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Time variation of fundamental constants: Bounds from geophysical and astronomical data
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Consistent bounds for the simultaneous variations of fundamental constants in the standard mod-

el of fundamental interactions are obtained from astronomical, astrophysical, and geophysical data.
These bounds exclude the Dirac large-number hypothesis and, in general, any theory demanding a
large variation of the fundamental constants. They also impose severe constraints on Kaluza-Klein
and superstring theories, and should be considered as strong tests of the equivalence principle.

I. INTRODUCTION

The standard model (SM) of fundamental interactions
together with general relativity (GR) provides a con-
sistent description of all known low-energy phenomena
[i.e., low compared with the grand unified (GU) energy
scale], in good agreement with experiment. This model
depends on a set of parameters called the "fundamental
constants. " These are supposed to be universal parame-
ters: i.e., time, position, and reference-frame invariant.
Indeed, Einstein s equivalence principle, on which GR is
based, implies such an invariance.

However, the time variation of fundamental constants
has been an active subject of research since the introduc-
tion of the large-number hypothesis (LNH) by Dirac long
ago. ' This hypothesis was based on the existence of
several large dimensionless numbers, such as the ratio of
electrostatic and gravitational potentials in the hydrogen
atom, whose value is near the ratio of the age of the
Universe and a typical period of the hydrogen atom. As-
suming that the former quantity is proportional to the
latter, the existence of the unnatural large number is "ex-
plained. " The simplicity of the LNH and its large
predictive power leads to numerous theoretical and ex-
perirnental researches on the time variation of fundamen-
tal parameters.

On the theoretical side, there have been many propo-
sals, both phenomenological and theoretical, leading to
a time variation of the fine-structure constant. Unifying
schemes such as Kaluza-Kleig or superstring theories
provide a very general framework to study the time varia-
tion of fundamental constants. Indeed, it has been shown
that Kaluza-Klein theories have cosmological solutions
where the fundamental constants do vary, ' and the
same occurs in superstring theories.

Partially inspired by these theoretical results, many at-
tempts have been made to set observational or experi-
mental bounds on the time variation of fundamental con-
stants. Table I shows a summary of the most accurate
bounds obtained from several sources, assuming the given
constant is the only one which varies in time. This would
give the right order of magnitude if there were no corre-
lations between the variation of the constants to cancel

TABLE I. Sample bounds on the time variation of funda-
mental constants. These bounds assume that only a single con-
stant varies.

Magnitude M

GN

a
game/mp

Bound on M/M
(yr ')

10
—12

4X10-"
10

8X10

Reference

10
9

11
9

its effect on any given physical observable. However,
there are reasons to expect that several constants may
vary simultaneously and that correlations are a conse-
quence of deep theoretical results. For instance, the va-
lidity of Einstein's gravitational equations implies that
the product of the gravitational constant and the mass of
the body must be time independent. ' Therefore, it is in-
teresting to analyze the time variation of fundamental
constants without the assumption of no conspiracy, and
so we shall attempt to do so in this paper.

The time variation of fundamental constants will pro-
duce a host of different phenomena: changes in atomic
and nuclear spectra, ' variation of planetary radii and
moments of inertia, ' orbital evolution, ' and anomalous
luminosities of faint stars. ' Nucleosynthesis, both
cosmological' or stellar, ' has also been used to set
bounds on the variability of fundamental parameters.
In this paper we shall analyze short-term local
phenomena —astronomical and geophysical data based
on time intervals much shorter than the age of the
Universe —and so set bounds on the variability of the
fundamental constants today in the solar system. Since
other astrophysical and cosmological data refer to very
different time scales, it seems reasonable to analyze these
latter events in a separate way.

Our paper is organized as follows. In Sec. II we expose
a simple phenomenological framework to study the time
variation of fundamental constants and our choice of fun-
damental parameters is explained. In Sec. III we discuss
the observational evidence available from astronomical
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and geophysical phenomena, and in Sec. IV we state our
conclusions. Several appendixes discuss details of the
analysis for each member of the data set.

II. A PHENOMENOLOGICAL MODEL

In this section we shall develop a very simple phenome-
nological model for the analysis of the consequences of
the time variation of fundamental constants. It will be
based on the adiabatic hypothesis, i.e., that the main
changes in observable quantities are due to the time vari-
ation of the parameters, neglecting the necessary
modifications of the SM. Although such a procedure will
yield correct expressions for the change in observable
quantities, one would not be able to relate the rate of
change to interesting quantities, such as the Hubble con-
stant or the contraction rate of extra dimensions, without
a deeper analysis. This is because the Lagrangian ob-
tained by simple substitution of time-varying parameters
is generally inconsistent (Ref. 3 develops a simple con-
sistent model for the time variation of a, the fine-
structure constant).

To begin with, we must choose a definite system of
units. In a world of time- and (space-) independent pa-
rameters, this choice is completely arbitrary; but this will
not be so in a world with time-varying parameters. '

Different systems of units can be chosen so that different
parameters are time independent. In simple model
theories with a time-varying gravitational constant, two
such systems are the gravitational units, where G~ is time
independent but atomic parameters are time dependent;
and atomic units, where the opposite occurs. In a much
more complex theory, such as the SM, very many
different systems of units are possible.

In order to specify our system of units we shall first as-
sume the constancy of c and fi, since this assumption sim-

ply fixes the length-to-time units ratio, while an A-varying
theory can be transformed into a G~- (or a-) varying
theory with a suitable conformal transformation. More-
over, we can use a finite, time-dependent
renormalization-group transformation to select any di-
mensional quantity as a time-dependent energy unit. '

With such a choice, which amounts to taking a time-
varying renormalization point, one builds the desired sys-
tem of units. There are several choices for the energy
standard, defining several different systems of units hav-
ing different physical meaning. Any of these systems will
be related to any other through a finite renormalization-
group transformation, although its explicit construction
may be extremely diScult to carry out. In this paper we
shall introduce the Salam-Weinberg system of units
(SWU's), where the mass of the intermediary vector
meson 8',M~, is taken as the time-independent energy
unit. All our analysis will be carried out in SWU's.

There are several constraints between the fundamental
parameters in the SM, and some diSculties related to the
evaluation of the effect of their time variation on observ-
able quantities. We shall list some of these problems and
the corresponding choice of variable quantities.

(a) Gravitational interactions In spite .of many at-
tempts of unification with other fundamental interac-

a=a&sin 8~,2

G~ =&2ai/8Mii

(2.1a)

(2.1b)

In these equations, ai and az are the SU(2)U(1) cou-

pling constants and the Weinberg angle is defined as

tan 8ii, =a, (Mir)/a2(M~) . (2.2)

The intermediate boson masses M~ and Mz can be ex-

pressed using the vacuum expectation value (VEV) of the

Higgs field, v:

2

M~= — a2 =
2

Mz=Mii /cos 8n .

(2.3a)

(2.3b)

Thus, in SWU's the time variation of all fundamental
parameters in the electroweak sector of the theory is fully
determined by the time variation of a and of GF. The
latter quantity is, however, not directly observable: only
the tiine variation of the product GFcos 8c, where 8c is
Cabibbo's angle, is directly measurable since there are no
long-tiine high-precision measurements in the leptonic
sector of the theory.

(c) Strong interactions. In the low-energy regime,
strong interactions are effectively isolated but the single
coupling constant a3 is very big and nonperturbative
effects are dominant. However, if u-d quarks are mass-
less there is a single parameter in the theory, namely, the
QCD scale parameter A, and we shall choose it as our
fundamental parameter, since all static observables with
dimension of mass must be proportional to A. More
precisely, any quantity 0. with dimension D must satisfy
an equation of the form

Aof Q
A

(2.4)

where Q is a (set of) quantity specifying the energy scale
while o. is measured and A is the scale parameter. How-
ever, for static quantities such as the proton mass, Eq.
(2.4) takes the form

(2.5)

tions, gravitation remains in isolation and its only param-
eter, Newton's gravitational constant G~, is still unrelat-
ed to other fundamental constants. (See, however, Ref.
7.) We shall take Gz as one of our fundamental time-

dependent parameters.
(b) Electroweak interactions. The Salarn-Weinberg

unification of electroweak interactions is well supported
by experiment not only at the tree level, but also at the
radiative correction level. ' We shall assume the validity
of the fundamental relations between the parameters of
the theory: a consequence of the adiabatic hypothesis.

We choose the fine-structure constant a and Fermi
weak-interaction constant GF as our fundamental time-

varying parameters. These are related to other funda-
mental parameters of the theory through the equations
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since the only scale parameter is o. itself. The solution of
Eq. (2.5) has the form

cr =XA (2.6)

5F=M,
r, v

(2.7)

The Hamiltonian H, however, can be written in the
form

H=T+U, (2.8)

where, for an electron gas, U accounts for the Coulomb
interaction. In this case, the second term in the right-
hand side is homogeneous of the first degree in a, while
the first one is homogeneous of degree —1 in m, . So we
find

'&T&+—&U&.ame
(2.9}

In addition, both (T) and (U) can be written in
terms of observable quantities using energy conservation
and the virial theorem,

E=& T&+& U&,

3pV=2(T)+( U),

(2.10a)

(2.10b)

and in this way we can express the change in free energy
in terms of observable quantities:

( T) =3pV E, — (2.11a)

where X is a well-defined dimensionless numerical con-
stant. As a consequence of (2.5) we see that dimension-
less static observables are time independent in massless
@CD with time-varying A. All low-energy static quanti-
ties, such as nuclear masses and radii, will satisfy an
equation of the form (2.6). Even in the presence of mas-
sive u-d quarks, provided their masses are small enough,
the dominant contribution to the ground state (or to a
low-energy state) will be of the form (2.6). In this paper
we shall assume massless quarks and so we shall apply
Eq. (2.6) to compute the time variation of all nuclear
masses and radii.

(d) Higgs sector. In the absence of a well-defined theory
of the Higgs sector of the SM, a host of experiments
would be necessary to analyze the time variation of the
fundamental parameters in this sector. However, only a
few of them, namely, the electron mass and the Cabibbo
angle, are relevant in the low-energy regime and we may
take them as fundamental parameters. That the time
variation of the Cabibbo angle cannot be directly ob-
served by our choice of massless u-d quarks implies that
8& is time independent in our model.

(e) Thermodynamical considerations The .time varia-
tion of fundamental parameters will produce changes in
the equation of state of macroscopic bodies that can be
computed using simple thermodynamic considerations of
a very general nature. Under an adiabatic change 5A, of a
parameter A, , the free energy of the system will change in
the form '

( U) =2E —3pV . (2.11b)

(f} Time units transformation .Several of the upper
bounds observed are reported in a system of units
different from SWU's we have in this work. For instance,
astronomical observations are reported either in ephem-
eris time (where both G~ and planetary masses are as-
sumed time independent) or in atomic time. Simple
transformation rules can be derived observing that the
observation time (atomic, ephemeris, or whatever you
wish) t, will be related to SWU's time t in the form

t, =t+ ,'8t'-, (2.12)

where 8 is some linear combination of the time deriva-
tives of the fundamental constants. The time derivatives
in SWU's will be related to the reported ones through the
equations

da dt's da
( 8 }da

dt df' dt
&

dt
&

d2 d 2
=8 +(1+28t )

dt's

dt i

(2.13a}

(2.13b)

a; a„
a. a Q

A„+—g C," (2.14)

where we have neglected the fermion contributions, and
the constants C;- have well-defined values in the SM. As-
suming no new physics, gC;J is equal to —2, —'„and —,'for
i=1,2,3. In addition, a3 and p are related with A
through the relation

A 6m.

A 33—2WF a2 p
(2.15)

These four equations are enough to find the time varia-
tion of the model-dependent parameters a3 and p, and
the GUT parameters a„and A„.

the last term being generally negligible. The application
of these procedures to particular cases will be discussed
in the appendixes.

(g) Renormalization group eq-uations There a. re several
parameters in our model that cannot be computed in a
model-independent way from our fundamental parame-
ters: namely, the time variation of the strong-interaction
constant a3 and of the renormalization point p. We shall
call these model-dependent parameters, since they can be
computed within a larger model that contains the SM as
a low-energy limit. In this paper, we shall limit ourselves
to show how these parameters can be computed in a
grand unified theory (GUT} which can be itself a low-

energy limit of the Kaluza-Klein or superstring model.
We assume that at the grand unification scale A„all

the running coupling constants have a common value a„.
This is related to the Salam-Weinberg scale (p=Mn, )

values of the running constants a; through the
renormalization-group equations. Following Ref. (7} we
write them in the form
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III. ANALYSIS OF OBSERVATIONS

In this section we shall analyze and discuss di8'erent
observations of geophysical, astronomical, and geochemi-
cal nature in order to obtain bounds for the time varia-
tion of fundamental constants. Our discussion will be
mainly qualitative, leaving most quantitative details for
the appendixes.

A. Planetary radii

Planetary radii will change under a time variation of
~ fundamental constants because of the variation in

cohesion of matter and the pull of gravity. The theory of
those variations has been modeled on those of Refs. 13
and 22, and is sketched in Appendix A.

The final result for the variation of planetary radii as
observed from structural changes in the planetary surface
is given by Eq. (A. 12}. The coefficients of these equations
can be computed if density, pressure, and bulk modulus
distributions of the planet are known. This is true for

Earth, where seismological data yield accurate distribu-
tions of these quantities, and for some smaller bodies of
the solar system, such as Mercury and the Moon, whose
chemical composition can be inferred from geophysical
observations and where a linearized equation of state is a
good approximation because of its small compression.

McElhinni, Taylor, and Stevenson report upper bounds
for the change in the radius of several planets from a
variety of geophysical observations. The mean rates of
variation for the Moon and Mercury radii are shown in
Table III, together with the coefficients of the conditional
equations. The variation of Earth radii has not been in-
cluded because in spite of the accuracy of the observa-
tions, its complicated geological history makes the deter-
mination of its paleoradius unreliable.

B. Earth's moment of inertia

The variation of Earth's moment of inertia can be corn-
puted from the change in angular velocity induced on the
Earth-Moon system because of conservation of angular

TABLE II. Observational data. The columns show the data number (correlated with the conditional
equation number in Table III), a simple data description, the observed value and the corresponding
standard deviations (in units of 10 "yr '), the system of units of the observation and the references.

Eq. Description Value (10 " yr ') Unit Ref.

Planetary paleoradius: R /R
(1) Mercury
(2) Moon

0.0%0.012
0.0+0.015

SW
SW

12
12

Lunar secular acceleration: ri/n
(3) Mercury transits
(4) Ancient eclipses
(5) Growth rhythms
(6) LLR
(7) Tidal models
(8) Satellite data

—15.021.2
—17.3+1.8
—14.2+2.4
—13.7+1.0
—15.2+3.0
—14.4+1.7

ET
ET
AT
AT
SW
SW

29
25

24,30
28
24
31

Earth's secular acceleration: 0/0
(9) Ancient eclipses
(10) Ancient equinoxes
(11) Growth rhythms

Viking ranging data
(12) G~/G~
(13) P

—24.3+2.0
—23.6+2.3
—22.5+1.0

0.0+1.2
0.0+2.4

ET
ET
AT

AT
AT

25
25
24

13
13

Binary pulsar data
(14) n/n 1.0+1.2 AT 32

Laboratory data:
(15) Clock rate diff. —0.2+1.2 SW 36

Long-lived P decayers: k/A,

(16) "7Re
(17) K
(18) 7Rb

2.3+1.8
0.0+0.29
0.0+0.29

aU
aU
aU

39,41
42
42

Oklo phenomenon: o /0.
(19) ' Sm 0.0+69.0 SW 11,35
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momentum (see Appendix B). The change in angular ve-

locity of Earth can be directly measured, on the other
hand, from the analysis of ancient astronomical observa-
tions ' or from the analysis of paleontological data.
The observable quantity is an effective change in the mo-
ment of inertia, due to observation of the Sun from the
rotary reference system of Earth (see Appendix C).
Neither of these observational methods is free of trouble:
ancient astronomical observations cover a short period of
the history of Earth, where small changes in the moment
of inertia due to deglaciation effects are to be expected.
Paleontological data suffer from ambiguities in their in-
terpretation. Both methods are hampered by tidal fric-
tion. In order to obtain meaningful results from these
data, a simultaneous analysis of the lunar acceleration
and of Earth rotation results (following the pattern of
Refs. 24 —27) is necessary.

Paleontological data relies on the recording of tidal
and climate phenomena on the shells of living animals
and so records changes in the moment of inertia in atom-
ic units where a and m, are constants. Ancient astro-
nomical observations measure the same change in ephem-
eris time where both G~ and planetary masses are as-
sumed time independent. Both sets of data yield comple-
mentary information on the time variation of fundamen-
tal constants. The corresponding corrections have been
introduced in the equations of Table III.

C. Orbital perturbations

The main perturbations induced on a Keplerian system
by the time variation of fundamental constants will be an
acceleration in longitude of the planet or satellite (Appen-
dix C). This longitude acceleration cannot be observed in
ephemeris time, since it is universal, but it can be ob-

1 —0.039
2 —0.008
3 0.0
4 028
5 —5.0
6 —4.0
7 —11.76
8 —11.5
9 —6.48

10 00
11 00
12 —1.0
13 0.0
14 4.0
15 —1.0
16 5.62e2
17 17.0
18 2.71
19 25.0

1.30
0.9
0.0
0.0

—2.0
—4.0
—1.61
—1.61
—2.0

0.0
0.0

12.0
4.0
4.0
3.0
2.16e4

46.0
1.07e 3
9.8e6

1.32
0.9
0.0
0.0

—1.0
—2.0
—1.44
—1.44
—1.0

0.0
0.0
6.0
2.0
2.0
1.0

—6.0e2
—1.0
—7.83

0.0

—0.019
—0.004

0.0
—0.11
—2.0
—2.0
—3.94
—3.83
—1.83

0.0
0.0
1.0
0.0
2.0
0.0
0.0
0.0
0.0
0.0

0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
2.0
2.0
2.0

—707.0

0.0 0.0
0.0 0.0
1.0 0.0
1.0 0.0
1.0 0.0
1.0 0.0
1.85 1.0
1.85 1.0
1.85 1.0
1.0 0.0
1.0 0.0
0.0 0.0
0.0 0.0
0.0 0.0
0.0 0.0
0.0 0.0
0.0 0.0
0.0 0.0
0.0 0.0

TABLE III. Coefficients of conditional equations. The
columns show (1) the equation number (the same as that of
Table II), (2) A/A, (3) a/a, (4) m, /m„(5) GF/GF, (6) GN/Gz,
(7) ri In, (8) 0&/0&. All coefficients are in units of 10 "yr

7 8

Mp=igt+ ,'Apt~, —

M =A, t+ —,'k t

(3.2a)

(3.2b)

where M and M& are the quantities measured from rela-
tive abundance data and the superscript 0 denotes the
present-day value of the parameter. The a age of the
sample is defined as

M
a ~0a

while the effective decay constant is obtained as

(3.3)

pea
M

(3.4)

From these equations we obtain the time variation of
the decay constants:

served in atomic time.
Table II shows several determinations of the lunar tidal

acceleration both in ephemeris and atomic time.
Comparison of both data sets would yield the accelera-
tion due to the variation of fundamental constants. How-
ever, because of the contamination of the data with tidal
and deglaciation effects, we have analyzed it together
with data on Earth's rotation, following the prescription
of Ref. 25. The corresponding equations are shown in
Table III.

The binary pulsar offers a second independent deter-
mination of orbital evolution due to the time variation of
fundamental constants. The astronomical system is
very clean and the determination is very reliable.

Another determination of orbital evolution has been
made on the motion of Mars as recorded from the Viking
lander data. ' The accuracy of these measurements is so
high that it is possible to obtain a meaningful separation
of the rate of variation of Newton's constant and of the
mass. The corresponding equations are entries (5) and (6)
in Table III. They include corrections for the conversion
from atomic to SW units.

D. Long-lived p decayers

The half-life of long-lived P decayers, such as ' Re or
K has been used by Dyson to find upper bounds for

the time variation of the fine-structure constant. These
nuclei have a very long half-life that has been determined
either in laboratory measurements or by comparison with
the age of meteorites, as found from a-decay radioactivi-
ty analysis. Appendix D shows our analysis for the three
P decayers ' Re, K, and Rb.

In our phenomenological model, the abundance of any
unstable nucleus will obey the following decay law:

—(A,t+ A, t l2, )
Oe (3.1)

In standard physics, the effective decay constant can be
found if the age of meteorites can be determined by
means of any other present nucleus of known mean life.
In our model, this nucleus will obey a decay law similar
to Eq. (3.1), and the age of meteorites will have a different
value for different nuclear species. For a and p decayers,
the age in SWU's should be determined from the equa-
tions



41 TIME VARIATION OF FUNDAMENTAL CONSTANTS: BOUNDS. . . 1039

—1 + (3.5)

The last term is similar to a conversion from some
units to SWU. Using expressions for the logarithmic
derivatives of the decay constants in Appendix D we find
the coef5cients for equations in Table III.

K. The Oklo phenomenon

About 2X10 yr ago, a natural nuclear reactor operat-
ed for 6.5X10 yr in the uranium ore deposits in Oklo,
Gabon. From an analysis of nuclear and geochemical
data, the operating conditions of the reactor could be
reconstructed and the thermal neutron capture cross sec-
tions of several nuclear species measured. In particular
the ' Sm capture cross section is strongly dependent on
the position of a resonance level of the compound nucleus

Sm, being sensitive to small changes in its width and
position. " Upper bounds for the variation of fundamen-
tal constants can be found if the functional dependence of
the parameters can be derived. However, this is an ex-
tremely difKicult task, since the capture level is an ex-
tremely complex state of a many-body system. In our
analysis we treat it as a finite-temperature Fermi gas (Ap-
pendix E).

It is interesting to note that in our phenomenological
model, the ' Sm neutron capture resonance yields little
information about the time variation of the strong-
interaction parameter A. This is not diScult to under-
stand: in a world of massless quarks, any nuclear energy
must be exactly proportional to A and

G. Luminosity of faint stars

dE BE
dt Bt

(3 8)

where E is the local energy density and J is the energy
current. The total time derivative is the energy produc-
tion due to the time variation of fundamental constants,
while the partial time derivative is the local change.
However, our system is Hamiltonian in this approxima-
tion, and for any Hamiltonian theory the following iden-
tity holds,

dH dH
dt dr

(3.9)

and taking the expectation value of the former equation
we find that J vanishes and, as the luminosity is the flux
of J, there is no anomalous luminosity in our model. A
more direct proof of this result, based on the usual stellar
structural equations is given in Appendix F.

The luminosity of faint stars has been used to set
strong constraints on scale-covariant theories of gravita-
tion. ' This anomalous luminosity is due to the radiation
of internal energy of the star as it adjusts to the change in
its structure due to the variation of Gz. Conservation of
energy is essential for the derivation of this result.

However, in our model the time variation of funda-
mental constants induces no anomalous luminosity on
such stars. Indeed, energy is not conserved in our model,
but injected into the system by the variation of the con-
stants. The correct energy balance equation will be (in
the nonrelativistic limit)

yr
A AE

10 fQ

A E (3.6) IU. RESULTS AND CONCLUSIONS

must be true. The much smaller bound found in Ref. 11
refers to the time variation of the depth of the nuclear
well. As shown in Appendix E, this quantity seems unre-
lated to EQ in our model.

The computation of the observable e8'ects in the Oklo
phenomenon is dificult and defiled with ambiguities. The
tabulated coeScients may be wrong by an order of mag-
nitude and we have multiplied by 3 the standard devia-
tion of the measurement in order to take into account the
theoretical uncertainties.

A cz+3
A a (3.7)

The measured value is shown in Table II and the corre-
sponding equation in Table III.

F. Laboratory experiments

There is a single laboratory experiment accurate
enough to yield interesting bounds on the rate of varia-
tion of atomic constants. In this experiment, a set of
cesium atomic clocks were compared with a set of super-
conducting cavity stabilized oscillators. The frequency
ratio between the hyperfine transition of cesium and the
characteristic frequency of the cavity is given a simple
function of the fundamental parameters such that

The equations shown in Table III form an overdeter-
mined set of constraints that the observational data must
satisfy. A least-squares solution to the set of constraints
is shown in Table IV, together with 95% confidence lim-
its. These latter limits are much smaller than the Hubble
rate (as can be seen from the last column of the table) and
so we can exclude the Dirac large number hypothesis
and, more generally, any theory showing a large variation
of the fundamental constants. These theories should,
however, satisfy the hypothesis of our phenomenological
model. Scale-covariant theories do not satisfy them, and
so they are not excluded by our present results.

Since our bounds form a consistent set, we can obtain
from them bounds for the variation of other fundamental
parameters of the SM, such as the mass of the intermedi-
ate vector boson Z or the vacuum expectation value
(VEV) of the Higgs fields, U. The second part of Table IV
shows these bounds, as computed from Eqs. (2. la) —(2.3b)
and the results of the first part of the table. These upper
bounds are both consistent with experimental data and
independent of any conspiration among the constants.

In the same way, we can find consistent upper bounds
for the time variation of the fundamental constants at a
GU scale. These results, together with the time variation
rates of the model-dependent parameters, are shown in
the last part of Table IV.

Both Kaluza-Klein and superstring theories predict
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time variation of fundamental constants depending on the
cosmological model parameters. In these theories, the
common value of the running coupling constants at the
GU scale is related to the size of the extra dimensional
space RI=A„'. In the case of Kaluza-Klein theories,
a„o-RI and from this relation we find the result

IR ZR I

~ 1O-" y.-' (4.1)

ACKNOWLEDGMENTS

for the present contraction rate. Again, this result is in-
dependent of any conspiration between the different vari-
ation rates. Our bounds also impose very stringent con-
straints on the time variation of fundamental constants
induced in superstring theories.

As we have mentioned before, Einstein's equivalence
principle implies that all nongravitational constants of
Nature must be time and position independent. The
strong equivalence principle extends that statement to
gravitational phenomena. Our results show that both
forms of the principle of equivalence are very well
satisfied, within a small fraction of the Hubble rate.
Since the unrestricted validity of the principle of
equivalence leads to general relativity as the only low-
energy theory of gravitation, our results should be con-
sidered as an accurate verification of general relativity.

APPENDIX A: TIME VARIATION OF PLANETARY
PARAMETERS

In order to compute the change in planetary parame-
ters, we first approximate the planet as a nonrelativistic
spherical distribution of ideal Quid, for which the follow-
ing form of the equation of continuity holds:

1 B[r p(r)v(r)] Bp
r Br Bt

(Al)

p= p~ (A3)

where k is the bulk modulus and p the pressure. Howev-
er, the variation rate of the pressure can be computed
from the thermodynamic relations derived in Sec. II and
the identity

where e represents a mass increase per unit volume rate.
From (Al) we find

R pDR = f r ( p—+8)dr, (A2)
0

where po is the planet surface density and R =v (R). In
order to express p in terms of the temporal derivatives of
fundamental constants, we shall use several thermo-
dynamic results. First, we use the equation of state of the
solid at zero temperature in the form

We wish to acknowledge Professor C. G. Bollini and C.
A. Garcia Canal for continuous encouragement, criti-
cism, and advice.

dF
BV

(A4)

A/A
a/a
m, /m,
GF /GF

ri/n
N /N

(3.9+5.5) X 10
( —1.3+6.5) X 10
(0.0+5.1)x10-'
( —1.8x 6.7)x10-'
(0.3+2.2) x 10-'
—14.62+0.44
4.20+0.90

1.2 x 10
1.4x 10-4
1.1 X 10
1.4X 10
4.8 X 10

2.2x 10-'
2.6X 10
2.0x 10-'
2.6x 10
8.7x10-'

(b) Model-independent bounds on the SM parameters

a& /al
a2/a2
~w
M, /M,
v/v

f, ~f,

1.4x10-'
4.2X10 '
3.8 x10-'
2.1x10-'
7.0x 10-'
2.8x 10-'

2.6x10-'
7.6x10-'
6.9x10-'
3.8x10-'
1.3 X 10
5.0x10-'

(c) Bounds on GUT and model-dependent parameters

av/av
a3/a3
p/p
Av/Av

6.1x10-'
5.8x10-'
5.2
2.8

1.1x10-'
1.0x10-'
0.95
0.52

TABLE IV. Results. The table shows the name of the pa-
rameter, the value, and the standard deviation for the funda-
mental parameters of our model, the 95% confidence limits as
upper bounds and the same quantities in units of the Hubble
constants. In order to get upper bounds a low value of Hq ~ 55
kmsec 'Mpc ' has been used.

(a) Values and bounds on fundamental parameters

Taking the time derivative on both sides of this equation
and using Eq. (2.9) we find

a a(U& m, a(r&p=
a BV m, BV

(AS)

The mean values can be expressed in terms of the energy
and the pressure from Eqs. (2.11), and we finally get

P =—(Sp —3k)+ (4p —3k) .
a m,

(A6)

The above equation, once substituted in (A2) will give
the effect of changes in the fine-structure constant and
the electron mass on the planetary radii. On the other
hand, the dominant contributions from the variation of
6& and A to R can be obtained from the integrated hy-
drostatic equilibrium equation

ii G~p(r')M(r')
p(r)= dr

r
(A7)

ii GNp(r')M(r') Gv 8 M(r')p= dr' +—+
r r' G~ p M(r')

M
XPO R

where

(A8)

Taking the time derivative of Eq. (A7), and replacing p
with e, the contribution due to mass increase, we can
write
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M =4m f Br' dr'
0

(A9) and Mercury a nucleus plus mantle composite system.
For Earth, the tables of Ref. 23 have been used.

Ae=p —+O
A

(A10)

So we obtain, for this contribution to the pressure vari-
ation,

GN A M+2—p+ Gxpo R
N R

(A11)

Collecting our previous results and substituting in Eq.
(A2) we obtain the time variation of the planetary radius:

A M —2M„
R A 3MD

m M —4M
e k

M.

G~ Mk ~ ™—
—,'M+-

6~ MD a MD

(A12)

where we have defined the quantities

Mk =4m f dr r p(r)
p(r}

o k(r)

M= ', mR + w—
P- 4f &«-r2 P(r)G M

3R 0 k(r)

(A13a)

(A13b)

We can find an equation for the variation of planetary
moment of inertia using the above results. For a spheri-
cal body,

RI=4~ rr p r
0

and taking the time derivative,

I=4m. r r p r +4vrp R .
0

(A14)

(A15)

Recalling our previous results for p and R we find
T

I A Gz a m, Ik ID R2—+ +5—+4 +5I A Gz a m, I I R ' (A16)

and the mass production factor can be approximated
exceedingly well by the variation of the nucleon mass: APPENDIX B: ORBITAL PERTURBATIONS

The orbital perturbations induced by a time variation
of fundamental constants have been discussed many
times in the literature. In this appendix we shall briefly
review the application of those results to our particular
phenomenological model.

(a) Two body-systems (the binary pulsar). The particu-
lar case of a two-body system is very simple and the main
perturbations can be derived from Kepler's third law and
angular momentum conservation:

n a =GN(m&+m2),

M,a n=L,
(81)

(82)

where a is the semimajor axis, n the frequency or mean
motion, and M, the reduced mass of the system. From
the time derivative of these equations we obtain

n—=2 +5-
n G~ A

(83)

for the secular acceleration in longitude of the body. The
last term comes from the planetary mass variation which,
as we have seen, is mostly of nuclear nature.

The binary pulsar is an exceedingly good example of
a binary system. The observed acceleration in longitude
is in good agreement with the prediction of general rela-
tivity and from the difference between theory and obser-
vation, the results quoted in Tables II and III are ob-
tained.

(b) Viking ranging data. Let us compare the equations
of motion used in Ref. 13 with the corresponding equa-
tions in our phenomenological model. The perturbation
on the acceleration of Mars will be, in the latter case,

Gx M M5a= — + (t to )a——v, (84)
G~ M M

where a is Newtonian acceleration,
where we have defined the quantities

Ik =4m f dr r p(r)
a 4 p(r)

o k(r) '

M 4 & 4p(r)
I NPOR 5 k( )

ID=4mR po+II ~

(A17a)

(A17b)

(A17c)

ra= —G M-
N r

(85}

and M is the mass of Mars.
The equations of motion of Ref. 13 are written for the

case of pure Gz variation and for a scale-covariant theory
with a scale variation parameter P:

In order to compute the numerical values of the in-
tegrals, we have to know the density, pressure, and bulk
modulus distribution of the planet. This is true for
Earth, where seismological data yield accurate distribu-
tions of these quantities. For small Earth-like bodies,
such as Mercury and the Moon, even though not much is
known about their interiors, their chemical composition
has been inferred quite confidently. In addition, a
linearized equation of state is enough for them, because
their small masses produce small compression. It is a
good approximation to consider the Moon homogeneous

5a= — (t —t, )a,
G~

5a= P[(t to)a —v] .— —

(86a)

(86b)

Gx M G

GN M GN
+2 = =(0.0+2. 1)X 10 " yr ', (87a)

M
M

=P=(0.0+4.2) X 10 " yr (87b)

Comparison of both sets of equations yield the results
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and we shall interpret the uncertainties as two o values.
These data are measured in atomic time and a correction
of the form

Equation (813) can be written in terms of the lunar ti-
dal acceleration in the form

G

G
—28,

8=2
me

A a——+4-4 a

O' =13

with

(88a)

(89)

0 "z I—=1.840 n I ' (815}

where numerical values for Earth's angular momentum
and torque ratio have been introduced. From these
equations we see that the angular acceleration decom-
poses in various terms, namely, the tidal friction and
changes in the moment of inertia due to geophysical or
cosmological contributions:

d
dt

(MMaMnM ) +I (810a)

(M, a,n, )=ro,2

r
(Blob)

—(IQ)= —vsr ro, — (810c)

and Kepler's third law yields the additional equations

nMaM GN™e™M}

n', a', =G„(M, +Mo) .

(Bl la)

(81 lb)

In these equations 0 is the Earth's angular velocity, ~
is minus the tidal torques produced by the Sun and Moon
on Earth. From these equations we obtain equations
analogous to (83),

0

ri Gx W &M—=2 +5——3
n GN A L~

(812)

and an equation for the angular acceleration of the Earth:

being the conversion between atomic time and SWU's.
(c}Lunar acceleration and rotation ofEarth. These two

phenomena are deeply related through tidal friction and
the conservation of angular momentum. Their complex
interaction will force us to solve at the same time for the
rate of change of the fundamental constants, the Moon
secular acceleration and Earth's geophysical changes in
the moment inertia (as explained in Ref. 25). We shall
very briefly review the elements of the theory necessary
for our purpose.

The tides raised by the Sun and the Moon on Earth
slowly brake its rotation and angular momentum is
transferred between Earth's spin and orbital motion. In
order to obtain bounds on the time variation of funda-
mental constants, these tidal effects must be taken into
account. The angular momentum balance on the Earth-
Moon system is given by

(816)

The geophysical contribution QN is due probably to
glacial rebound. It is important for astronomical deter-
minations of 0 (covering the last 3000 years) but it is ir-
relevant for determinations from paleontological data.

Let us discuss very briefly the data available.
(a) The secular acceleration of the Moon has been

determined from ancient eclipse data, ' transits of Mercu-
ry 9 paleontological data, ' ' o (these are ephemeris
time determinations of ri) and from lunar laser ranging
(this being an atomic time determination). All these data
are tabulated in Table II, and the corresponding con-
straint equations are displayed in Table III. Conversion
to S%U terms are included.

(b) Earth's angular acceleration has been determined
from ancient eclipses and equinoxes and from paleonto-
logical data, ' ' the former being ephemeris time and
the latter atomic time determinations. However, both
methods measure it with respect to the Sun position, and
so an effective acceleration is determined

~a n
0 0

nc
(817)

Tables II tabulates the observational values of Earth' s
angular acceleration together with computed values of
the tidal friction acceleration. The corresponding con-
straint equations are tabulated in Table III.

APPENDIX C: LONG-LIVED P DECAYERS

In this appendix we shall compute the time variation of
decay rates produced within our model by the time varia-
tion of fundamental constants.

(a) Re. This nucleus decays to ' Os through a first
forbidden unique P transition. From the well-known

theory of P decay we have the formal expression for the
decay constant:

I Q—+———
I 0

+M 701+
M

(813} f ( WO, Z)(S( W, Z) ),
2m3

(C1)

The last term in (812} is the tidal acceleration of the
Moon, which has been computed quite accurately from
tidal models and satellite motion analysis

where

8'of (WO, Z) = f dWpW( Wo —W)'F(Z, W)
m,'

(C2)

+M= —3
LM

(814) is the integrated statistical spectrum, p, 8, m„are the
electron momentum, energy, and mass, respectively, and
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8'0 is the released energy. S is the shape factor and its
mean value is defined as (s(p, q)) =s (C14)

(s) =f '-I dp p'q'F(z, w}s(z, w) .
0

(C3)

The Fermi function F can be approximated for the
very nonrelativistic electrons of ' Re:

nm, Za
F(z, W)=

P
(C4)

and the shape factor, in the normal approximation, reads

2+ 2 1+v 2@v

F(Z, W) 1 —e
(C5)

The second term is much larger than the first because
of the small electron energy and we get

S=(n.m, za) R = (S ) . (C6)

Substitution of these results in (C 1) yields the final re-
sult for the decay constant,

QF g2
(za)3E m4

2 ~3 0 e (C7)

where Eo is the limiting kinetic energy of the electron:

Eo=8'0 —m, . (C8)

Now, the time variation rate of the released energy can
be written in the form

After substitution in Eq. (Cl) and making the integra-
tion we obtain the following result:

G~ a p m, Eo—=2 ——6—+4.28 +6.93
G~ a A m, Eo

(C15)

—Za (2M/E)
a oe (C16)

where Ao is the strong contribution to A, (and so scales
with A), M, and E are the mass and energy of the a parti-
cle. Taking the time derivative of (C16) we obtain

~a A Ma2Za
A p a

(C17)

The numerical evaluation for the coefficients proceeds
as before, using Eqs. (C9} and (Clo), and we obtain the
coefficients tabulated in Table III.

(c) Rb. This nucleus decays to Sr through a third
forbidden nonunique transition. Its shape factor, howev-
er, has been shown to have the same momentum depen-
dence as a pure unique second forbidden transition. ' Our
treatment is similar to the one for K and we obtain as a
result the coefficients tabulated in Table III.

(d) a decayers Th.e decay constant for a decay can be
written, with accuracy enough for our purposes, in the
form

~o i ~Ec a=—+
8'0 A 8'0 a (C9)

This equation gives the corrections discussed in Sec.
III. The equations listed in Table III have already been
corrected with (C16).

with EEc the electrostatic energy difference between
Re and ' Os, which can be estimated from the sem-

iempirical mass formula. Also,

Eo 8 0 p AEc—+
Eo Eo A Eo a

So we get

me me

Eo m,
(C 10)

r

GF ~Ec a ~o—=2 +3 1+ —+ 3 —2
G~ Eo a Eo

me me+ 4—3
Eo m,

(Cl 1)

The large numerical values of the coefficients of this
formula are tabulated in Table III.

(b) K. This nucleus decays to Ca and Ar through
a third, forbidden unique transition. Because of its small
charge we can make the approximation

APPENDIX D: NEUTRON-CAPTURE RESONANCES

( 0'ops&& ) = ( 55+8)X 10 b

while the modern value is

(a„.„)=(SO+S)X 10'S . (D2)

About 2X10 yr ago, a natural reactor operated for
some time in the uranium ore deposits of Oklo, Gabon.
From an analysis of geological, chemical, and nuclear
data, the operating conditions have been reconstructed
and the values of some thermal capture cross sections es-
timated. In particular, it is known that the reactor start-
ed 1.8X10 yr ago and that it was operational for
(2.3+0.7) X 10 yr. The neutron fluence was estimated as
/=10 ' n/cm and then temperature was in the range
300—1000 K. An excess in ' Sm isotropic abundance,
together with above-mentioned Auence, allowed us to
infer that the thermally averaged neutron capture cross
section (TACS) was

F(Z, W)=1

and the shape factor is

(C12)
Both values differ by less than 10%, and the mean rate

of variation of the cross section is

S=R [q +p +7q p (q +p )] . (C13)
—=(5+5)X10 " yr
0

(D3)

Its mean value can be obtained with the approxima-
tion

In this appendix we shall try to relate this change in
the TACS to the time variation of fundamental constants
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(0 U ) ~ W
—1/2I' dE El/2e —E/t 7

0 (E —Ep) +I r
1/2

rpM Re[zoo(z)],
0

(D4)

where T is the reactor working temperature, I o~ is the
energy-independent neutron decay width, I z is the y
width, 8'o is the neutron separation energy, and Eo is the
resonance energy. co(z} is the complex error function and

within the model exposed in Sec. II. Other bounds have
been obtained from a different set of hypotheses in Ref.
11.

The TACS can be expressed in the form
(D11)

where V; is a local potential between two nucleons and n

is the local nucleon number density. In momentum
space,

bE, = —f 3
n(k) V, (k)n( —k)

1 d k

2 (2n)

or, using the Fermi-Dirac distribution for n(k),

bE;= f k dk V;(k)
(2~)'

(D12)

In order to estimate the contribution of electromagnet-
ic and weak interactions to the energy, we shall use the
approximation

bE; = ,' I—dx d x n(x) V;(x —x')n(x'},

ED+&I
z =, Im(z))0 .

T (D5) X exp
k
2m

T +1

E0=98 meV, T=86 MeV, I z
-—63 MeV

we get the result

(D6}

From Eq. (D4) we can compute the change of the cross
section under the variation of the parameters. Using the
numerical values

(D13}

We can evaluate this integral for small enough (Tlp)
with well-known techniques and get the first
temperature-dependent corrections. For the electromag-
netic and weak interaction we get

5(o'U ) 1 p pM 5T
(ou) 2 Wp IpM T

5Ep 51 r—0.441 +0.206
0 r

(D7)

E (T)=E (0) 1 ———1 T
C C 2 p

E (T)=E (0) 1 ———3 T
W W 2 p

(D14)

(D15)

Wp=Eg(' Sm) —E (' Sm),

Ep =E'(' Sm) —E (' Sm) —Wp,

(D8a)

(D8b)

where E and E' are the ground- and excited-state ener-
gies. The effective temperature T' corresponding to the
NCR level will be given by the well-known formula '

The changes in the widths can be related easily to the
time variation of a and A. They will be very small com-
pared with other contributions. The change in the reac-
tor working temperature T can be related to the change
in the uranium fission cross sections and energy. Howev-
er, the large uncertainty in the temperature is much
larger than any induced time variation and forces us to
add this estimate to the total error.

In order to find the change in Wo and Eo we must use
some nuclear model to estimate the different contribu-
tions of strong, electromagnetic, and weak interactions to
the energy level. We shall treat the ground state and the
neutron capture resonance level as a zero-temperature
and a finite-temperature state of a Fermi gas. The corre-
sponding energy differences will be given by

+—'/I2N (1+3a )

+ —,'A„Z (1+3a )), (D16)

where, for the SM,

Ap = —2 sin 0~+ (D17a)

a„=l, a&=(1—4sin 8~) . (D17b)

The Coulomb energy difference between the ground
states of both samarium isotopes cannot be computed ac-
curately from the semiempirica1 mass formula since both
nuclei have the same charge. Instead, the main contribu-
tion can be computed from the interaction of the quadru-
polar moment of the nucleus with the gradient of the nu-
clear electric field:

where Ec(0) is the contribution to the ground-state ener-

gy of the Coulomb interaction, which can be computed
from the semiempirical mass formula. The weak contri-
bution to the ground state has been computed in Ref. 44
and in the SM it is equal to

E(0)=Ga2 3/2V '/Zs CNZ[(3a —I)+42„A ]

T*E'=E 1+IN (D9) ZQ
Wpc —,Q33

R
(D18)

from which we estimate

Wo 12

Eg 3Sm'
(D10)

Wo~= —6X 10 MeV, (D19a)

The final results for the electrostatic and weak contri-
butions to Eo and Wo are
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ow= —3X10 MeV,

8 oc =0.53 MeV

Eoc= —0.22 MeV .

(D19b)

(D19c}

(D19d)

where the energy production per unit mass e is related to
the energy density in the form

(E2)

The strong-interaction contribution to Eo and 8'o will

be given by

and A, is the relativistic energy density, with contribu-
tions from internal and gravitational energy. But the en-

ergy density can be written

Eos Eow A

Eos Eow A
(D19e) Gtv M (r)p(r)

tt =pc +e(r}—
r

(E3}

We can compute the time variation of the capture reso-
nance energy from the identity

+Eoc Eoc Eow Eow Eos Eos+
Eo Eoc Eo Eow Eo Eos

3sr p
15rrtesr trttvts

(E4)

where the local value of the internal energy is that of a
nonrelativistic Fermi gas:

5/3

and our results (D19). We find

—=25—+9.8 X 10 ——685, a GF

o A a GF
(D21)

From these equations we find

GN A GNM("}p(r}
pe —i — pc e +2

A m, G~ A r

o(d/o )=2.2X10 ' yr (D22)

The standard deviation of this result, as computed
from (D3) and the 50% error in temperature is

(E5)

Substituting in (El) and integrating over the volume of
the star gives

but this does not include the errors introduced by the nu-
clear model hypothesis. These are certainly large, and
there may be uncertainties of an order of magnitude in
the coefficients of Eq. (D21). We shall multiply the above
standard deviation by a factor of 3 [i.e., we underweight
(D21) by a factor of 10] in order to take model errors into
account. The final equation is given in Table III.

APPENDIX E:
LUMINOSITY OF WHITE DWARFS

12 GNM
L =—Mc2-

A 7 R
T

3 me Gw G~M
+2

m, G„ dt

The last term is equal to

G~ A R G~M
At =—Mc —— +2———

A 7 G~ A R R

(E6)

(E7}

In the first approximation we shall consider a white
dwarf in the nonrelativistic limit, where simple analytical
expressions are available for the thermodynamic vari-
ables. Because of the variation of the fundamental con-
stants, the luminosity equation takes the form

R
R

G
'

mN +2A+ e

GN A m,
(E8)

and the time variation rate of the radius can be obtained
from the mass-radius relation for white dwarfs:

dL
4 2 t)A1(r)

dt r)t
=4mr pe— (El) Substituting (E7} and (E8) into (E6) we get the an-

nounced result.
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