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The geometrical interpretation of high-energy hadronic cross sections is discussed. Evidence is
provided, by means of a simple model, that hadron-hadron total cross sections are not governed by
geometry only, and that the interaction dynamics is flavor dependent and determines to a large ex-
tent the cross section of hadronic systems. The same conclusion is reached in a numerical approach

of the problem.

I. INTRODUCTION

The total collision cross section o, between composite
hadronic systems is a fundamental observable of the in-
teraction process. Its particular importance relies on its
relationship with the forward-scattering amplitude via
the optical theorem. This confers on o, the status of
both an integral and a differential quantity: the first as a
sum of single-channel cross sections over all the open
channels, the second as the imaginary part of the
forward-scattering amplitude. The knowledge of o, con-
stitutes a first insight into the bulk features of the interac-
tion. It brings about first indications on the dynamics
and spatial extent of the collision, although these two as-
pects can be really separated only when elastic differential
cross sections are available. This general feature holds in
various domains of hadron physics, for nuclear collisions
as well as for collisions between more elementary had-
rons.

Experimentally, o, is obtained by the attenuation
method or by extrapolation of small-angle elastic-
scattering measurements in fixed-target experiments and
in collider experiments. For short-lived particles, the
photoproduction of vector mesons constitutes a unique
source of data on meson-nucleon systems. In this case
however, o, values rely on the validity of the vector-
dominance model (VDM). Note also that the double pro-
duction of vector mesons in lepton collisions is another
potential source of data on meson-meson systems, also re-
lying on the VDM. However, the currently available
data on these latter systems are still limited to rather
small values of center-of-mass energy (Vs <3 GeV).

To introduce the issue, it is interesting to note that, for
the various systems for which o, has been measured at
Vs ~16 GeV, the experimental values extend over a
range of more than 1 order of magnitude:' at the upper
limit of this range, one finds 0,, (and o) at about 40
mb, whereas at the other end, the J/¢¥p cross section
amounts only to about 2 mb. This observation raises the
question as to what is the origin of this considerable
difference between elementary hadron cross sections:
does it lie in the dynamics of the interaction or in the
geometrical properties of the interacting hadrons?

Let us observe first that, when the scattering process is
dominated by strong absorption, the colliding objects
behave as black spheres, the total cross section is then
governed by the geometry of the objects, and varies ap-
proximately as the square sum of their radii, i.e.,
o,~m(R,+R,)>. This situation is systematically ob-
served in nucleus-nucleus and nucleon-nucleus col-
lisions.>? Another characteristic feature of strong ab-
sorption is the diffractive angular distribution of the elas-
tic scattering. It has long been recognized that the pp
diffractive elastic scattering of high-energy hadrons is
generated by the shadow of inelastic processes.* Thus the
total cross section o, is largely governed by the opacity
of the system, and, as long as this opacity is large, o,
should exhibit the kind of geometrical dependence quoted
above. When the objects are transparent to each other,
one may expect that o, will be proportional to the (com-
binatorial) number of elementary interactions between
the constituents of the two systems, and we shall see
below that in this case, the dependence on the geometry
vanishes. This latter situation corresponds to the
additive-quark-model (AQM) assumption. Such a situa-
tion is commonly encountered in elementary hadron
physics where the AQM is widely applied, it is never ob-
served in nuclear physics where the interacting systems
are always dominated by a strong opacity. Coming back
to the experimental values quoted above, for the pp sys-
tem, the value is close to the geometrical limit as it can be
estimated from the experimental (electromagnetic) size of
the nucleon, whereas for J /¢ p, the value is much smaller
than any geometrical limit estimated on similar grounds
(and assuming the interaction dynamics to be the same,
at the constituent level, as for pp scattering). Thus, in
J /¢ p, the hadrons are probably more transparent to
each other than in pp or pp systems. Therefore, the dy-
namics of the interaction at the constituent level could be
quite different in the two systems. It is demonstrated in
the following that these qualitative considerations find
some grounds in a quantitative analysis of the data.

A recent publication! has investigated this problem
and concludes that elementary hadron cross sections are
all governed by the geometry of the hadrons. The pur-
pose of this paper is to investigate this same issue in con-
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nection with the interpretation given in Ref. 1. It ad-
dresses the same problem, but the present analysis leads
to the conclusion that total cross sections cannot be
governed by the geometry of the hadrons only, and that
the dynamical (microscopic) part of the interaction is
flavor dependent and plays a dominant role in the deter-
mination of the cross section. In Sec. II we derive a sim-
ple analytical approach of o,. Although the usefulness of
such a toy model is mostly pedagogical, it will allow us to
evaluate the geometry-dependent and geometry-
independent (which we shall refer to as dynamical) part
of o,, and to put into light the dominant role played by
the latter. Note that the distinction between these two
contributions is rather formal for it will be shown below
that they have the same microscopic origin. It will be
shown that the model is reasonably consistent with the
data for light-quark (u,d) hadronic systems. Section III
is devoted to a numerical approach of the same issue,
which parallels that followed in Sec. II, but which uses
more realistic hadronic form factors. There, we will test
the ability of the approach to reproduce consistently ha-
dronic differential cross sections, and we will see that the
results obtained for o, are fully consistent with those ob-
tained in the analytic approach. The conclusion is given
in Sec. IV.

II. THEORETICAL FRAMEWORK AND ANALYTIC
MODEL FOR TOTAL CROSS SECTIONS

The eikonal approximation and the impact-parameter
representation of the scattering amplitude provide a con-
venient framework for the description of the scattering
process. In the present work we use the approach of Ref.
5, where the invariant amplitude is given by the usual in-
tegral over the impact parameter:

F()=i [ “bdbJo(bV'=1)(1—eX) (1)

where the complex eikonal function y(b) results from the
double folding of the hadron form factors with an
effective interaction between the constituent of the in-
teracting hadrons. It can be expressed as the Fourier
transform:

A A
x(b)=—=—*= [ “d’qe'1*G (06, (1)f (1) , )

where A; are the number of elementary constituents in
the hadrons, G, are the hadron form factors, and t = —¢?
is the squared four-momentum transferred in the reac-
tion. This model allows us to separate conveniently the
geometrical contribution from the dynamical part of the
amplitude. In the constituent-quark-model interpreta-
tion, A; are the number of constituent quarks of the two
hadrons, and f(¢) is an effective constituent-constituent
interaction. It contains the long-range quark-quark in-
teraction (not perturbatively calculable from first princi-
ples at small-¢ values) between the valence quarks of the
two hadrons, “dressed” with the contributions of the oth-
er partons in the hadrons (quarks of the sea, gluons) to
the scattering process, and with multiple-scattering
effects. This effective amplitude collects all the dynami-

cal part of the interaction.
Under the assumption of constant isotropic f(q), x(b)

reduces to the form used in Ref. 1, i.e., in the
configuration space
)((b)=gfd2sT (b—8)Ty(s) , (3)

where T;(s f dz p,(s,z) are the opacities of the collid-
ing hadrons of densities p;(r), and where g will be dis-
cussed below.

In relations (1) and (2), the scattering amplitude, and
ultimately the total cross section, are governed by the
eikonal function y(b): in the integral (1), a strong gq in-
teraction will result in a modulus of the profile function
IT(b)|=]1—e X?)|, close to unity up to a value of b
determined by the spatial extent of the hadron form fac-
tors in relations (2) and (3). This corresponds to the
strong-absorption situation mentioned previously. On
the other hand, if the gq interaction is small enough to al-
low |T'(b)] <<1 around b =0, the collision will become
transparent and the dependence of the cross section on
the hadron sizes will be different. This interplay between
geometry and interaction strength in the colliding sys-
tems is well illustrated in (light) nucleus-nucleus collisions
where the bulk of the reaction cross section is determined
by geometry, whereas the (energy-dependent) elementary
nucleon-nucleon cross section® governs the absorption in
the surface region and modulates the surface transparen-
cy.

For Gaussian densities normalized to a volume integral

2 2
_ —r°/2a .
(2‘;7'a,42)2 3/ 22e ', the corresponding
—b“/2a

opacities are T;(b)= ' /2ma?. Using these shapes
the folding integral (2) is analytic. The optical theorem
and the integral (1) which can also be performed analyti-
cally? lead to the following expression for the total cross
section:

unity, i.e., p;(r)=

o,=4m(a}+a})[In(&)+Ei(&)+7v] (4)

with

A4, oy
f=—"—"

2 +al 4m and o,=47Imf (0
where Ei(£) is the exponential integral’ and y the Euler
constant, o, is an effective elementary-constituent cross
section. In relation (4), the first factor is purely geometri-
cal, whereas the second one contains both a dynamical
and a geometrical dependence. The geometrical depen-
dence in the second factor comes through the normaliza-
tion condition on the densities; it stems from the fact that
smaller a; are associated with larger local densities, and
then lead to a larger local opacity.

If several species of quarks with different interactions
are involved in the collision, the latter relation general-
izes to

1

§‘ * a 2Z(lemf,(O with 2a,=A1A2,
where a; is the combinatorial number of quark pairs in-
teracting with the amplitude f,. In the following, for

light-quark (u,d) systems, we have assumed two elemen-
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tary amplitudes: fiq for a quark-antiquark pair, and f,.,
for any other pair with ¢'7g, in order to take into ac-
count the strong-absorption effect in the annihilation
channel for the former amplitude.

Let us now examine the extreme situations in this mod-
el. When the absorption is strong, i.e., when o, and then
&, is large, relation (4) reduces to

o,=4ma?+a3)n(§) .

In this case, o, does exhibit a dependence on the hadron
geometry (reminiscent to that usually observed in nuclear
collisions®?), it does not reach an asymptotic geometrical
limit (because of the assumed Gaussian shapes for the
densities), and grows logarithmically with the elementary
interaction strength, and with the number of elementary
interactions. This latter feature is at variance with the
AQM assumption. Therefore, relation (4) leads to the
conclusion that in the case of extremely strong absorp-
tion (such as in nuclear-type systems), the total cross sec-
tion would be dominated by the hadron geometry.

The opposite extreme situation is the weak-absorption
limit, corresponding to small values of o, Then the
second factor in relation (4) reduces to £ to the leading or-
der,” and one gets

0,=A,4,0q,

i.e., the AQM prediction. Therefore, when the system
becomes transparent, o, does not depend anymore on the
hadron geometry. Here, it is important to note, and easy
to verify, that for a given value of o, the total cross sec-
tion tends to a finite limit when the size of one of the had-
rons tends to zero.

The above results are in sharp contradiction with the
geometrical dependence predicted in Ref. 1 for the total
cross section, i.e., o0, ~a%a3, with a?={r?) /3, r; being
the mean-square radii of the hadrons. The reason for this
disagreement is the following. In Ref. 1 the individual
opacities have been explicitly assumed as independent of
the colliding hadrons and taken as Gaussians:

2 2

T,~(b)=(\/—87r)"1evb 72 However, one must keep in
mind in doing so, that T;(b) cannot be chosen arbitrarily,
and that it has to satisfy a normalization condition.
Indeed, the two-dimensional integral of T;(b) over the
impact parameter is just the three-dimensional integral
over the density and it should then be normalized to a
constant (generally taken as 1 or the product of the con-
stituent numbers of the two hadrons, a consistent overall
treatment leading anyway to the same result). Instead of
that, the opacities of Ref. 1 lead to

_ b2 /242 _
(V8m) ™ fd%e "= [drp(r)=a2/V2 .

These opacities then correspond to unphysical normaliza-
tions of the densities of the two hadrons. The g strength
of Ref. 1, therefore, contains implicitly some geometrical
dependence: namely, that which normalizes properly the
densities. The single requirement of a correct density
normalization, without any assumption on the hadronic
constituents, leads to g ~g,/a3a3, and the conclusions of
Ref. 1 can be reached only if the true interaction strength

g, satisfies the very strong constraint of compensating the
geometry dependence (which is precisely that reported
for o,) of this relation so as to keep g constant. Compar-
ing with the present approach, where assumptions on the
hadron constituents are made, it can be verified that one
has g~0,4,A,/a%a}. For these reasons the geometry
dependence reported in Ref. 1 is not correct, and this re-
moves, with the above restriction on g, (or equivalently
on o), the formal grounds of the interpretation of o,
given in this reference.

Coming back to the present approach, note that, in the
weak-absorption limit, y(b) is small in relation (1); the ex-
ponential term can be expanded to first order, and the in-
tegral (1) appears just as the inverse Fourier transform of
(2). One then recovers the usual impulse approximation

F(t)=A,4,G,(t)G,(8)f (2) (5)

which leads straightforwardly to the additive quark mod-
el for the total cross section, consistently with relation
(4). This relation, as the previous ones, can be easily gen-
eralized to the case of hadrons containing different quark
flavors.

Concerning the slope of the forward cross sections, it is
easy to see by means of relation (5) that the assumption of
weak absorption and zero-range interaction leads to the
same expression for the slope parameter as in Ref. 1: i.e.,
B =a?}+a3. However, relation (5) shows that the range
of the interaction term may also contribute to the slope
parameter, and that more realistic form factors, such as
dipole or monopole expanded to first order in ¢, rather
than Gaussians can be used. Finally, it is interesting to
note that at the limit of weak absorption, when the
geometrical dependence of the total cross section has
vanished, the slope parameter remains the only scattering
observable which can bring experimental information on
the size of the interacting hadrons.

Experimentally known light-quark hadron systems,
such as pp, pp, or wp, exhibit some strong-absorption
features since their opacities are large at small impact pa-
rameters. However, the “strong-absorption” terminolo-
gy should not be taken as full absorption; the relative
magnitudes of the elastic and inelastic cross sections in pp
collisions, for example, are still far from the full absorp-
tion values (unitarity limit). Therefore, for these systems,
the situation is intermediate between the limits discussed
above. The amount by which the geometrical (strong-
absorption) effects will affect the AQM limit can be es-
timated by developing relation (4) to the next-to-leading
order,’ leading to

A4, o4

1__.___—
al+a3 167

0,=A4,4,0, . (6)

The first factor is the AQM limit, the second term in the
parentheses corresponds to the fraction of o, depleted
from the AQM limit by the opacity of the system, pro-
ducing the geometrical dependence of o,.

At this point, one can attempt to account for the sys-
tematics of total cross sections' by means of relation (4),
assuming o, to depend only on the hadron geometry:
knowing the electromagnetic mean-square radius
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(EMSR) of the proton, one can deduce the effective gq
and gq cross sections from the o, and o cross sections,

by means of relation (4) (see Table I). Using the values
obtained and assuming a Gaussian density for the pion
(with'®  (r2)=EMSR=0.431 fm’), one obtains
aﬁ+p=27.4 mb and crﬂfp=28.1 mb. These values are

markedly larger than the experimental values
afr"f;=23.4 mb and ajr"l’;=24 mb (Ref. 17). The agree-

ment is better for the pp system which has an equivalent
constituent-quark content, and for which a;;‘,"‘~26.7 mb
can be extracted from the photoproduction data at the
same energy'®!'® (see also Ref. 11). Therefore, the
differences between o, and 0, or o, are approximate-
ly reproduced by relation (4), and appear to be partly
geometrical indeed. The difference with the experimental
values shows the limits of the approximations made: the
dressing of the constituent-quark interaction should be
somewhat different in baryon-baryon and in meson-
baryon systems, because the population of other partons
is different in a meson and in a baryon. This may result
in different effective constituent cross sections. However,
it must be noted that a better agreement would be ob-
tained if the hadronic radius of the pion is smaller than
its electromagnetic radius (dominated by the p-meson
form factor), as suggested in Ref. 19. A better agreement
is obtained with the simple AQM (Ref. 20); however, we
believe that this is fortuitous, and that the present ap-
proach rests on better founded, and more consistent,
physical grounds since it incorporates the effects of the
hadronic opacity.

It is very interesting to turn next to systems which
have different flavor contents such as ¢p and J /¢ p. For
these systems, it can be easily verified that relation (4)
cannot reproduce o4, and o, ,, using the value of o,
fitted to o, and O 5pr the corresponding lower limit of re-
lation (4) being o, ~25 mb (with @, =0). This remark-
able failure leads naturally to the assumption that the

TABLE 1. Values of the imaginary part of the quark-quark
effective amplitudes adjusted to the experimental o, for various
hadronic systems at V's =16 GeV, using the analytical relation
(4) as explained in the text. The values are given as effective
cross sections o,, =47 Imf,,(0). Here x stands for g or ¢’ [¢’
being any light quark (u,d) or antiquark different from g}, or S
(strange quark or antiquark), or C (charmed quark or anti-
quark). The mean-square radius used for p (p) is 0.648 fm?, oth-
er values are given in the text.

ot (r? O
System (mb) (fm?) {(mb) x
PP 38.6 0.648 5.23 q
(Ref. 8)
PP 41.8 0.648 6.22 7
(Ref. 9)
op 12.1 0.3 22 s
(Refs. 10 and 11) (Ref. 14)
J/¥p 2.2 0.176 0.38 c
(Ref. 12, see (Ref. 15)

also Ref. 13)

effective gq interaction is flavor dependent. Table I gives
the values of the effective cross sections oy,
=4m Imf,(0) deduced for the Sq and Cg systems (S and
C standing for either S or S, and C or C, respectively)
from the experimental o, values, via relation (4), and us-
ing theoretical mean-square radii for the ¢ (Ref. 14), and
the J /¢ (Ref. 15).

This strong flavor dependence of the inelasticity has
been recognized some time ago®! in the interpretation of
vector-meson photoproduction data, within the assump-
tion of the vector-meson dominance of the photoproduc-
tion process.!! It can be understood qualitatively in
terms of the exchange mechanism governing the inelasti-
city of the interaction: a vector meson of given flavor
will interact with a proton predominantly by exchanging
mesons carrying the same flavor quantum number as the
incident meson. The flavor dependence of the absorption
has its origin in the mass of the mesons which can be ex-
changed between the two systems (charmed mesons are
heavier than strange mesons, which are heavier than non-
strange mesons), and thus in the mass of the exchanged
quarks. These qualitative trends find a formal expression
in the tensor dominance approximation of the Pome-
ron,?"22 which leads to a dependence of the vector-meson
proton cross sections o ,(Vp)=~my %, m, being the mass
of the vector meson.

To end this section, we note that the application of the
AQM rule to the o,,’s for the three systems, pp, ¢p, and
J /¢ p, leads to an overestimate of the o,’s obtained with
relation (4) or (6), amounting to 22%, 9%, and 3.5%, re-
spectively. These numbers reflect the increasing tran-
sparency of the systems, and the corresponding increas-
ing applicability of the AQM rule.

III. NUMERICAL APPROACH

We have further investigated this problem by numeri-
cal integration of relations (1) and (2). This allows us to
use more realistic form factors (than Gaussians) for the
interacting hadrons, and then to evaluate the sensitivity
of the calculation to the form-factor assumptions. This
approach leads to predictions for the differential cross
section, which compared to experimental data is more
constraining than the single o, values. The eikonal rela-
tions (1) and (2) have been used to fit pp and pp elastic-
scattering data, by adjusting the parameters o,
a=Ref(0)/Imf(0), a, b, and c, of the phenomenological
qq effective amplitude used in Refs. 5 and 23:

Fu01= 5 ) 14ar) Vit )
T

Note the slightly different definition used here (the
values given for the parameter K in Ref. 5, must be divid-
ed by 4 for consistency with the definition). A detailed
account of the complete analysis of experimental data
will be given elsewhere. Consistent results are obtained
from fitting the pp data over the CERN ISR energy
range. Figure 1 shows a sample of the fits obtained at
several energies for pp and pp, using the parametrization
of Ref. 24 to describe the proton form factor. Similar re-
sults are obtained with the parametrization of Ref. 25,
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FIG. 1. Sample of fits obtained on high-energy pp and pp data
(Refs. 10 and 16) as described in the text. The inset shows the
opacity function for the pp system at V's =16.8 and 52.8 GeV.

but no good result could be obtained with usual dipole
shape (which gives a poor description of the experimental
electromagnetic form factor at large-t values). For the
energy of interest here, the values obtained are
a,a,b,c =—0.08, 0.06, 0.18, —0.1, and 0.18, 0.1, 0, O for
fqq and fﬁq’ respectively (see Table II for the other pa-
rameters). The inset in Fig. 1 shows the calculated opaci-
ty_(inelastic) function T(b)=1—|e ¥?|2 for pp at
Vs =52.8 GeV. Note the large absorption observed in
the central region (in agreement with Ref. 26) which gen-
erates the geometrical dependence of o, as discussed in
the previous section. It must also be pointed out that the
calculated total cross sections obtained from fits to the
differential cross section for pp and pp are in good agree-
ment with the experimental values. This is obtained by
virtue of the phase parameter in the effective amplitude.?
Setting this parameter to zero would lead to overestimat-
ing the experimental values by about 10%.

A mean to probe the consistency of the present ap-
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FIG. 2. Calculated cross sections for 7p at s!'/°~19.4 GeV
and pp at s'/?~9.2-11.9 GeV, compared to the experimental
data (Refs. 27 and 29). The calculations have been done with
the effective interaction parameters fitted to the pp and pp data
(see text).

proach is to test its ability to reproduce the cross section
of other systems. The above values of the parameters
have been used to calculate the 7p cross section at 200
GeV laboratory energy.?’ The results are shown on Fig.
2. The agreement with the data is excellent over the
range 0.1< —t <2 GeV> A fit of the amplitudes on
these data leads to a hardly better result, indicating that
the increasing disagreement at larger —¢ is more due to
the pion form factor?® than to a lack of consistency of the
approach at large —t. Figure 2 also shows that an
equivalent agreement is obtained for the pp system at
45-75 GeV (Ref. 29). We emphasize that no parameter
has been adjusted in these latter calculations. This

TABLE II. Same gq effective cross sections as in Table I, obtained by numerical integration as dis-
cussed in the text. The experimental and calculated forward angle slope parameters (at t = —0.2 GeV?
for pp and pp) of the differential cross sections are also given (see Table I for experimental references).

fop! Bexpt o,([:alc Bcalc qu
System (mb) (GeV™?) (mb) (GeV™?) (mb) x
pp 38.6 10.25 39.4 10.77 5.33 q'
PP 41.8 10.97 41.8 11.1 6.05 g
op 12.1 6.7 8.1 2.2 S
J/Yp 2.2 5.2 6.05 0.38 C
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demonstrates that the present phenomenological ap-
proach is able to account consistently and quantitatively
for the differential cross section of hadronic systems con-
taining only light (u,d) quarks, at least up to —t~=1.5-2
GeV2. It allows us to further conclude that the (phenom-
enological) dynamical content of the model is satisfactory
over this range.

For the ¢p and J/¢p systems, the experimental o,
values have been used to adjust the effective constituent
cross section using the same procedure as previously.
The matter distribution in the meson is described with a
usual monopole propagator-type shape:*'? G (¢)=(1
+t/u?)”!, the u parameter being of the order of the
meson mass (see Ref. 30 for the theoretical grounds of
this shape). In the following, we have used ,uf,,=l.04
GeV?, and p},,=9.6 GeV>. Figure 3 shows the calculat-
ed angular distributions for the ¢p and J /¢ p systems.
For the two calculations, the o qq Parameter has been ad-
justed empirically so as to fit the calculated o, on the ex-
perimental value. In these calculations, the weak ¢
dependence for f,,(¢)(a =0.06), fitted on pp has been
conserved. However, taking a =0 does not appreciably
change the results. Taking a constant is also a question-
able approximation. However, a is expected to be small
(and has been found small experimentally'®), even for the
more weakly absorbing system, and the uncertainty on its
precise value does not affect the conclusion of the present
analysis (see Ref. 31 on the flavor dependence of a). The
inset shows the opacity functions obtained for the two
systems. One observes, as it was anticipated in the Intro-
duction, that the opacity decreases with the mass of the
constituent quarks of the incident meson.

] ] \\w
10" —.\\ =S B |
AN BT J/‘PR

10°— \ .
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N ]
> I\ N
S oo\ \\0 0.5 b(fm)m
~ - N\,
) {0\
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<] 10"—3 \\ Vs=16 GeV
© ] AN
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107+ \\\ ¢p
3 N
107 \
1%107° T | E— T T T T T 1
0 1 2 3 4 5 3
-t (GeV2)

FIG. 3. Cross sections and opacities calculated with the mod-
el of Refs. 5 and 23 for the systems ¢p and J /¢ p, with the
effective interaction adjusted so as to reproduce the experimen-
tal total cross section, as explained in the text.

Table II gives the effective quark-quark cross section
0 g, fitted to the data. Comparison with Table I shows
that the results obtained numerically are quite close to
those obtained by means of the analytical relation (4).
This consistency of the two approaches is very satisfacto-
ry and provides a sounder basis to the analytic model of
the previous section. It must be noted that the form fac-
tors used to describe the ¢ and J /¢y correspond to mean-
square radii markedly smaller than theoretically predict-
ed.'*!> However, for these projectiles, the influence of
the geometry is weak (see Sec. II), and the use of form
factors consistent with the theoretical MSR’s leads to re-
sults differing by less than 5% from those given in the
table. In this case, the precise shape of the meson form
factor has little effect on the values of o, which is essen-
tially determined by the AQM rule. The slope parame-
ters B =(d /dt)In(d o /dt) obtained in the calculations are
also given. The agreement with the experimental values
is not very good for the heavy-flavor projectiles. Howev-
er the trend of the experimental slopes to decrease with
the increasing mass of the incident quarks is qualitatively
reproduced, providing further indications of the correct-
ness of this approach.

Figure 4 shows the three values obtained for o ,, plot-
ted as a function of the inverse constituent-quark mass of
the (projectile) hadron. This representation is suggested
by the success of the tensor-dominance model of the
Pomeron.?"2 The three points line up quite nicely in
logarithmic coordinates, exhibiting a power-law depen-
dence. They can be fitted with a functional form
axq=amx_ﬂ, with ¢=0.731+0.05 and B=1.63%0.05.
The error bars reflect the uncertainty on the constituent-
quark masses. The exponent is smaller than would be ex-
pected from the tensor-dominance approximation which
predicts a m, > dependence for the total cross section.
Extrapolating this empirical law to the constituent mass
of the b quark (m,~=35 GeV) leads to a value of o,,~55

°Qq (mb)
\g’

J/¥p
0.1F
b “Yp
i" |°d 1 *d
0.1 1 10
m-Ql (Gev-1)

FIG. 4. Effective quark-quark cross sections o, obtained
from the phenomenological analysis described in the text, plot-
ted as a function of the inverse constituent-quark mass of the
projectile hadron (m,~=0.3 GeV, m,=0.5 GeV, m ~1.5 GeV).
The labeling of the points indicates the system from which the
0., value has been extracted. The dashed line is a fit with the

functional form o, =0.73m, " in the units of the figure.
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ub, and thus to an estimate of the total cross section for
the Yp system oy, =330 ub. For this system, the AQM
rule gives an agreement better than 1% with the numeri-
cal calculation. The value obtained is situated within the
range covered by the predictions obtained from the
above-quoted dependence on my %, using the o,, value
(oy, =170 pb), and some more refined predictions, also
based on the tensor dominance of the Pomeron
(0y, =400 ub) (Ref. 32).

The spirit of the theoretical framework used in the
present analysis is the same as that of the valon model,*’
and the effective constituent cross sections obtained here
can be identified to valon-valon cross sections. The con-
stituents, or valons, are composite objects, constituted of
a valence (current) quark surrounded with its cloud of
(bremsstrahlung) gluons and sea-quark pairs. They have
some size and their spatial extent can be described with a
form factor.>* Their universal structure arises from QCD
elementary virtual processes. We have seen above that
the constituent cross sections obtained depend on the
constituent mass in a way reminiscent of the tensor domi-
nance of the Pomeron. This is in qualitative agreement
with Ref. 35 where it is argued that the Regge behavior
of nucleon structure derives from the Regge behavior of
its constituents. These results are also consistent with the
assumption of direct coupling of the Pomeron to indivi-
dual quarks in hadrons.*® Note, however, that in Ref. 36,
this assumption is based on the success of the AQM to
account for o, in systems such as pp,7p. This is a ques-
tionable argument in account of the present analysis.

IV. SUMMARY AND CONCLUSION

In conclusion, we have seen that, in a simple eikonal
approach using Gaussian densities, the total hadronic

cross sections do exhibit some geometrical dependence
when the absorption is strong. However, the systems
remain dominated by the interaction term of the AQM.
When the absorption weakens, the geometrical depen-
dence fades away and total cross sections are then de-
scribed by the additive quark model at the limit of van-
ishing absorption. The (moderately) strong-absorption
(geometrical) case applies to the pp, pp, and 7p systems,
whereas the ¢p and J/¢¥p systems fall closer to the
weak-absorption (AQM) limit. These conclusions are
based on the single assumption that diffractive elastic
scattering of hadrons originates from the shadow of the
opacity created by inelastic processes. The large varia-
tions of the experimental total cross sections observed in
Vp systems (V is the vector meson) can be consistently
understood in terms of the dynamics of the inelasticity
and its dependence on the flavor of the vector-meson con-
stituents, and not at all by the hadronic geometry. It can
be accounted for by means of an effective interaction f,,
incorporated into the Glauber formalism, and fitted to
the data. The model then acquires some predictive
power, and may serve as a guide line for experimental
projects. It is being used to predict hyperon-nucleon
cross sections in the prospect of experiment WARB9 at
CERN.
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