapses to a singularity at least classically.

IV. RESULTS AND DISCUSSION

We have calculated according to the above algorithm
and the main result is illustrated in Fig. 3. In this figure

The three curves in the figure stand for a, (P+,P )=0
lines, beyond which the singularity a=0 is exposed to the
Lorentzian region and quantum-cosmological creation of
the universe does not take place in the present scheme.
In this figure, the initial configuration of each classical
universe is depicted with a mark indicating its fate. That
is, the circle stands for an inflating universe, while the
cross indicates a universe which recollapses without
inflation. This figure is independent of the values of the
cosmological constant, because systems with difFerent
values of A & 0 are shown to be dynamically equivalent by
rescaling the scale factor a and the time variable. In fact,
dynamical behavior of the system (a,P +,A ) is related
with that of (a,P+,'A) by the transformation rule

»" . gyp4 g g
4 a

e 4 0 & e0 & &

ilail~&

) i vari & &~ &
"icr

0 ~ 0 e
& & CP & S ~ k—&--"

0 0 g ~

a

FIG. 3. Fate of the classical universes created on the W[a, P+,P ]=0 surface. Circles denote initial state of the inflationary
universes, while crosses are those of noninflationary universes.
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&Aa =+Aa, P&=P+, and &At = trr At .

What is remarkable in Fig. 3 is that the initial
configuration of classical universes is clearly divided into
inflationary trajectories and recollapsing trajectories. It
is quite different from a result of classical analysis in
which the system exhibits chaotic behavior near the clas-
sical singularity so that it is not predictable which trajec-
tory inflates.

As is seen in Fig. 3, in the present case most of the
classical trajectories are inflationary except for those
starting with a relatively large anisotropy and small spa-
tial volume near the a, (P+,P )=0 lines. One should
note, however, that there are classical universes which
may inflate even if they start with a very large anisotropy
and small spatial volume. For example, on the P =0
line there is an inflationary solution even if P+ tends to
infinity, in which case the equation of motion for a reads

helpful in the probability interpretation. This figure
shows a generic feature of I„on the whole
&[a,P+,P ]=0 surface. That is, it is large for sym-
metric configurations and small for recollapsing
universes.

In terms of I, the probability amplitude that a classical
universe is created with anisotropy P+-P++dP+ and

P -P +dP is given by either

P+ [a,P+,P ]dP+dP =exp(2~I, [a,P+,P ]I )dP+dP

(24)

or

P [a P+-,P ]dP+-dP

=exp( 2~I„[a—,P+,P ]~ )dP+dP, (25)

a= —a +1
20

(23)

which is the same as the equation of motion for the scale
factor in the spatially flat FRW spacetime with the
cosmological constant A.

It is also interesting to compare our result with Wald's
criterion (1). On the creation surface of classical
universes the criterion is not satisfied at any point except
that A= —,'R','„at the isotropic point P~=O. Hence a
quantum-cosmological consideration picks up a set of
inflationary universes without satisfying Wald's sui5cient
condition at the outset.

Next let us consider the generality of inflation in the
present model. Though it seems most of the universes
which are created quantum cosmologically are
inflationary in Fig. 3, we should consider the probability
distribution, which could be given by the absolute square
of the transition amplitude, in order to see how general
inflation is. Figure 4, which depicts the magnitude of the
real part I„of the stationary Euclidean action I Eq. (18)
evaluated on the creation surface along the P =0 line, is

depending on how we perform the Wick rotation, or in
other words, how we take the integration path. In simple
models the former corresponds to the Hartle-Hawking
prescription and the latter to the Vilenkin-Linde
prescription. '

The former has an exponential peak on the isotropic
state and this peak becomes sharper as A decreases.
Hence this prescription predicts a symmetric universe
which inflates. On the other hand, in the latter probabili-
ty distribution it is likely that a classical universe emerges
with large anisotropy and small spatial volume, which
may or may not inflate. As the cosmological constant in-
creases, inflation becomes more probable because the
weight P becomes flatter.

Finally let us consider the probability of inflationary
versus noninflationary universes. First, for the sake of
comparison, we calculate the ratio of the area of the
inflationary and noninflationary regions in Fig. 3, which
turns out to be,

dP+dP : dP+dP
inflationary noninflationary

=63%:37% . (26)

0.1

Next we evaluate the probability of inflation based on the
probability amplitudes (24) and (25), keeping in mind that
the maximum of ~I„~ is realized when P+=0 and it is
given approximately by

0.05
M

1I„I,„=M =0.096 H

vA
(27)

FIG. 4. Magnitude of I, evaluated on the &[a,p+, p ]=0
surface along the p line. The vacuum energy density is taken
tobe V=M».

where we have defined the vacuum energy density
V=x A. As two typical values of V, let us consider
V Mp] and V = 10 Mp& the former suggested by pri-
mordial inflation' and the latter by the density fluctua-
tion constraint.

+2II„~For V=MP„2~I„~,„=0.19 and e " —1, so that
there is no considerable di8'erence between the two
prescriptions. Indeed we yield
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and

f P+ [a,P+,P )dP+dP: f P+ [a,P+,P ]dP+dP =65%:35%
inflationary noninflationary

f P [a,P+,P ]dP+dP:f P [a,P„P ]dp, dP =eO%:4O%,
inflationay noninflationary

(28)

(29)

On the other hand, for V =10 "Mp~, we yield

2~I„~,„-10' . Hence P+ predicts de Sitter spacetime
with a very high probability, while P predicts very an-
isotropic universes, most, but not all, of which recollapses
without inflation. One may wonder that the above result
is contrary to that in the mini-superspace model which
contains the FRW scale factor a and homogeneous scalar
field P with a potential V[/] =m P /2 as degrees of free-
dom. This is because the potentials V[/] and U[P+,P ]
are involved in the superpotentials of the Wheeler-
DeWitt equations in a different manner. If we replaced A
with the potential energy V[(()] in the present model, P+
or the Hartle-Hawking prescription would predict isotro-
pic universes with small V[(()] but no inflation, while P
or the Vilenkin-Linde prescription would predict aniso-
tropic universes with large V[/], which may inflate.

In conclusion, we have considered the naturalness of
inflation in Bianchi type-IX spacetime with a positive
cosmological constant. First we argued about difhculties
in both classical and quantum analyses of this spacetime.
Then we have developed a semiclassical analysis scheme
to see the fate of classical universes which presumably

have typical trajectories of those created quantum cosmo-
logically. Though our approach may not take full ac-
count of quantum-gravitational effects, we have obtained
a definite result thanks to the semiclassical treatment.
That is, we have found that most of the classical trajec-
tories thus created experience inflation, even though they
do not satisfy Wald's criterion for inflation at the start of
classical evolution. We have also discussed the probabi-
ities of inflation in this mini-superspace in terms of the
transition amplitude given by the coherent-state path in-
tegral.
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