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A discussion of the evolution and observable consequences of a network of cosmic strings is
given. A simple model for the evolution of the string network is presented and related to the statist-
ical mechanics of string networks. The model predicts the long-string density throughout the histo-

ry of the Universe from a single parameter, which we calculate in radiation-era simulations. The
statistical mechanics arguments indicate a particular "thermal" form for the spectrum of loops
chopped off the network. Detailed numerical simulations of string networks in expanding back-
grounds are performed to test the model. Consequences for large-scale structure, the microwave
and gravity-wave backgrounds, nucleosynthesis, and gravitational lensing are calculated.

I. INTRODUCTION

The cosmic-string theory of the formation of structure
in the Universe is both simple and, in principle, highly
predictive. '

The existence of cosmic strings could provide one of
the few possible ways to test unification physics. They
would also provide an explanation for the origin of galax-
ies and clusters of galaxies, linking the spontaneous
breaking of the underlying gauge symmetry in particle in-
teractions with the breaking of spatial symmetry in the
Universe.

The presence of cosmic strings in a unified gauge
theory is purely a question of topology. The simplest
SO(10) model, for example, predicts strings. Many
"superstring-inspired" models also predict cosmic
strings. These strings would be formed at a symmetry-
breaking phase transition, generally occurring at the
grand unified scale. The distribution of such strings is
predicted by the "Kibble mechanism, " in which one
takes the distribution of Higgs-field phases to be random
on scales larger than the correlation length at the
Ginzburg temperature, when thermal fluctuations are no
longer string enough to erase the strings. This distribu-
tion has been calculated by Vachaspati and Vilenkin,
and others, and we shall take it as our starting point. Re-
cently Hodges has performed dynamical simulations of
string formation, which support this picture. The cru-
cial feature of the initial network is that most of the
string appears in the form of "infinite" strings which
wander like random walks clear across the Universe. It is
this fact that guarantees that some cosmic strings will
still be present at any time after they are produced.

One of the advantages of the cosmic-string theory of
structure formation is that given a hot homogeneous big
bang, the distribution of strings and the perturbations
they induce in the surrounding matter is fully specified.
They are independent of the precise initial conditions or
parameters in the full field theory. This is because the
motion of the strings is governed by a purely geometrical

action, the Nambu action, and a network of strings
quickly enters a scaling solution which is independent of
the precise initial distribution of string on small
scales. The magnitude of the perturbations produced
by the strings is set by a single parameter, the string ten-
sion p. For a recent review and references, see Ref. 9.

Of course cosmic strings (at least in the simplest
scenario we consider here) do not address many of the
other important cosmological questions. They do not ex-
plain the homogeneity and isotropy of the Universe or
provide a significant contribution to the dark matter. It
is also awkward (but not impossible) to construct models
which provide cosmic strings, inAation, and dark matter
(often with much unwanted besides). However, besides it
being plausible on general grounds that a phase transition
early in the Universe was responsible for the formation of
large-scale structure, cosmic strings are a reasonably gen-
eric prediction of grand unification, and have the great
virtue of being quite testable independent of the details of
the underlying theory. We shall confine ourselves in this
paper to the simplest cosmic-string scenario, which is
highly predictive, and as we will see is already close to be-
ing ruled out by observation.

Our first calculations of the evolution of cosmic-string
networks, in 1985, provided indications that a cosmic-
string network might be just what is needed to explain
the observed large-scale structure. Indeed the correla-
tion function of Abell clusters, one of the few systematic
statistics on the largest-scale structure in the Universe,
was miraculously fitted with no adjustable parameters by
the correlation function of string loops chopped o6' the
scaling string network. '

Since then, there has justifiably been a lot of interest in
pursuing the predictions of cosmic strings further. How-
ever for the past few years the numerical problems posed
by cosmic-string evolution have been a stumbling block.
Perhaps more importantly, there has been little progress
in understanding the evolution of string networks analyti-
cally. There have even been serious questions raised
about whether the scaling solution exists at all. "
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In this paper we hope to resolve many of these prob-
lems.

We shall describe the evolution of strings using a new
set of nonsingular, "gauge-fixed" variables, and an im-
proved method of detecting and enacting string interac-
tions. These have led to numerical results significantly
different from our first results, with the long-string densi-
ty an order of magnitude larger than we originally
thought. We shall describe some numerical tests of the
new code which lead us to realistic estimates of our sys-
tematic errors, which we believe to be of the order of
50% (see Note added in proof). Our new string scaling
density is approximately twice that reported in indepen-
dent work by Bennett and Bouchet last year, ' so the
difference is within our estimated errors. There are still
significant differences in our more detailed results, how-
ever, which we are in the process of trying to resolve.

More importantly, we shall describe conceptual im-
provements in our understanding of the problem. In par-
ticular we shall describe a simple model for the evolution
of the long-string density inspired by earlier work of Kib-
ble and Bennett, " but representing an advance on that
work. In particular we present a simple model for the ve-
locities of the long strings, and argue from string statisti-
cal mechanics that the sign of the term governing long-
string-loop energy exchange is fixed. This reduces the
problem of calculating the string scaling density to the
calculation of a single dimensionless number, the chop-
ping efticiency. This may well be calculable in Aat-
spacetime simulations. The model allows one to calculate
the scaling density for the string network in the radiation,
transition or matter eras from a single parameter mea-
sured in string simulations. So, for example, given only
the radiation-era scaling density we can predict the
matter-era scaling density and even follow the string den-
sity right through the transition between the two eras.

We shall relate the model to the statistical mechanics
of string networks in Aat spacetime, and argue that the
loops chopped off a string network may be viewed as
"thermal" radiation from a hot body, the network of long
strings. We also show how a string-dominated universe
would be inconsistent with Aat-spacetime statistical
mechanics of strings, and from this argue that the scaling
solution is inevitable. The statistical arguments lead to a
form of the "loop production function, " which we check
in our simulations. As a consequence of this discussion,
we argue that it should be possible, at least approximate-
ly, to calculate the scaling density of the string network
in fi'at spacetime simulatio-ns, which present few numeri-
cal problems.

Finally we discuss the observable consequences of our
new numerical results. We show that the masses of
galaxy clusters are reasonable if the string tensions
=(10' GeV) (i.e., Gp=10 ), and calculate the mass
function in the one-loop —one-object picture for cold- or
hot-dark matter. We then discuss distortions in the mi-
crowave background produced by strings, the gravity
wave background caused by radiation from strings, and
lensing of galaxies by strings. Any one of these observa-
tions could constrain the string tension to be too low for
any appreciable structure formation, at least by gravita-

II. EQUATIONS OF MOTION

Immediately after cosmic strings form, they are heavily
damped by collisions with particles in the surrounding
medium. ' This causes the strings to straighten out, so
that the typical radius of curvature on the string rapidly
becomes much larger than its width. The damping ceases
to be important at a temperature of order (Gp)' p'
and thereafter it is a very good approximation to treat
them as infinitely thin relativistic strings' ' described by
the Nambu action'

S=—pldA, (2.1)

which is simply proportional to the area traced out by the
string world sheet in spacetime. In this section we will
derive some properties of Nambu strings which will be
used in our general discussion. Then we will discuss

tional accretion.
We shall only deal brieAy with the predicted large-scale

structure from our new results. As a consequence of the
higher density of a long string, the correlations produced
in the distribution of galaxies and clusters of galaxies may
not be as clear-cut as we originally thought. Our new
simulations do find loop-loop correlations quite similar to
the original results (as do the simulations of Bennett and
Bouchet' ), but the translation of these into a cluster-
cluster correlation function is a nontrivial matter and we
shall -defer a full treatment of the problem to a future
publication.

The paper is organized as follows. In Sec. II we give a
detailed discussion of the equations of motion of cosmic
strings in expanding backgrounds. We introduce a new
set of "gauge-fixed" nonsingular variables which are use-
ful in numerical evolution, and discuss the motion of
small loops. The later parts of this section are technical,
and the reader interested in our more important results
may skip to Sec. III. There we present and solve a simple
analytic model for the evolution of the string network. In
Sec. IV we discuss the statistical mechanics of string net-
works in Aat spacetime, and what insight they give us
into the expanding Universe case. This discussion makes
it clear that the scaling solution for the string network is
inevitable, and provides a qualitative picture for the dis-
tribution of strings on all scales in the scaling solution.
We suggest how the scaling density might be calculated
from Aat-spacetime string simulations. In Sec. V we
present our numerical results. The simple model present-
ed in Sec. III is shown to fit the results remarkably well.
The next three sections are devoted to calculation of the
observable consequences of a cosmic-string network.
Section VI discusses the general issue of how to attribute
"typical" properties to loops chopped off the network,
and Sec. VII discusses the spectrum of massive objects
accreted by the strings in cold- or hot-dark-matter-
dominated universes. In Sec. VIII we discuss the other
observational signatures of cosmic strings —Auctuations
in the microwave background, the gravity-wave back-
ground, and lensing of galaxies.

Throughout this article we use units where
fi=c =k~ =1.
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some more technical issues which pertain to our numeri-
cal techniques.

The area element

with h =a/a and

& 2

1 X

1/2

x x'=0 . (2.7)

dA=& —
q (2.2)

is obtained from the induced metric on the world sheet

q &=g„(x)B~"B~'. (2.3)

8 (&—qq ~Bttx")+I "gB~ Bpx &—qq ~=0, (2.4)

where I l"& are the Christo6el symbols for the back-
ground. To solve (2.4) we need to pick coordinates for
the background and for the world sheet [corresponding
to fixing the gauge invariance of (2.1) under general coor-
dinate transformations and world-sheet reparametriza-
tions]. It is convenient to pick coordinates in which the
metric is conformally Rat:

ds =dt a(t) dx =a(i)—) (dil —dx ) . (2.5)

We also choose r= ri(cr ), simply slicing the world sheet at
constant conformal time. %'e can use the remaining free-
dom in redefining o. to choose the velocity of each point
labeled by o. to be always perpendicular to the string, i.e.,
q, =x x'=0 (our notation is x =8~, x =8 x, etc.).
With these choices, (2.4) reduce to

Here g„ is the background spacetime metric and x"(a )

are the spacetime coordinates of the world sheet,
parametrized by a =(r, cr ). A nice feature (2.1) is that it
is purely geometrical: p clearly drops out of the equa-
tions of motion, which depends solely on the background
spacetime metric. But the early Universe was, as far as
we can tell from present observations of the microwave
background and matter density, a very nearly Aat
Friedmann-Robertson-Walker radiation- and/or matter-
dominated spacetime.

Furthermore, according to the numerical calculations
of Matzner' and Shellard, ' (local) cosmic strings have
very simple interactions —two colliding strings always
reconnect the other way (Fig. 1). Thus the evolution of
the string network is completely specified and has no ad-
justable parameters.

The equations of motion derived from (2.1) are

In particular, the total energy and momentum in the
string are given by

E—:f d xa T"=f d xa T"„=pa(i))f da e,
(2.9)P'= f d xa —T"=pa(rt) f da ex,

where t is defined in (2.5). Thus in this gauge pae is the
energy per unit parameter length along the string. From
(2.6) it follows that

E=h(1 2V )E, —P= —hP,
where the average velocity squared on the string

f daex
V2

(2.10)

(2.11)

Equations (2.10) and (2.11) will prove very useful in Sec.
III, where we develop an intuitive physical picture of the
network evolution. We now turn to more technical as-
pects of the equations which will come into play when
discussing numerical issues.

Returning to (2.6), it is well known that in Minkowski
spacetime (h =0) we can choose a. so that e= 1 initially,
and (2.6) will preserve this for all time. We then have as
the full system of equations

X=X, X X =0, X +X =1 (2.12)

which are solved in terms of "left-movers" a and "right-
movers" b as follows:

The stress-energy tensor calculated from (2.1) is
—2 5ST"'(x, r) ),= v' —g 5g„

f d a & qq—~B~"Box 5 (x —x ( a ) )v' —g
do(ex" x —e 'x'"x'")5 (x —x(a., rI)) .a4

(2.&)

'x+2hx(1 —x )=—8. 2 1 X'

E'

x= ,'[a( +a—)+rb(a—r)],
(2.13)

E'= 2A E'x~ 2
(2.6)

FIG. 1. Two colliding strings always reconnect the other
way. This is the case for the simplest, directional strings. We
shall not consider nondirectional strings in this paper. I =x+x'/e, r =x—x'/e, (2.14)

so a' and b' are constrained to be unit vectors, but a and
b are otherwise arbitrary functions. For a closed loop, s'
and b' describe closed trajectories on the surface of a unit
sphere. ' Furthermore, it is easily seen that in its center-
of-mass frame a loop s motion is periodic with period
L/2 where L is its length, defined by energy over p.
Where the curves a' and —b' cross on the sphere, "cusps"
occur —the string instantaneously reaches the speed of
light and doubles back on itself.

This suggests defining approximate "left-movers" and
"right-movers" in the expanding Universe case as well:
we set
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which automatically obey

I2 r2 —
$

Substituting into (2.6) we find

I = I'/e —h r+ h ( I r )I,
r= —r'/e —hl+h(1 r)r,
e= —he(1+1 r) .

(2.15)

(2.16) x dO dx/
p2

TL

—J xx
TL

f doxx
0+—

TL

We can solve this in the approximation that we treat the
V term by averaging over an oscillation of the loop, tak-
en to be a zero-order (i.e., fiat-spacetime) solution. This
is valid to order h as explained above.

The fiat-spacetime result is very simple (we can set
e= 1 here)

v, +2h (1—V )v, =0 . (2.17)

Equations (2.15) and (2.16) provide a closed set of equa-
tions governing the evolution of I and I'. They are com-
pletely "gauge fixed" but do not have any "singular"
variables. Furthermore, we can obviously evolve I and r
exactly in Aat spacetime; for constant e, 1 is constant
along constant eo. +~ and r is constant along constant
eo. —~. Our numerical scheme is designed to include the
effects of expansion as a small perturbation about the ex-
act fiat-spacetime solution (as we explain in the Appen-
dix).

By contrast, using (2.6) directly, with e defined from
(2.7) presents difficult numerical problems —generically
some points on the string reach the speed of light instan-
taneously and at these points x' must go to zero as well
to keep e finite. In our first paper (and in the paper of
Bennett and Bouchet' ) the gauge conditions (2.7) were
not imposed numerically —the variables x, x', and e were
evolved according to their own equations. In our first nu-
merical code this led to the problem that e actually drift-
ed away from its definition over time, which meant that
our simulations did not conserve energy properly.

Our new numerical scheme preserves (2.15) automati-
.cally and is much simpler to implement —no "fudges"
are needed. Bennett and Bouchet have recently also writ-
ten a new code using the nonsingular variables (2.16).
Our detailed results still appear to be significantly
different, and we are at present engaged in trying to lo-
cate the reasons for this.

In addition to x'(o ) (which may be obtained from 1, r,
and e), we need a single position in order to reconstruct
any loop of string. It is obviously better not to single out
any particular point but to use the center of mass of the
loop as our one extra variable for each loop. This is kept
and evolved (using the known and updated center-of-
mass velocity) for every loop.

It shall be very useful to us later to show that loops
whose size is much smaller than the Hubble radius evolve
to a good approximation as if they were in Aat spacetime.
For short times one can see this as follows. If h is small,
and we choose e= 1, then (2.12) is a first approximation
to (2.6). Taking a solution of (2.10) one finds that the
curvature term on the right-hand side of (2.6) is of order
the inverse (comoving) curvature radius of the string.
The damping term is of order h, the inverse comoving
Hubble radius. Thus for small loops the damping term is
a small perturbation.

What is the effect of the damping term over long
times? First, consider the evolution of the center of mass
of the loop. Defining the velocity of the loop to be
v, =P /E we find from (2.10) that

v2
TL

(1—x )

TL
+Vc

~ V =
—,'(1+v, ) . (2.18)

Here T, L, and v, are the period, length, and center-
of-mass velocity of the loop. Note that for a loop at rest,
the average velocity squared V =

—,'. Using (2.18) in

(2.17) we find that, to order h,
v, +hv, (1—v, )=0, (2.19)

which is exactly the equation for a point particle in an ex-
panding background.

Furthermore, substituting (2.18) into (2.10) we find

F. = —hv, E . (2.20)

This makes sense; a very fast moving loop (v, = 1) is like
a photon —its energy is red-shifted as a '. However a
nonrelativistic loop has nearly constant energy. Equation
(2.19) is easily solved, and yields

—1v„a
Vc

(1 2 + 2 —2)1/2 (2.21)

where the initial velocity is v„and the initial scale factor
is chosen to be 1. Now (2.20) can be integrated for E:

(1 2 )i/2 (2.22)

so that as a —+ ~ the energy remaining in the loop is sim-

ply the rest-mass energy.
What about the internal oscillations of the loop? It is

possible to choose coordinates so that the Christoffel
symbols vanish, and the metric is the Minkowski metric
along any world line (It is w.ell known that this is possi-
ble at a point, and this is demonstrated in most text-
books. It is actually crucial for the equivalence principle,
which is all we are really using here, that one can do so
along a geodesic world line, since observers live on world
lines, not at points. ) In particular we may do so along a
line chosen to run through the center of the "world tube"
swept out by a closed loop as it moves through spacetime.
The time coordinate in the case where the line is geodesic
is just the proper time for the particle traveling along the
geodesic. Returning to (2.4) it is now convenient to pick
"orthogonal gauge, " where q &=Qrj &, i) &=diag(1,—1), in which the string equations become
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'x"—x "+I " (x "x —x"x' ) =0,
g z(x x +x' x' )=g z(x x'~)=0 .

(2.23)

The zeroth-order solution is simply x =~, with x(o., ~)
obeying the flat-space equations (2.12). Recalling that the
Christoffel symbols are to be evaluated on the world tube,
we see that the second term in the evolution equation is
of order r/RJ where r is the spatial size of the loop and
R~ the Hubble radius (in these coordinate), compared to
the first two terms which are of the order of 1/r. In the
cases of interest, R& ~t, it is easily seen by using a
Green's function that the second term causes negligible
disturbance to the evolution of the loop in the long time
limit. Thus the loop evolves, to a better and better ap-
proximation, as if it were in Hat spacetime in its own local
inertial frame.

III. THE SCALING SOLUTION

The notion of scaling plays a central role in under-
standing the evolution of a network of cosmic strings.
The idea is that statistically the properties of the string
network are the same at two different times, once all
linear dimensions are rescaled by the ratio of the two
Hubble lengths. The scaling picture says that not only
does the scaling solution exist, but that any initial string
network satisfying "randomness" on large scales will
evolve towards the scaling solution with time. This
means that observable predictions based on cosmic
strings are quite insensitive to the initial string
configuration. It also makes parameter-independent pre-
dictions possible. As we emphasized above, the spatial
distribution of the strings does not depend on p, the
string tension, since the equations of motion are indepen-
dent of p. Thus correlation properties of the network are
independent of p.

First, let us define some useful terms. We define
Hubble's constant H =(da ldt)/a and the Hubble radius
R~:—H '. The "length" / of a string loop is defined as
e/p where e is its energy. "Long strings" are strings
whose length is longer than the Hubble radius R&.
"Loops" are strings shorter than R~, although technical-
ly of course, much of the "long string" may be in the
form of finite loops as well.

The main idea of the "scaling solution" ' is that
there is a single scale in the problem: the Hubble radius
R&. All other scales are determined in terms of R&.
Thus there is a total length in long strings of the order of
R& per volume R~, so

pi cc (3.1)
R~

Einstein's equations tell us that the total energy density is
also proportional to R~, so the ratio 'of the two energy
densities is constant in time.

In this section we will set up a simple model for string
evolution which exhibits scaling behavior and which we
will show (in Sec. V) agrees well with the numerical simu-
lations. This model is based on a "one-scale" principle
which allows a simple understanding of the network evo-
lution, even far away from the scaling solution.

The initial-string network formed at the phase transi-
tion is composed largely of long strings which wander as
random walks right across the Universe. The precise de-
tails of the phase transition are irrelevant —the distribu-
tion of long strings is a result of the phases of the Higgs
field being uncorrelated on large scales. '

Let us consider the evolution of these long strings. We
define a length scale g on the string

(3.2)

where pi is the density in long strings.
As long as reconnection is frequent between the

strings, which should be the case if g «R~, it will keep
the network "random" so that g should be related, by a
constant factor of order unity, to the typical radius of
curvature on the string, and the typical distance between
strings. This is the "one-scale" principle. It results in a
simple model of the string network, where the string dis-
tribution is characterized by g alone, even when scaling
( g ~ R~ ) has not yet been reached.

The existence of the scaling solution may then be ar-
gued in the following way. If g becomes much smaller
than R~, the long strings rapidly chop off loops and the
long-string density falls, so g grows faster than R~. If g
grows larger than R~, chopping off becomes infrequent,
the string density rises, and g falls relative to R~.

To see this more quantitatively, let us assume g is

«R~, so that from the discussion'of the previous sec-
tion the strings average velocity squared V should, as ex-
plained above, be close to —,'. Thus neglecting interac-
tions, the energy in string should remain constant [Eq.
(2.10)] so the string density should evolve as matter. In
the radiation era this means p~ is growing compared with
scaling, which would have pz evolving as radiation.

Now let us include the effect of interactions. As men-
tioned above, these simply cause two colliding strings to
reconnect the other way. Statistical mechanical calcula-
tions of the density of states for free Nambu strings
which we will discuss further in the next section show
that at low density p«p there are many more states
available for the long string to chop itself up into loops
than there are for it to remain in long string. Even
though we are far from equilibrium in the present discus-
sion, it means that we can expect chopping off of loops
from long string to be favored by phase space over recon-
nectiop of loops. In fact the time scale for the string to
chop a given fraction of its length off into loops must be
related to g by a constant factor, the chopping
"efficiency" c, which one would expect to be a fairly small
fraction. We shall have more to say about the value of c
in Sec. V.

Putting this together, we have

(3.3)

The first term alone would give pi evolving as matter.
The second term gives the correction to E=O from
(2.10). The third term represents the loss of energy into
loops. Note that it is the physical time we use here.

dpL 2 pL

dt
= —3Hpz+(I 2V )Hp„c— —
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We shall adopt a simple model for predicting V . The
quantity (1 2—V )H just measures growth of energy (or
length) of the string due to stretching. If a long string is
a random walk with a correlation length g then it takes a
total length L =RH/g to cross each volume RH (assum-

ing RH »g). On scales larger than RH the string is
stretched by the expansion of the Universe. If we imag-
ine "pinning" a long string to the background at two
points separated by RH, the string will be stretched at a
rate L =HRH = 1. Dividing by L we obtain L /L
=Hg/RH, so we take [using (2.10)]

(1 2V )H—=Hg/RH

and (3.3) is just

dpL PL= —3HpL+H PL
—c

dt RH

(3.4)

(3.5)

RH z
y = =—(PLRH /V)'" (3.6)

and (3.5) becomes

dt 2
= ——[cy —(2RH —3)y —1] . (3.7)

In the radiation era RH =2; setting the right-hand side
equal to zero we find the fixed point

Note that although the physical picture behind Eq. (3.4)
assumed g((RH, the formula also makes sense in the
other extreme. A string which is straight on the scale of
RH (that is, j=RH) should have L cc a, and V =0.

Now we define the number of correlation lengths g per
Hubble radius:

e=&l+4c

E5/i
a'~ (e+c5y, ) —c5y;

=5y,.a '~, c5y; (& 1,
(3.11)

where 5y; is the initial deviation from scaling. Thus y
approaches its scaling value rather slowly, as a

Likewise in the matter era one finds

25y;

a '(2+&c 5y;) —c5y;

=5y, a ', &c 5y, « I . (3.12)

da
dt

where p, is the matter density at t, , the time of equal
radiation and matter density and we take a (t,q ) = l.

Now we find (3.3) becomes

For small c this approaches scaling even more slowly.
At this point we should also mention a small correc-

tion to the model due to the V dependence of the chop-
ping efticiency c. This is a small effect because both in ra-
diation and matter eras V is not very far from —,'. To a
first approximation we should simply have c proportional
to V because this determines the rate of interactions of
the long string. This we can include by writing
c =c„V/V, .

The model is easily generalized to the matter-radiation
transition. In this case it is more convenient to change
variables from t to a (t) which is given by

8~Gp Bl,eq
(

—]+ 2) (3.13)
3

1 I+&I+4c 1
y c(&1 .

C 2 C
(3.8) dy 1 y y

C +
da 2 a(1+a) a a

(3.14)

Similarly in the matter era RH =
—,
' and the fixed point is

given by
This equation is simple to solve numerically, and the re-
sult is plotted in Fig. 2, for c, =0.074, the result of our

ym (3.9)
I I I IIIII I I I I IIII) I I I I III!j I I I I IIIII I I I I IIII( I I I I IIIII I I I I IIII'

V =-'(1 —c), V =-,'(1 —&c ) . (3.10)

It is also clear that the scaling solutions are stable —the
right-hand sides of (3.7) are inverted parabolas with the
scaling solution at the positive root. If y is greater than
the scaling solution it falls, if it is less than the scaling
solution it rises. In fact (3.7) may be solved in the radia-
tion era to give

In the radiation era the chopping term must make up an
extra —HPL [in (3.5)] as well as counteract the stretching
term in order to keep the string scaling as radiation
(p= 4Hp) In —the .matter era however (where
p= —3Hp) the chopping term need only balance against
the stretching term Thus one .expects g to be larger in
the matter era since less chopping is required. The result,
for c ((1, that y =Qy„ is remarkably simple and as
we will see is verified to good accuracy in our simula-
tions. Likewise we predict the velocities of the long
strings in both eras:

800—

100—

0 I II)IIII I I IIIIIIl I I IIIIIII I I »IIIII I I IIIIIII I I IIIIIII I I IIIIIII

.01 .1 1 10 100 1000 10000

FIG. 2. The solution to our "one-scale" model for the long-
string density pL. The figure shows y

—=pLRB/p (the long-
string density in Hubble radius units) as a function of scale fac-
tor a. The units are chosen so that a = 1 at equal matter and ra-
diation density, and the single parameter in the model, the
chopping efticiency c, is taken from our numerical results in the
radiation era.
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numerical simulations explained in Sec. V.
Let us now work out the consequences of the scaling

solution for the distribution of loops being chopped off
the long strings. The chopping term in (3.3) represents
the loss of energy into loops: if we define the dimension-
less energy production function f (x) to be the energy loss
from the long string into loops of length / to /+d/ per
correlation volume per unit time we have

Pi. P J'. dl 1

(3.15)

B,p, (l) = —3Hp, (l)+ f /

where PI(l)dl is the energy density in loops of length 1 to
/+d/. The first term just represents dilution due to the
expansion of the Universe. The cutoff /, is simply a result
of our definition of long string —in our numerical results,
for example, we shall typically define f (x) to be zero for
x )x, =2(RH/g). We shall see that the precise value of
the cutoff is irrelevant —for x of order 10 or greater
chopping off and reconnection balance very closely. Note
that f as we define it here includes both chopping off and
reconnection. In the next section it will be useful to
differentiate between these explicitly.

Here we make the important assumption that f is only
a function of 1/g. The one-scale principle has come into
play again. It says that no matter what the scale g of the
network, the loop production process looks the same
when scaled with g. In particular, if one understands
loop production in the radiation era, then an appropriate
rescaling will describe loop production in the matter era,
and even in the radiation-matter transition. We shall
check this in Sec. V. Note that f is the net amount of en-

ergy lost per Hubble time per unit volume —it includes
both chopping off and reconnection. As we explained
above, we expect chopping off to be greater than recon-
nection from the statistical mechanical results, and we
shall explore how this works in detail in the next section.
We have ignored effects of expansion on the loops, where
the main (small) eff'ect is to redshift kinetic energy away
as explained in Sec. II.

What about the loop distribution? Of course loops
fragment after being chopped off the network, so it is
convenient to divide loops into two types; those destined
to self-intersect (variables corresponding to these will
have a subscript I) and those which are not (these will
have a subscript NI). In particular we have pi (1)
=pi(1)+pNI(1) and f (x)=fi.-i(x)+fL,NI(x) as the
production function from long string and (3.15) becomes

1 / /
~,pi(1)= 3HPI(1)+ „ f—L i

——fi(g)"

energy production function, determines the final density
in non-self-intersecting loops —integrating (3.16) and us-
ing g=Rtt /y we find in the scaling solution in the radia-
tion era that

R~
PNI(l)dl =P

3/2
dl

R~
5/2

dx x Ni x

(3.17)

and in the matter era that

RH
pN, ( 1)dl =pA,

d/
3 7

. RH

2'Ym J dx fN, (x)

(3.18)

PNI P r R 3/2(1 + I G t)3/2( 1)dl =

and in the matter era that

(3.19)

pNi(1)dl —pA,
RH(1+I Gpt)

(3.20)

Thus loop decay determines a cutofF' in the size of "typi-
cal" loops of the order of I Gpt.

As we discussed above, in the scaling solution we have

f dx f(x)=c. This led to PL=@/(c RH) in the radia-
tion era and =p/(cRH) in the matter era. Likewise we
should have for the density of long string plus intersect-
ing loops pL& similar relations in terms of the integral of
the non-self-intersecting energy production function,

f dx fN, (x):—cN, . This provides a useful consistency
check which we will apply to our string simulations in
Sec. V.

assuming of course that the integrals converge. We shall
present strong evidence for this and determine A, and A.„
from our numerical simulations. The number density of
loops of length 1 to 1 +dl is given by n (1)—=pi(l)dl /(pl).

We have so far ignored the slow decay of loops into
gravitational radiation, which is crucial in the radiation
era since the loop density (3.17) scales as matter, and
without this process the loop density would come to
dominate the Universe. A loop of initial length /; pro-
duced at a time t, loses energy at a rate / = —I Gp with I
a constant which depends on the loop trajectory but typi-
cally I =50 for simple trajectories. ' Thus the length
of a loop varies with time as 1 =1;—I Gp(t t;). E—qua-
tions (3.17) and (3.18) are the densities as a function of
the initial length /; —substituting for /; we obtain, in the
radiation era for t &)t;,

B,p i(1)= —3HpN, (l)
(3.16) IV. STATISTICAL MECHANICS

AND THK ENERGY PRODUCTION FUNCTION

1 / /+ 4 fL~NI g. fI~NI
( g')

In fact fN, =fI N, +f, N„ the non-self-intersecting

In this section we shall discuss the statistical mechan-
ics of string networks. This will be useful in several ways.
The most important fact we will learn is that phase space
favors the chopping up of long string into loops over the
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reconnection of loops onto long string. This fixes the sign
of our constant c of the previous section, and guarantees
that a scaling solution must exist, as we have discussed.
We shall argue that it is inconsistent with Aat-spacetime
statistical mechanics to have a string-dominated universe
where chopping ofI' is balanced by reconnection. This
conclusion is diA'erent from that reached by Bennett"
and Kibble. "

We also suggest that the long strings may be viewed as
a radiating hot body. Loop production can be then
thought of as the "blackbody radiation" coming o8' the
network. This suggests a simple form for the shape of the
loop production function. In the next section we show
that the predicted shape is fit very well by the simula-
tions.

Let us begin by reviewing fIat-spacetime string statisti-
cal mechanics. To discuss this, one needs to be able to
count states in the space of a11 possib1e string
configurations. The measure on the space of states may
be obtained by quantizing the strings, or from a simpler
argument we present below.

It is useful to think in terms of the "left-movers" and
"right-movers" of (2.13). Let us introduce a fundamental
energy scale 6 and construct the set of all loops of energy
e =%A by choosing s' and b' to be randomly chosen unit
vectors at each step 6 along the string (energy is propor-
tional to parameter length in this gauge). This scheme
has been used by Hawking and by York. ' ' We must
furthermore restrict a' and b' to only take a discrete set
of directions D at each step. This procedure guarantees
that the displacement Ax' and momentum Ax are them-
selves taken from a discrete set (quantized) for every step
along the string. The number of such sets a'(o) and
b'(cr ) is just D ':—exp(be). Thus b '

( ~ b, ) emerges as
fundamental energy scale (the precise value of b depends
on exactly how one defines the set D). For any one of
these sets, a(o ) and b(o ) execute random walks given by
adding up all the a' and b' vectors. (Copeland, Haws,
and Rivers give another "classical" treatment of this
problem where they count random walks in position space
rather than in terms of a and b.- However, they neglect
the momentum degrees of freedom of the string seg-
ments. See also Ref. 33 for a similar discussion of the
string initial conditions. )

We still must further restrict ourselves to closed loops
in their center-of-mass frame. This is only the case when
we impose the two additional constraints

doa'o = dob'o. =0. (4.1)

Thus we need to select out the class of random walks
which return to the origin. As is well known, the proba-
bility of a given walk returning to the origin after % steps
is proportional to N in three space dimensions. Tak-
ing this into account for both a' and b' and using e =m in
the center-of-mass frame of the loop we obtain m e
for the number of closed strings of mass m. However this
is still not quite right because any given loop could be ob-
tained by starting at any of the m /6 steps on it, and so
we have overcounted by this factor in our construction.
So the number of dNerent configurations of mass m to
m +dm is just

n(m)dm ccm e dm, bm ))1 (4.2)

where one uses m =e —p /2e to perform the mass in-
tegration. The total energy density is given by

p= f de n q(e)e f ae exp[(b P)e]
C

(4 4)

where e, is a lower-energy cutoff, usually taken to be of
order b

There are several important points about (4.4). First,
the expression makes no sense for P & b, i.e.,
T ) TH =—b ', the Hagedorn temperature. This is a
reAection of the fact that the canonical ensemble is not
defined above TH. More importantly, (4.4) tends to a
finite limit pH at TH. Densities above pH cannot be de-
scribed with the canonical ensemble —a microcanonical
description is necessary. In fact the initial-string
configuration is described by this p&pH configuration
with most of the string in "infinite" string and the
remainder in a distribution of loops, given by (4.4) with
P= b.

Densities below p~ are well described by the canonica1
ensemble. From (4.3) and (4.4) one can see that the loop
distribution and energy density are dominated by the
smallest loops allowed, with energies of e, . Smith and
Vilenkin, and Sakellariadou and Vilenkin have numeri-
cally evolved boxes of string in Qat spacetime and have
verified these results. A box of long string (with p&pH)
grinds itself up into small loops which settle into the dis-
tribution given by (4.3). In their case the smallest al-
lowed loop is set by their numerical scheme, and the scale
of "wiggles" by the lattice spacing. For cosmic strings,
the "smallest allowed" loop would be a loop which is not
much longer than a string thickness, which also sets the
scale of allowed wiggles. Loops smaller than this can
disintegrate into their constituent fields. In thermal equi-
librium, at any temperature below the Hagedorn temper-
ature large strings would be exponentiaHy rare. Long
strings survive only to the extent that the network does
not equilibrate.

Boxes of string in which there is a net string winding
number across the box were also considered in Ref. 28.
These impose a topological constraint which forces there

with a and b constants depending on D and A. Note that
the measure requires some fundamental scale of allowed
"wiggles" on the strings. The argument given is easily
generalized to any number of dimensions and to open
strings. In each case it agrees with the "Hardy-
Ramanujan" formula which one obtains when the theory
is quantized.

It is also clear with the above measure what typical
loops look like: x(o )=I —,'(a'+b') clearly executes a
random walk in space as we track along the string.

Now let us discuss equilibrium distribution of loops in
fiat spacetime. From (4.2) one calculates the equilibrium
number density of loops in the energy range e to e +de at
finite temperature T =P

n, (e)de ~ f d p f dm n(m)5(e —&p +m )exp( —Pe)

=ae ~ exp[(b —P)e], be ))1, (4.3)
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to be a minimum number of long strings in the box. The
energy in wiggles on the long strings is suppressed by the
Boltzmann factor at low-string density, just as large loops
are. Even though the long strings carry kinks whose sep-
aration can be as small as the scale of allowed wiggles,
they remain very straight. Not surprisingly, the equili-
bration process does its best to put energy into the statist-
ically favored small loops.

In the context of cosmology, equilibrium statistical
mechanics cannot be applied directly. However, lessons
learned in the above discussion have important implica-
tions.

The main difference of course is that as the Universe
expands, the mean separation between strings grows and
the loop velocities redshift away. This has the effect of
"turning off" the interactions between different loops. As
we shall discuss, this interrupts the fragmentation pro-
cess. In the expanding Universe, we expect a given loop
to fragment only down to the scale set by the smallest
wiggles it had acquired before it stopped interacting with
other strings. (We neglect the effects of gravitational ra-
diation in this analysis since they only become important
over much longer time scales than we are concerned with
here. )

It is important to emphasize here that loops broken ofF
a string characterized by the scale g do not fragment
indefinitely —the scale of the typical fragments is set by

This has been shown convincingly by York in ffat-
spacetime simulations of loop self-intersection (see also
Ref. 35). He also gives the following simple argument.
Defining the space of loops as we have above, all loops
consist of straight sections connected at kinks. Take a
loop with N left-moving kinks and X right-moving kinks.
If this breaks off a child loop, there have to be at least five
kinks on the child loop. Two are created at the crossing,
and at least three are necessary to "bend the string
around" back to the crossing point. This is so because
kinks are actually planar (velocity of the string perpen-
dicular to the plane of a kink has to be equal on both
sides of it). Thus the case with only two kinks "bending
the string around" is degenerate. Now only two new
kinks are created on the "parent" loop, while three were
lost from it. Thus eventually the parent loop runs out of
kinks and can no longer chop off loops. The maximum
number of child loops allowed is just 2X —4. This argu-
ment ignores reconnection of fragments onto the parent
loop, but York has verified that for an isolated initial-
loop reconnection has very little effect on the final-energy
distribution produced for x =I /g & l.

York also found that the probability for a loop of X
straight segments to be non-self-intersecting was ex-
ponentially small for large X. This can also be under-
stood by considering the measure we discussed above. As
a simple case, consider constructing a and b on a simple
cubic lattice. Since there are six directions for a' and b'
at each step, the number of closed loops on this lattice
scales with X as 6 N, as discussed above. Now an in-
tersection occurs on a loop if and only if
a(x+L)+b(x+L) =a(x)+b(x) for some L and x. In
other words, if a and —b trace out identical vectors along
stretches of the same length L,. In the case of our lattice,

an intersection of length 1 occurs if a and b travel in the
same direction anywhere (since both are closed curves,
they must traverse both forwards and backwards along
any direction they take). The only way to avoid such "in-
tersections" is if a lies in a two-dimensional plane and b
lies along a line, and vice versa. Similarly intersections of
length 2 can occur if a and b go forward and back along
any link in two adjacent steps. b, the one-dimensional
closed walk, is guaranteed to do this at some point, but a
can avoid it by never reversing on itself. Now it is easy to
see that all intersections up to length 4, and all odd
length intersections, are avoided if the conditions im-
posed so far are met. Assuming that higher L intersec-
tions are rare, we estimate the total number of non-self-
intersecting loops as (3 /N)(2 /N' )(1/N), where the
denominators come about because one curve is two di-
mensional and the other one dimensional, and we include
the overcounting factor N as before. Thus the fraction of
all loops which are non-self-intersecting is proportional
to X 6 . Of course the details of the result depend
strongly on the lattice, and our decision to treat intersec-
tions of length 1 (which are really "cusps") as intersec-
tions, but the conclusion that the probability of a loop be-
ing non-self-intersecting decreasing exponentially with N
should be independent of these details.

The finite fragmentation result means that if a string
network is smooth on the fundamental scale given by e„
then interactions between difFerent loops are crucial to
the equilibration process. It is only through reconnec-
tions that extra wiggles can be introduced in order to al-
low fragmentation all the way down to the scale e, . The
exponential result for the probability of non-self-
intersecting loops means that we can expect the vast ma-
jority of final non-self-intersecting loops to be in "simple"
trajectories, of only a few steps on the relevant scale.

One can estimate this scale, which determines when
loop fragmentation stops, by determining when the prob-
ability per unit time for any loop to hit a long string falls
below the expansion rate. The former is essentially
=kl/g, with l the loop length, and k (1 a factor deter-
mining the geometrical cross section for a loop to hit a
long string. (Remember, g gives the length density of
the long strings. } Thus loops with I &(k 'y 'g are very
unlikely to interact with the long string. One can check
that they are even less likely to interact with similarly
sized loops. So the long string-loop system cannot
"thermalize" further than this scale, smaller than but
proportional to go- RH in the scaling solution.

What about the long-string distribution? As the
Universe expands it proceeds to chop itself up into loops.
As it does so, the scale g on the long string grows. Pro-
vided the long string remains in a random configuration
it will be characterized by the scale g, and there will be of
order 1 string of length g per volume g . In fact the dis-
tribution of long string on scales much larger than g
should look very much like the high-density string phase
(above the Hagedorn density), where the smallest allowed
scale of wiggles on the string is taken to be g. This is so
not because the string network has equilibrated, but sim-

ply because this is the most probable configuration. It
follows that most of the energy density in long strings
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E(e) e l I=ke—n, (e)—: f,tt-
p

(4.5)

which defines the energy production function for loops
coming off the long string: f,(t(x). The production func-
tion f (x) of the previous section includes both this and
the reconnection function. Using n, from (4.3) we find

f (r(x)=Ax '/ e, Bx ) l . (4.6}

A useful analogy is with a hot body, connected via a
conducting rod to a radiating surface. The temperature
is greatest at the hot body, and least at the surface. The
long-string network may be viewed as very hot, at the
Hagedorn temperature in fact. This is so even though it
has never had time to equilibrate —it is just because it is
a "typical" configuration of strings which are constrained
to be straight (because smaller wiggles get chopped off}
on a scale similar to the scale defined by their density g.
Because the long strings are at the Hagedorn temperature
the production function from the long strings should
have B =0, and be a pure x '/ at large x. This may
also be understood more directly —the probability for a
random walk to return to the origin after a length l scales
as l, as we mentioned before. Thus if the long strings
remain random walks, the number of fragments breaking
off with length l to l +dl should scale the same way. The
energy production function should therefore scale as
l ', in agreement with the argument above.

Going down in scale, the network explores smaller
scales as chopping up occurs and is described by a
configuration at a density lower than the Hagedorn densi-
ty, and with B )0. Energy Aows continuously from the

should be in strings much larger than the Hubble radius.
We emphasize that this configuration occurs because the
long string is random, and this is the most likely
configuration. The often used "causality" bound is quite
misleading on this point.

The actual density of long string is set by the chopping
efficiency (the parameter c described in Sec. III), and is
considerably higher than one per Hubble volume (the
naive "causality" bound). The long string cannot be
straight on scales much larger than the mean separation
of long-string segments, since interactions will tend to
randomize it on that scale. This is exactly the picture we
presented in Sec. III.

Now we are ready to discuss the form of the energy
production function.

In Bat spacetime and in thermal equilibrium we can
calculate the spectrum of loops chopped off a long string
by detailed balance. The process of chopping off a loop is
the time reverse of the process where a loop collides with
a long string. In equilibrium the two processes must
therefore proceed at the same rate. The rate at which our
long string collides with loops of length l to l +dl is given
by Lk In,„(l)dl where L is its length and k is a constant.
We assume that the cross section for a string of length l
to hit other strings is proportional to l and that the
characteristic velocity involved is a constant of order uni-
ty. Thus in equilibrium the rate of loss of energy to loops
of energy e to e +de is given by

"hot" long strings to the "colder" loops. Finally, after all
chopping is done with, a distribution of non-self-
intersecting loops will leave the network. The exact form
of this distribution is determined by the nature of the
"cooling" process, and by how the loops which leave the
network break into nonintersecting loops. We have yet
to model all these effects in a detailed way, but we contin-
ue our discussion under the simple assumption that the
distribution of nonintersecting loops is well described by
a production function of the form (4.6). We shall see in
Sec. V that this assumed form gives a remarkably good fit
to the numerical results.

Now we turn to the reconnection of loops onto long
strings. This is the main difference between the fiat
spacetime and expanding cases —in the former case all
loops eventually reconnect, so the scale of allowed "wig-
gles" can go to zero. As we have argued however, in the
expanding case the allowed scale grows in proportion to
g ~ t, and a substantial fraction of loops never reconnect.
For simplicity we shall deal only with non-self-
intersecting loops. We shall consider the rest of the loops
as part of the long string network.

The rate of loss of energy in loops of length l to l +dl
due to reconnection onto long string is given by
kp&(l}l/g . Using this, we have, for the energy density in

loops from l to l+dl,

l l
p, (I ) = 3HP)+ —fott

— —k
2 p((l) (4.7)

5/2 —(Bl)/g 1

2 l3/2g~3/2 B +yk/2
(4.8)

and the net energy production function f ( I /g)
f,tt(l/g) kg Ip) /p is found—to be a fraction B/

(B +yk/2) of the chopping off function f,tt. The recon-
nection function r(l/g )= kg Ip&/p, d—efined as the neg-
ative contribution to the net production function, is a
fraction yk/2B of the net production function. As we
shall see later this prediction, that the reconnection func-
tion is an l-independent fraction of the production func-
tion in the radiation era, is well borne out in our simula-
tions.

Note that B plays a crucial role above. If we set B =0
then we would And that production exactly canceled
reconnection and the string density would scale as
matter. It is the fact that a substantial fraction of the en-
ergy lost from long strings goes into loops whose size is
set by g that guarantees the scaling solution. We know
that B has to be nonzero to ensure that Eq. (4.7) produces
the correct Boltzmann distribution in Rat spacetime.

In fact (4.7) and our previous argument put a much
stronger constraint on the 1oop production function. The

which is easy to integrate using the form (4.6) [it is help-
ful to integrate with respect to x = I /g instead of t; we as-
sume for simplicity that (4.4} holds down to x =0]. For
the Anal density in loops of length l to l +dl in the radia-
tion era one finds

5/2
(l) l (kly)/2$ dx f (x)e( —kyx)/2

g 3/213/2 1/g
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3 1/2

(4.9)

In this case the reconnection function is seen to be a de-
creasing fraction of the net production function at small
l. For small l the reconnections should be unimportant
and Eq. (4.6) should give a good approximation to the net
loop production function in the matter era as well.

This picture of the string network as a radiating hot
body characterized by the scale g is quite diff'erent from
previous analytic approaches to string networks which a1-
lowed for a string-dominated universe. Our discussion
makes it clear that this cannot occur —if the scale on the
string network g became much smaller than the horizon,
then in a time of the order of a few g the string network
would approach the equilibrium solution, with the long
string chopping itself up into loops. Therefore g/R~

segments of long string should interact with the "sea" of
small loops that surround them just as the topologically
constrained long strings mentioned before. In Aat space-
time, at low-string density, chopping off and reconnection
of small loops onto a long string balance, with very little
energy in the "wiggles" on the long string. In an expand-
ing Universe, where many loops coming off never get the
chance to reconnect, it must be that chopping off is at
least as e%cient as reconnection on small scales.
Demanding this, (4.7) requires that f,s(x) diverge at least
as fast as x ' at small-x. In our numerical results we
shall see evidence of this x ' small-x behavior building
up as the simulation proceeds.

This in fact justifies our approximation above in assum-
ing the form (4.6) down to x =0. If we impose the condi-
tion that chopping off is greater than reconnection for all
l in (4.7) then our conclusions above are not qualitatively
altered by deviations at small x from (4.6). Bennett"
considered Eq. (4.7) for general f (x) in much the same
way as we have. However he allowed a form for f for
which small loops reconnected onto long strings at a fas-
ter rate than they were chopped off. This then allowed a
string-dominated universe. Our statistical discussion
makes it clear that this cannot happen.

As we explained above, as well as "infinite" strings,
there should be a distribution of large loops given by (4.8)
with B =0. One of the striking results we shall show in
the next section is how little density resides in loops with
length greater than g. From (4.8) the density in large
loops is suppressed by 1/k. We assumed that the cross
section for all loops to reconnect was proportional to kl
above, with k the same constant. However large loops
look more like a collection of random segments in-
tertwined with the long strings, so k should be of order
unity. In contrast, small loops are "curled up" by some
geometrical factor —while the cross section should still
be proportional to l, because they are mostly in the "sim-
plest" trajectories, k should be smaller. So the constant k
should really also depend on I, and have the effect of
suppressing the density in large loops relative to small
ones.

In the matter era the integrals are more complicated.
However for small I one finds instead

would fall. Reconnection does indeed reduce the final
loop density [Eq. (4.7)] but as long as 8 and k are finite
we are inevitably driven into the scaling solution.

It may well be possible to calculate the loop production
function from Aat-spacetime simulations. Certainly the
production function in equilibrium may be calculated as a
function of string density and the cutoff scale for wiggles.
With knowledge of exactly how the interaction rate for
the network depends on string density one should be able
to calculate the efFective g as well. Using our formalism
in the previous section one could then calculate the scal-
ing density. This would be worth doing —simulations in
Aat spacetime are much easier to do.

V. NUMERICAL RESULTS

In the previous sections we have developed an analytic
model for the evolution of the string network. In this
section we shall compare its predictions with our numeri-
cal results. The reader interested in the details of our nu-
merical methods should consult the Appendix.

We shall also discuss some tests of our code in order to
give estimates of the possible errors in our results. In the
Appendix we discuss some extra checks.

Let us begin by discussing the density in long strings.
In Sec. III we developed a simple model for the time evo-
lution of the long-string density. It contains a single free
parameter, the chopping parameter c. If we calculate c
from the scaling density in the radiation era, we can use
the model to predict the scaling density in the matter era,
and the rate of approach to scaling in both eras. The
model also predicts the string density throughout the
matter-radiation transition, which is important in calcu-
lating the growth of density perturbations produced by
strings.

Figure 3 shows the model compared to our numerical
simulations. In these simulations there is one parameter
which determines the initial conditions, the ratio of the
Hubble radius R& to the correlation length g, which we
have ca11ed y. This determines the long-string density:
pi =y p/R~. We define the long strings to be loops
whose length is larger than 2R~. As we shall see, there is
little energy density in large loops, so the results are very
insensitive to exactly where the dividing line between
"long string" and "loops" is drawn. For each run y is
plotted against scale factor.

In Fig. 3(a) the results are shown for the radiation era.
Three different runs are shown, in solid lines. In the first
y falls, in the second it is steady, and in the third it rises.
We deduce from this that y =210 is the scaling solution.
From (2.8) we see that this corresponds to c„=( 1

+y)/y =0.074.
With this one parameter fixed, we can now calculate

the predicted density evolution for each run from our
scaling model. The predictions are marked in dashed
lines —they clearly fit the numerical results very well.

In the figures the units are chosen such that the abscis-
sa is also the Hubble radius in units of a comoving initial
correlation length. For example, the longest run was in a
box 26 initial correlation lengths across which contains a
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volume (26/45) RH =0.2RH by the end of the run. The
statistical Auctuations in these graphs are small —they
are quite smooth. This is not too surprising since even by
the end of the longest run the box contained
%=0.2RH/g =600 correlation volumes. As we shall
see, the long-string segments are uncorrelated on scales
larger than g so an estimate of the statistical error in the
long-string density is simply 1/&N =4%%uo. The possible
systematic errors, due to numerical errors in the string
evolution code and finite cutoff effects, are more impor-
tant, and we will discuss these later.

Figure 3(b) shows the results for the matter-radiation
transition. Again the model fits well. The abscissa here
is the scale factor in units where it is unity at equal
matter and radiation density.

Figure 3(c) shows the results for the matter era. We
calculated c„above. Including the velocity correction we
have c =e„(1—

—,'Qc„)=0.064 so the predicted matter
scaling density is given by y =1/c =16. Using the
scaling density from the radiation era, we have predicted
the matter scaling density, and again the model fits the
simulations very well.

Judging from this we believe that the solution to our
model shown in Fig. 3 should give an accurate represen-
tation of the string density throughout the history of the
Universe.

Our scaling model relies on an estimate of the amount
of stretching for long strings, which is particularly impor-
tant near the matter scaling solution. Figure 4 shows the
average V on the long strings for each of the runs shown
in Fig. 3, as a function of conformal time. The predicted
velocity is calculated from V =

—,'(1 —g/RH) =—,'(1
—y '), with y as plotted in Fig. 3.

The velocity model gives slightly low predicted V dur-
ing the radiation or transition eras [Figs. 4(a) and 4(b)] al-
though always by less than 10%. It fits the numerical re-
sults remarkably well during the matter era [Fig. 4(c)]. In
these runs V approaches the predicted value and settles
on it where the run continues long enough. Since this
very simple model works well in the matter era, where
stretching is most important, we have not tried to im-
prove on it.

Further support for both the scaling density model and
the velocity model comes from calculating the shape of
the long strings. In Fig. 5 we have measured the average
straight-line distance squared d between two points
separated by a length l = (energy/p)l along the string for
the longest- radiation run. We only did this for / (L/10
where L is the length of the loop involved, since other-
wise the simple random-walk formula breaks down. As
can be seen, d =lg to good accuracy throughout the
simulation (during which g grows by almost 8 in physical
units). We implicitly assumed this in constructing the ve-
locity model.

Another test of the long-string configuration is shown
in Fig. 6, where the correlation function of the tangent
vector along the string (x'(ll. x'(0)) is shown as a func-
tion of the length (energy/p) along the string. In Fig. 6(a)
the correlation function is plotted for various times dur-
ing the long radiation run, to check for scaling. In Fig.
6(b) the radiation and matter runs are compared with the
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FIG. 3. The model for the density in long string presented in
Sec. II compared to numerical calculations, for diA'erent initial
string densities. (aj shows the results in the radiation era. The
numerical result is the solid line and the model prediction the
dashed line in each case. The vertical axis is the long-string
density in Hubble radius units, y =p„R~/p, and the horizontal
axis the scale factor. The single parameter in the model, the
chopping efticiency c, is determined from the run for which y is
constant, and approximately equal to 210. (b) shows the model
versus simulations in the matter-radiation transition. The scale
factor is in units where it equals unity at equal matter and radia-
tion density. The model predictions here are deduced from the
value of c measured in the radiation era. (c) shows the matter-
era results similarly.
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initial conditions. The correlation functions are nonzero
for l )g in the scaling network, but not in the initial con-
ditions. We interpret this as evidence of the "stretching"
we have assumed in our velocity model. The matter era
network is somewhat more highly correlated, which cor-
responds to the greater degree of stretching we expect in
the matter era.

Thus, aside from small stretching effects, the long
strings look like random walks with step length g. Thus
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FIG. 5. The shape of the long strings as measured by d, the
straight-line distance between two points on the string, com-
pared to I, the length (energy/p) along the string between them.
d is plotted against l at different times in the longest radiation-
era simulation.
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FIG. 6. The shape of the long strings as measured by the
correlation function for the tangent vector to the string, as a
function of I. (a) shows the radiation-era run at different times
in the simulation (the solid line corresponds to an early time
when scaling has not really set in). (b) shows the radiation (solid
line) and matter (dashed line) runs (when they have reached
scaling) compared to the initial conditions (broad dashes)—
some evidence of "stretching" of the long strings is seen.
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the initial conditions of the string network provide a
surprisingly good approximation to the scaling con-
figuration of the long strings (with the appropriate choice
for g, of course). This is very reassuring —it means that
the initial conditions for our simulations are quite close
to the final scaling solution, at least for the long-string
distribution.

The energy lost from long strings goes into loops. It is
an important consistency check on our simulations to see
that enough energy is lost from the long strings to keep

the network scaling. Figure 7 shows the energy produc-
tion function f (I/g) [Eq. (3.16)] during the course of the
longest radiation run. The function f (the solid line) is
shown for five different ranges of the scale factor —the
run started at 16, and the average value of f is shown for
the ranges 20—25, 25 —30, 30—35, 35—40, 40—45. %'hile
there are obviously quite large Auctuations in f, it settles
down after 25 and is reasonably similar during the
different time intervals thereafter. Thus it shows good
evidence of scaling. As we discussed in Sec. EEI, the in-
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FIG. 7. The net energy production function f (l/g) defined in Eq. (3.16) is plotted (the solid line) against 1/g for different time in-
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The reconnection function is similarly shown in dashed lines. Note that the total energy coming o6' the strings equals the sum of
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figure. See the text for further details. The production function averaged over the whole scaling part of the run appears in Fig. 9.
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tegral off is equal to c„ in the scaling solution —if the in-
tegral is larger than c„, then y will fall, if it is smaller
then y rises. Above we calculated c„=0.074. Compar-
ing the value of the integral of f, shown with each figure,
with 0.074, one can see the value of y rise or fall over
the corresponding period in Fig. 3(a). This is a good con-
sistency check of our results.

Also shown (the dashed lines) in each case is the recon-
nection function r(l/g), we briefiy discussed in Sec. IV.
This is defined as the (negative) contribution to f coming
from loops reconnecting onto long strings. The other
component of f is due to chopping off, and equals the
sum of the solid and dashed lines in the figures; It is very
noticeable that the reconnection function has the same
shape, and approximately the same magnitude as f. This
is exactly as we predicted in Sec. IV.

Our results for f show it going to zero at 1/RH =0.02.
Note that f =f,s+ r, and the reconnection function does
grow at small x, which implies that f,z does as well. Our
discussion in Sec. IV indicated that f,s should diverge at
least as fast as r at small x, which should go like x
Our simulations show f,s=r at small x. However, the
corresponding loops are of order 1/11=0.08 in rms ra-
dius, in units of an initial comoving correlation length, in
which EH=45 at the end of the run. This is certainly
comparable to the resolution of our crossing detection
boxes, —,', =0,07 in these units, and so could well be a
cutoff effect. We checked this in a much higher resolu-
tion run, with 5 times the usual number of points per ini-
tial correlation length on the string, and 6 times smaller
effective crossing detection (see the Appendix). We could
only do a small simulation —the box was 12 . In Figs.
8(a) and 8(b) the average production and reconnection
functions f and r over the entire course of this run are
compared with the results for our long radiation run over
the same period. There is indeed some enhancement of
the loop production function at small scales, but contrib-
uting less than 10% to the integral. Similarly, the recon-
nection function is slightly smaller in the higher resolu-
tion run. Since the eventual scaling density y ~ 1/c and
c the chopping efBciency, is directly related to the in-
tegral of f, we make a rough estimate of the error in c by
doubling this, to obtain 20%. Consequently our scaling
density could be too high by 40%. A really systematic
estimate of our errors would require a higher resolution
run in a large box, which we have not yet performed (see
Note added in proof).

In fact our production functions look quite similar in
form to those found by York ' in exact simulations of the
breakup of loops in Aat spacetime. His results suggest
that for isolated loops breaking up in fiat spacetime f ac-
tually turns fiat below the scale = g' on the string.

Now we turn to the matter-era simulations. Figure 9
shows the matter-era energy production function f
(solid line) and reconnection function r (dotted-dashed
line). The radiation-era production function (the average
of the last four graphs in Fig. 7) is also shown for com-
parison (dashed line). f is obviously quite similar in
form to f„when expressed in units of g, the scale on the
strings. f does appear to be somewhat steeper however.
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FIG. 8. Production and reconnection functions in a run with
5 times the usual resolution are compared with the same from a
"normal" run over the same period. {a) compares the produc-
tion functions f(x), with the high resolution run result being
the dashed line and the "normal" run the solid line. (b) com-
pares the reconnection functions similarly.

As in the radiation case we calculate the integral
c = f dx f (x)=0.051, which is a little lower than the
predicted value 0.064 calculated from the radiation-era
run.

The difference could be a statistical fluctuation —the
matter run was smaller (21 ) and may not have reached
scaling. However, even if such a difference were real we
would regard the simple one-scale model as quite success-
ful. Most of the variation in the size of the chopping
term (cg ) between the matter and radiation eras is
given by the g dependence. The g dependence is set by
the one-scale model and correctly accounts for a factor of
(y, /y ) =3000 change in the chopping rate (in Hubble
units).

The final distribution of loops produced by the network
is determined by fN, (x), the non-self-intersecting energy
production function. For each loop we store the "birth-
day" (the time it was produced) and a loop is defined as
non-self-intersecting if its "age" is longer than one period
(its energy divided by 2p). In order not to bias the result
towards small loops, we require that all loops accepted as
non-self-intersecting have lived as long as a period of the
largest accepted loop. Every loop gives a contribution to
the function fNi when it is born. If one is interested in
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the final-loop distribution, it is of course important to
measure the contribution to fN, over some time interval

by looking at the simulation at some much later time, so
that the loops counted are those that do not eventually
reconnect. We shall show graphs of fN, calculated from
the surviving loops at the end of the simulation.

First, in Fig. 10(a) we show fNt(1/g) in the radiation
era, for different times in the simulation. The solid line is
for scale factor 26—32, the dashed line for 32—38, and the
dotted-dashed line for 38—44. The most noticeable devia-
tion from scaling is at small x, where one can see more
and more smaller loops being produced. This accords
with our discussion in Sec. IV, where we showed that
f,s(x) must diverge at least as fast as x '~ for small x.
Over most of its range fN, does appear to be scaling,
however. In Fig. 10(b) we plot the integral

~

~

~

~

dx fN, (x)=0.11 which does appear quite constant
over the course of the simulation. This is higher than the
integral of the total energy production function from long
string discussed above, fdx f„(x)=0.071. As we dis-

cussed at the end of Sec. III, this implies that
(pL+p, )/pL= ffN, /f f=1.5. Thus approximately half
the long-string density again is contained in eventually
reconnecting loops shorter than 2RH. Figure 10(c) shows
the integral fdx fN, (x) in the matter era run for two
time intervals. As can be seen, it falls during the run, to
about 0.06. This is not very different from

fdx f (x)=0.051 mentioned above. In our model for
the scaling network we expect these two quantities to be
the same.

Now for many purposes it is important to have the pa-
rameters A, and A.„ in the final-loop distribution (3.17)
and (3.18). In fact for loops produced in the radiation era
it is better to define this in terms of rest mass rather than
energy since some of the initial energy in a loop is red-
shifted away, and the most important effects (mass accre-
tion, gravitational radiation) occur late in its lifetime.
Redefining all energies as rest masses, we have calculatedI= fdxx' f„(x) from the radiation run, and this is
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shown in Fig. 11. It seems to scale quite well. The aver-
age value over the course of the run is I=0.033, which
results in a value I,„=—,'y„X= 11. As a check on this, we

have calculated the loop distribution at fixed times in the
simulation to compare with (3.17). In Fig. 12(a) the num-
ber of loops with length greater than l in a Hubble
volume is plotted against (1/RH) ~ . The slope of this
graph, according to (3.17), should be —', A,„. As can be
seen, the slope stabilizes during the course of the run, at a
value corresponding to X„=10.5, in good agreement with
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FIG. 9. Matter-era energy production function f (solid line)
and reconnection function r {dashed line) as functions of I lg.
Also shown is the average radiation-era production function
(dotted-dashed line).
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FIG. 10. Non-self-intersecting loop-production function at
three different times in the radiation era. (a) shows the function
f~I(x), and (h) shows fQNI{x)dx vs x through the course of

X
the simulation. (c) shows QNI(x) for the matter-era run at
two different times.
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FIG. 11. The integral j x'~ fN, (x) (relevant in determining

the final-loop distribution) is plotted against x. It is shown over
severa1 ranges of scale factor in the long radiation run.

the value obtained from fN&. Figure 12(b) shows the en-

ergy density (in scaling units) in loops greater than l vs
(l/R ) '/. It is very noticeable that there is not muchH
energy around in loops whose length is a few g—the long
strings lose their energy primarily into smaller loops.
The explanation for this was given in Sec. IV.

The matter-era loop-density parameter A, is given
directly from the values of y and f dx fN, (x) quoted
above, and Eq. (3.18) as approximately 2.1.

In our previous paper on string simulations we worked
in terms of radius r rather than rest energy (m) of the
loops. For comparison with our original results, we use
f3=m/(pr) to convert between the two. In Sec. VI we
find P= 11 on average. Originally we defined a parameter
v giving the diA'erential number density in loops of radius
r this 'is related to A, „and Ig by v=X, /(213) =0.1, 103 /2

~ . 23times higher than our first calculations.
In Sec. IV we presented a statistical model for fN, (x).

[Eq. (4.6)]. We check this model in Fig. 13 where ln( fN, )

is graphed against e/g. In the radiation era it is well
fitted by the predicted form, as shown with the dotted
line. In the matter era the statistics are poorer, and as we
discussed, reconnection is expected to alter the form
somewhat [recall that the reconnection term in (4.7) is
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different scale factors in the long radiation run (conformal times
25, 35, and 45 go with dashed, dotted-dashed, and solid, respec-
tively). (b) shows the energy density (in units of pR~ ) in loops
of length greater than l vs (l/RH )

' . Note the small contribu-
tion of loops greater than (=0.07RH[(I/RH) ' '=3.8]. The
dashed line represents nonintersecting loops only.
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FIG. 13. The natural log of the nonintersecting loop produc-
tion function (solid line) is plotted against I/g, and compared
with a fit to the form [Eq. (4.6)] given by our statistical model
(dashed line). (a) is for the radiation era, and (b) is for the
matter era.
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constant for small I]. For simplicity we have nevertheless
fitted the result to the simple form (4.6). The fit in the ra-
diation run is ln(fN, ) = —1.3—2.6x —

—,
' ln(x) and in the

matter run is ln( fNi ) = —2.0—2. 5x —
—,
' ln(x), so the

matter-era function is smaller. Of course the predicted
form only applies for Bx ))1—in fact it fits well down to
Bx =1. Below that point, the results of York suggest
fN, should turn fiat.

In Fig. 14 we compare the matter and radiation non-
self-intersecting loop production functions directly.
Their similarity in form is evident but the matter fN, is
definitely smaller. Rescaling the matter fN, by a factor
1.55, the two functions look very similar as is shown in
Fig. 14(b). The factor 1.55 can be accounted for almost
entirely by the fact that the overall chopping e%ciency is
down by a factor c /c„=1/1.45 in the matter era. This
should affect the overall rate of producing nonintersect-
ing loops, and thus the overall scale offNi.

As we mentioned above, we also did a much higher
resolution run in a smaller box to check for small-scale
cutoff effects, mainly due to our crossing detection
method. In Fig. 15 we compare the non-self-intersecting
loop production function fNi for this run (the average

d3p e P p +m
p p2+~2

U(m)=
d3 e

—P+p +m

I(13m—), (5.1)

where P is the inverse effective temperature of the net-
work. Unfortunately this cannot be deduced directly
from fN, because 8 =(P b)g, —as we discussed in Sec.
IV. However, if we fit (5.1) to the measured velocity dis-
tribution of loops in our simulations [Figs. 16(a) and
16(b)] we find a reasonable fit for P(=8 in the radiation
era and 10 in the matter era. These values are indeed

over the entire course of the run) with that for our long
radiation run calculated over a similar period. The main
effect is obviously an enhancement on small scales, but as
the integral of fN, shows, apart from this finite correc-
tion, the functions are very similar in shape (see Note
added in proof).

Finally the "thermal" model we have used to describe
the energy production function can also be used to pre-
dict the form of the velocity distribution expected for
loops being chopped off the network. This is given by a
relativistic Boltzmann distribution
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FIG. 14. Comparison of the rnatter (dashed) and radiation
era (solid) non-self-intersecting loop production functions. Both
are plotted as a function of I/g, and represent the average over
the latter part of each simulation, when they appear to be scal-

ing (the matter function only approximately so). (a) compares
them directly, and in (b) the matter function is multiplied by
1.55, the ratio of the chopping efficiencies. After this rescaling,
the functions are very similar.
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FIG. 15. The non-self-intersecting loop production function
for the high resolution test run (solid) averaged over the entire
length of the run (scale factor 16 to 30) compared with the
radiation-era function (dashed) over the same eriod. (a) corn-
pares the functions directly, and (b) compares QN, (x)dx vs x.
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VI. MEASURES

The observable effects of cosmic strings depend in large
part on distribution of nonintersecting loops which come
off the network of longer strings. We will want to discuss
such things as average sizes and velocities of the loops,
but there are many different ways to take averages. In
this section we discuss different ways one can put a mea-
sure on the distribution of loops, so we can then make
physically appropriate choices.

Equation (3.16) defined the growth of energy density in
nonintersecting loops pN, (1) as a function of time in terms
of the nonintersecting energy production function,
fN, (l/g). As our attention shifts from energetics to actu-
al numbers of loops it is useful to study

a 'pNt(i)
N({)—=

pl
(6.1)

0
0

I I I I I I I I I I I I

1 2 a l
B,N(l)= fN, (l/j) . (6.2)

Dividing by pl converts an energy density to a number
density, and multiplying by a turns a number density
into an actual number per comoving volume. Using Eq.
(3.18) one gets

FIG. 16. The velocity distribution for loops chopped off the
scaling network. Center-of-mass velocity is plotted against l/g.
(a) shows the radiation run and (b) the matter run. The curve
shown on each figure is a fit using the "thermal" model ex-
plained in Sec. V.

greater than 8. For large loops, the predicted velocity
scales as m ', as one would deduce naively by arguing
that large loops have N=m/g segments and the seg-
ments have uncorrelated velocities.

We now note one way in which the distribution of
nonintersecting loops is nonthermal. A standard charac-
terization of the wiggliness of a loop is P„, which is just
the ratio of l to the rms fluctuation in position of the loop
(the. "radius, " r). We use the subscript r here to distin-
guish from the inverse temperature. Our "random walk"
measure developed in this section would predict that P„
should increase linearly with r. What we find, however,
is p„= ll independent of r. It appears that the require-
ment that loops are nonintersecting selects only the rela-
tively simple" ones. This result also indicates that the
velocity distribution cannot be explained by the simple
"uncorrelated segments" argument. The fact that p„ is
independent of r means that the larger loops cannot be
thought of as having more uncorrelated segments than
smaller ones.

We conclude this section with some pictures from our
simulations. In Fig. 17 we show boxes of string with size
(3g') taken from our radiation run at different times.
The boxes are rescaled to be the same size, so the predic-

In this discussion we are labeling each loop with two la-
bels, its length l, and the time t at which it is produced.
This labeling can be made more explicit by considering
N(l, t, ), where N(l. , t)de dt gives the number of loops in
volume a with I between l and l +dl and t between t and
t +dt. Then N(l, t) is simply t),N(l) as given above. Us-
ing y—:RH /g as in Sec. III we get

N(l t)=
4 fN,l RH4 RH

(6.3)

ylfNIa,' 4 RH
N(l, t)=

R02 RH2 l
(6.4)

One can change to any new set of variables y (l, t) and
z(l, t) as long as the transformation is nonsingular. One
then gets

N (y, z) =N( l(y, z), t (y, z) )
Bl Bt Bt Bl

By Bz By Bz
(6.5)

For example, using x:—l/g gives

ao 4 Nt(x)
N(x, RH ) =

R0 RH xRH

and

(6.6)

It will be useful to focus on the loops produced in the
matter era, during which a /R =const=a0/R0 and one
gets
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N(x, I)= 2Ro l RH
(6.7)

As an illustration of the avera ie averaging procedure 1 tet us

engt . This average is given by
or oops of a particular

f xN(x, I)dx

f N(x, l)dx
(6.8)

whereas the avaverage value of x for lo
(o 1 ofR

x ~)—=
xN(x, R)dx

f N(x, R)dx

f fNt(x)dx

f x 'fN, (x)dx
=0.2 . (6.10)

which reduces to

f xfNt(x)dx

f,"yNI(x)d
=0.4, (6.9)

For both avera es
m ' g

Thi f
H hr, e two averages are d

y scal-
es are diA'erent because a

FICi. 17.Cx. 17. A set of (3g)' boxes of
length at the be inn'

diat o -e a sim l
is . or (a), 3.1 for

u ations. The h sip y cal Hubble le th (ig units of the H bbl
r e, and 7.6 for (Q.

u e
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given loop is being averaged in with a different set of oth-
er loops in each case. The value of x(1) depends more on
the behavior of fN, (x) for larger values of x than does
x(RH). Although at a given time there are fewer loops
produced at large x, the loops produced at fixed length
with larger x must be produced at earlier times, when the
overall densities are higher. Thus larger x loops are more
important at fixed lengths than at fixed times.

We conclude this section by calculating averages of
two other interesting quantities. The parameter p,
(defined at the end of Sec. IV) is the rest mass of the loop
divided by its radius r, defined as the rms fluctuation in
the position of the string. It is a measure of how wiggly
the loop is. We find

f P(x)fN, (x)dx
p(l) = (6.1 1)

NI X dX
= 11.4

and

X X Ni X dX
P(R~) —= (6.12)fNi(x)dx

0

Similarly we calculate the average speed of the loop when
it was created:

=10.7 .

u(x)fNi(x)dx
u(l) =

X dX
(6.13)

and

f x "(x)f»(x)dx
u(RH)=- f x 'fNi(x)dx

0

=0.75 . (6.14)

VII. ACCRETION OF MATTER ONTO STRINGS

Cosmic strings can initiate gravitational collapse in an
initially homogeneous distribution of matter. It has been
suggested that a scaling distribution of a cosmic string
might provide sufhcient perturbation on an otherwise
homogeneous distribution of matter to account for all the
structure we observe in the Universe today. ' ' Prelim-
inary calculations were encouraging, but hitherto the
lack of a solid understanding of the scaling network has
made precise calculations dimcult. While there are still

Note that there do not seem to be significant differences
between the two types of averages in these cases. A sim-
ple explanation is that most loops with 1=/ are very
similar up to an overall scale. They just are the simplest
possible nonintersecting loops there can be. It seems
reasonable however, to expect the "effective g" for a
given small loop to vary, as a manifestation of Auctua-
tions around the average g for the network. Quantities
such as p and u would not depend on an overall scale, but
only on the wiggliness of the loop, which determines the
relative size of the radius, and how coherently the veloci-
ties of individual bits of string add up into net motion of
the loop. Thus our two averages, one centered on loops
with 1=0.4$ and the other on loops with l =0.2$ give
similar results.

uncertainties, we feel they are now small enough to justi-
fy the detailed calculation of large-scale structure based
on our string simulations.

%'e shall not attempt this here. Instead we shall make
a few preliminary estimates to indicate how suitable the
real scaling network might be for the formation of ob-
served large-scale structure.

Much initial work on this subject was based on the
one-loop —one-object hypothesis. ' One assumes that
individual nonintersecting loops seed the collapse of ob-
jects which are still distinct today. Larger loops form
larger objects —there would be complete correspondence
between loops of string and observed objects. There are
several ways in which the one loop-one object hypothesis
may fall short, but as we shall see, it is still a useful start-
ing point for the discussion.

Let us first consider very-large-scale structure, formed
by loops produced after the matter-radiation transition.
It is well established that the mass M accreted on a loop
with length I (rest mass divided by p) laid down in the
matter era is given by

M =apl(1+z), (7.1)

where z is the red-shift at which the loop is laid down,
and o. is a factor which is generally of order unity. For
example, in the spherical collapse model around a sta-
tionary point mass, if M is defined as the mass which has
reached its final virial radius, a =0.38. If M is defined as
the mass "turned around" then a=0. 57 (Ref. 39). This
formula is true in the case where the Universe is Aat and
the dark matter is cold. For hot-dark matter it is also
true for masses M))MJ =1.5X10' h~~ Mo, the neutri-
no Jeans mass. Equation (7.1) can be written as

1/3
RH

Ro
(7.2)

W=&@Z0=~@,h5-0 10 MO,
—1 17 (7.3)

and Ro is the current Hubble length (Ro=-h50' X6000
Mpc), and p6 (typically —1 for grand unified strings)
measures p in units of 10 G '=2. 1X10 Mope '. In
what follows we shall set p6=o: =h ~0

=0= 1.
We can use Eq. (7.2) and the techniques of Sec. VI to

label loops according to the mass they accrete, and to ar-
rive at

Ã(M, x) = 3ao 1
3 3

7m ~ NIx f (x). (7.4)

where

9'„:—f x "f(x)dx .
0

(7.7)

Furthermore, one can construct

X(M)= f X(M, x)dx . (7.S)
0

Dividing out by ao (ao is the scale factor today) given the
number density of objects of mass M today:

3

n (M)= 1 1
2)'m &z (7.6)
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The dependence of n (M) on V2 means that it depends
more on the behavior of the energy production function
at larger values of x. For example, one can calculate
x(M) in the same manner as x(l) and X(RH ) were calcu-
lated in Sec. VI:

x(M) = =0.9=2x(l) =4x(RH ) . (7.8)

Even though at any given time most loops are produced
with I & g (that is, x & 1), as far as M is concerned these
smaller loops are grouped together with loops that were
produced earlier and at larger x. Because the overall
density of string is higher at earlier times the large x
loops dominate for any fixed M. This behavior is good
for string simulations, since it will always be the low-x re-
gime which is most susceptible to finite resolution eff'ects.
This emphasis on larger x is most relevant on large
scales, where the translation from perturbations to ob-
servable structure is least ambiguous anyway, and means
that quite precise calculations of the predicted structure
should be possible.

Now we turn to smaller scales. A simple estimate of
the virialized mass accreted on loops which appeared in
the radiation era with cold-dark matter is

M, n ) (M, )=p„,= G 'RH ~,= 3
c tot (7.15)

sponding to galaxies. The mean separation of bright
galaxies is d =10h ~~' Mpc. If we assume the correspond-
ing loops were formed in the radiation era, using (3.19),
these have lengths I =0.1RH =g where g is the scale on
the network at equal matter and radiation density. This
contradicts our calculation x(1)=0.4, and implies that
these loops were produced in the transition era. In fact
according to our new results, both galaxy- and cluster-
forming loops were produced after equal density.

We plot d&M in Fig. 18. The plot corresponds to
p6=h50=o, =1, and the solid line corresponds to cold-
dark matter. We have simply extrapolated the large M
and small M results to where they meet. The kink in the
curve corresponds to the radiation-matter transition, and
we expect that corrections to our crude analysis will
smooth it out.

From the figure, the mean separation of objects with a
mass of 10' M& (the typical mass of richness class 1 clus-
ters) is around 100 Mpc, just what is observed for these
clusters. On smaller scales the story gets more
complicated —the loops have caused all the matter in the
Universe to go nonlinear. One can estimate this critical
scale M, by solving

M =apl(1+z, ), (7.9)

1 ~rn(M)= g3M M
(1+z, )'"

0
eq (7.10)

The mean separation of objects of mass greater than M is
—1/3

d&M= I n( M) dM
M

(7.11)

Using n (M) from Eq. (7.6) for loops laid down in the
matter era, Eq. (7.11) gives

where z, =6000 is the redshift at equal matter and radia-
tion density. In the spherical collapse model, o.=0.95.

For these loops n (M) can be calculated from (3.19) by
a simple change of variables [we ignore the small extra
numerical factors obtained by evolving (3.19) through the
transition era precisely]. The result, evaluated for today
1S

which gives

M, =10' Mo (7.16)

I I
I

I I I I

I

I I I I

I

I I I I

I

I I I I

I
I I I I

One would expect that for masses below M, the
correspondence between loops and individual objects
would be lost. Figure 18 may also indicate that there
may be too many objects around with masses of order
10"Mo.

If the dark rnatter is hot then the accretion is
suppressed on scales M (MJ = 1.5 X 10' h, ~ Mo, the

d o~ =Ro ~ ()' &z) '" (7.12)

M
d&M +0

1/2

( —'A )
' (1+z )3 l' Zeq (7.13)

The smallest loops around at teq accrete masses of about

and plugging in Eq. (7.10) for loops put down in the radi-
ation era gives

2

Q
O 1

0—
» I I I I I I I I I I I I I I I I I

12 13 14 15
ag]o (M/Mo)

I I I I I I I I

Mmin Mo (7.14)

Of course we have ignored the important transition
era. It would be straightforward to use our numerical
solution for y through the transition, the form of the en-
ergy production function, and the exact growth formula
for seeds laid down during the transition, to solve for
d &M for all M. In fact this is necessary for scales corre-

FIG. 18. The mean separation d M of objects of mass greater
than M in the one-loop —one-object picture. The solid line is the
cold-dark-matter calculation, and the dashed line shows the
correction on small scales if the dark matter is hot (a single mas-
sive neutrino making up 0= 1). d is defined as the inverse cube
root of the number density. The cold-dark-matter curve cannot
be taken literally for small M because merging is important, as
explained in the text.



EVOLUTION OF COSMIC STRING NET%'ORKS 995

neutrino Jeans mass at equal density. Instead of (7.1) we
have found the virialized mass M:

a(pl) (1+Z, )M=
MI

(7.17)

where +=0.47 in the spherical collapse model. In this
case, accretion only starts on a scale M when the jeans
mass has fallen to that scale. The final distribution of
low-mass objects is now determined by the loop density
in the matter era. We find

' 1/9

g
—i /3 (1+Z )-'".)M 0 m eq

cy
—i /3x —i

d&M
(7.19)

so

2y4/3cyl/3 U gv
1

(7.20)

where

oo

U =— j U(x)xf N, (x)dx =0.7.
0

(7.21)

The upshot is that individual pencils are not a whole lot
longer than their mean separation. One should only get
serious mixing of the pencils of a given mass when their
corresponding mass density approaches the total mass
density of the Universe.

It is also possible that these pencils fragment to form
several objects rather than one. This would only alter
our calculations by an overall factor —the scaling with M
would be unaffected.

Another very important factor which we have also
neglected is the wakes of the long string. Because the

(7.18)

The result is plotted in the dashed line in Fig. 18. Now
objects with the mean separation of galaxies have much
lower masses than with cold-dark matter. There is far
less merging in the hot-dark matter model, and the one-
loop —one-object picture should be more reasonable.

Because of the initial relativistic velocities of the loops,
the matter they initially accrete forms in a pencil-like
wake behind them. ' We have ignored this so far. It is
interesting to know the length of these pencils compared
to their mean separation. If this number is large, one ex-
pects a large amount of interference between different
pencils, which would reduce the time over which the
one-loop —one-object correspondence is maintained.
When a nonintersecting loop breaks off the network it
has some speed U,. which redshifts with time. The loops
produced in the radiation era have had ample opportuni-
ty to slow down before gravitational collapse sets in.
Loops produced in the matter era when the Hubble
length is R, travel a distance d, =2R,.U; (in the Newtoni-
an approximation) before stopping. To gauge the effect
of this motion on the mass distribution we compare the
comoving distance (d, ) the loop travel with the mean
separation of objects with mass & M:

scaling network has more long string inside a Hubble
volume than was originally expected, wakes of long string
will play a more important part in perturbing the sur-
rounding matter. A very crude estimate of the magni-
tude of the perturbations induced by the long strings is
obtained by multiplying the fractional density perturba-
tion provided by the long strings in the radiation era,
pL/p„d=y (Sm/3)Gp=1. 6X10, by the linear growth
factor for perturbations produced in the radiation era,
—,'(1+Z,q). We find 5p/p = 10 today, on a length scale of
g=RH /10 at the matter-radiation transition. This corre-
sponds to a comoving scale of about 5h50 Mpc today.
The wakes produced by long strings could well be a
significant feature in the distribution of galaxies today.
We shall leave this issue for later investigation.

We conclude that at first glance the prospects for
cosmic strings to play an important role in structure for-
mation remain very good, despite changes in our under-
standing of the scaling network. A more thorough
analysis, using the string from our simulation as sources
for gravitational instability is underway.

VIII. OTHER OBSERVABLE IMPLICATIONS

One of the most promising aspects of the cosmic-string
theory is its unique set of observable predictions. We
have already briefly discussed the consequences for
large-scale structure, but in this section we will focus on
some of the even more specific signatures of cosmic
strings —the gravity-wave background, lensing, and
microwave-background anisotropies.

The microwave-background anisotropies produced by
strings are potentially their clearest signature. ' Steb-
bins has performed detailed calculations of the distor-
tions produced by the direct effects of the strings them-
selves, and with Bouchet and Bennett has calculated the
expected level of anisotropy from realistic string simula-
tions. We have little to add to this here, but note that
our matter scaling density is only a factor of 2 above the
density they used, and this difference is small compared
to the uncertainties in the calculation —in particular the
standard redshift of last scattering may be significantly
altered in the presence of strings. " The limits these au-
thors obtain from detailed comparison with observations
is Gp(5X10, so as yet the constraint is quite weak.
The precise nature of the pattern, the magnitude of the
Sachs-Wolfe, and other indirect effects on the microwave
background are all in principle calculable from our simu-
lation results. The expected constraints from these effects
are probably similar however.

We have already discussed the importance of loop de-
cay into gravity waves —this sets the scale of the smallest
typical loops around at any moment in the Universe. The
gravity-wave background in observable periods today is a
result of many loops, so it is expected to be described by
Gaussian statistics with a characteristic power spectrum.
The observationally relevant gravity waves were pro-
duced in the radiation era, and for these the power spec-
trum has a very simple form, which follows directly from
the scaling solution —there is equal power in each loga-
rithmic frequency interval. The amplitude is set by the
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parameter Gp, and the bounds provided by the mil-
lisecond pulsar timing observations constrain Gp
strongly as we shall see (Ref. 49).

A string loop radiates energy into gravity waves at a
rate E= —I Gp with I a constant which depends on the
precise loop trajectory but for typical trajectories I =50
(Refs. 22 and 27). The frequencies of the waves emitted
are integer multiples N of the loop's inverse period 2p/E,
where E is its energy. Most of the energy is emitted in
waves whose period is less than —,

' or so of the loop's
period. Waves observed today with a period of T=1 yr
were therefore emitted at a time t, given by 1 yr
Z, '

( t, /r, )'/ = I Gpt, /(2N) obtained by red-shifting
the wave back and equating its period to that of the
waves emitted by the smallest typical loops at that time.
Using Z, =10 and t, =10' s we find t, =10 N s, well
before matter-radiation equality. So we need to focus on
the gravity waves emitted during the radiation-era scal-
ing solution.

The spectrum of gravity waves is easy to calculate in
the scaling solution. Using the number density in loops
(3.19) we find that the total number density of loops in
the scaling solution is n=A, „/[3&2(1G„) / t ]. Each
loop radiates at a rate I Gp . The fact that the whole
loop distribution is scaling tells us the spectrum must be
scaling too: the energy density emitted in frequencies co,
to co, +d co, in the time interval t, to t, +dt, is
nI Gp dt, g(co, t, )de, /co, where g (x) is a diinensionless
function whose integral fdx g(x)/x must be unity. At
some time t later this energy density is redshifted by
( t, /t) . Now, just as in our discussion of measures in Sec.
VI, we change variables to the current frequency
co=co, (t, /t)'/ (assuming t is still in the radiation era)
and integrate to find the energy density in waves from co

to co+den at some much later time:

3v/2(yG )i/2 I r3 i2
g(co(tt, )' ) —. (8.1)

Changing variables to x =ca(tt, )', integrating, and di-
viding by the density in radiation p„d=3/(32m. Gt ) we
find

p( cc) )dc' =

COP(CO)

Prad

( G )1/2
=2.2X 10 A„lo

Iso
(8.2)

where A, , = 10k,„Ip Gp = 10 Gp6 and I =50I so. This
derivation makes it clear that the co ' dependence is a
consequence of scaling. Because the waves of interest
were emitted well before t, it is completely unnecessary
to discuss the precise frequency distribution emitted by
each loop. Present tentative limits from millisecond pul-
sar timing [D. Steinbring and J. Taylor (private commun-
ication)] indicate that (8.2) is constrained to be less than
0.18 for frequencies of 0.68 yr ', 0.006 for frequencies of
0.25 yr ', and 0.018 for frequencies of 0.16 yr '. (We
take the number of light neutrinos N =3.)

At first sight, with our new parameters the cosmic-
string scenario with Gp=10 is clearly ruled out. How-

ever this conclusion is not yet fully justified. There are
several small effects that could decrease (8.2) by a few:
the result is dominated by the smallest, longest surviving
loops, if loops split up after they have lost a fraction of
their energy this could easily decrease (8.2) by a factor of
2 or so, and there could be additional energy-loss mecha-
nisms operating —annihilation of regions of the string
near cusps, for example. Note that we have already in-
cluded the loss of energy due to the redshifting of loops'
velocities by defining y„using the rest mass of loops.

The greatest uncertainty in the limit comes from the
accuracy of our simulations —the value for A,„ from our
simulations is sensitive to the small-scale resolution of the
simulations and is probably too high (see Sec. V). How-
ever there really is very little room to maneuver, and a
modest improvement in the limits could convincingly
rule out Gp) 10, which is the minimum required for
the simplest gravitational accretion cosmic-string
scenario (see Sec. VII).

The gravity-wave background from strings leads to
another limit on Gp, from nucleosynthesis. " For the
standard nucleosynthesis scenario to work, the total den-
sity in gravity waves is constrained to be less than 18% of
the total density at that time. A minor complication is
that as the temperature falls through low-mass particle
thresholds, the photons are reheated while the gravity
waves are not. This effectively dilutes the density in grav-
ity waves, by a factor of =2 if we only include the known
quarks, leptons, and gauge particles (see, e.g., Ref. 11).
Integrating p(co) in (8.2) from frequencies emitted at the
time when strings started moving freely ~= t zUT down to
those emitted at the time of nucleosynthesis co=t„„,' and
using ln(t„„,/toUT ) =60 we find that the density in gravi-
ty waves at nucleosynthesis is given by

( G )
i /2

Igw 06~ I6
r10

Prad 'so
(8.3)

We see that the string scenario with our new parameters
Gp=10 is again past the edge of the nucleosynthesis
limit. The uncertainties, which all go in the direction of
weakening the bound, could produce the factor of 3 re-
quired to make the theory acceptable. Unfortunately this
constraint is not likely to become any tighter.

The second direct observational test is gravitational
lensing by strings. ' Recently Cowie and Hu have report-
ed a candidate event for lensing by a string loop —four
double galaxies with angular separations of approximate-
ly 2.5 arcseconds in a region approximately 40
arcseconds square. Our numerical results enable us to
ask whether such events should occur with a reasonable
probability.

The most numerous loops around today are those
about to disappear into gravity waves, of length
I, =I Gpto=200 kpc. Such loops at a redshift z would
have an angular circumference of =5z ' arcseconds.
From our matter-era loop-production function, we calcu-
late that they were produced at a red-shift of =200, in
the matter scaling regime. Thus the number density is
given to a good approximation by (3.20).

Strings produce a double image with separation '
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r
5P = 8n Gp sinOR,

r
(8.4)

where d is the distance from observer to string, and r the
distance from observer to object. R is a relativistic factor
equal to (1—v )' /(1 —n v) where n is the unit vector
along the line of sight and v the string velocity. Ex-
pressed in angular units, the typical lensing angle is
6 =4m Gp =2.6( Gp )6 arcseconds. A string loop of length
l lenses everything behind it within an angle 5P. Thus
the fraction of the whole sky which is lensed by string as
we go out a distance r is given by

F=4~Gp ln(1/8~Gp),v'2

=2X10 Z A, 2Gp6, (8.6)

~here Z is the redshift depth of the sample, and for Z & 1

we use r =ZRH.
Note that since n(l)

ccrc

in the matter era, loops in
each logarithmic interval of l contribute equally to F.
Taking Gp =10, the number of loops with length
greater than l contributing to (8.6) is similarly calculated
tobe =2. 10 Z (l, /l)A,

Long strings would lens an additional fraction

1 Pr. ~, , 1F= - 4mGp — 4nr'2dr' —,
4~ 4 V'2p o r'

2 '2
7m r=4~6p v'Z

]0 4Z2y2 Gp (8.7)

a slightly smaller fraction of the sky than that lensed by
loops. For a sample extending out to Z =0.5, the spatial
length in long string would be approximately
Z y g/&2 =6g, and the angular scale subtended by a
segment g would be approximately I/(y Z)=30'. So
the long strings would appear quite straight.

Thus out to a redshift of 0.5 almost 10 of the sky is
lensed. There are approximately 5000 galaxies per square
degree with R magnitudes greater than 22.5 (which
Cowie and Hu estimate to be a reasonable requirement
for galaxies to be recognizable as twinned). We therefore
expect one lensed galaxy per 2 square degrees on the sky.
A typical plate covers approximately 10 square de-

F= 8rrGp —f dr'4mr'
4~ 4 o

RH /y
X f dl n(l)

f dd
I 3d r d

o v'2d r' r

(8.5)

where we integrate out in r' and average the loop distri-
bution over d. The loop distribution is cut off at
l =(=RH/y . The factor of v'2 arises in translating
loop energy into spatia1 1ength and the factor of m/4 in
averaging over sinO. We ignore the relativistic factor,
which is of order unity. The result is

grees, so several hundred are needed to observe a single
lensed galaxy.

What would the distribution of lensed galaxies look
like? 3 priori a lensed galaxy is equally likely to be asso-
ciated with loops in each logarithmic interval of the
range l, &l &RH/y, a range of 5000 in length. The small
loops, however, wi11 typically lens a single object —using
the fact that the typical configuration is where the loop's
redshift is half of the object's, in a survey of depth
Z =0.5 a loop of length l lenses on average 0.02l/l,
galaxies. Thus most galaxy pairs lensed by loops in the
interval I, &l & 100l, would be isolated. However most
lensed galaxies would obviously come in groups lensed by
the same string. If galaxies were randomly distributed
then one would have to go an angular distance of approx-
imately 1000 arcseconds along the string to see the next
galaxy pair (given by multiplying 2.5 arcsecands by 8 and
requiring that this solid angle contain a galaxy). There is
significant galaxy clustering at small separations, but for
deep redshifts this is quite small (being washed out by
random galaxies along the line of sight). Cowie and Hu's
event seems rather fortuitous from this point of view—
Typically the lensed galaxies would be far more widely
separated. So the configuration they find is rather unex-
pected, but a more detailed analysis is required to put a
precise figure on this.

Cowie and Hu have seen a single event involving four
"lensed" galaxies in "several hundred" plates, which is
also on the fortunate side, since one expects one per 200
plates from the above, but not unreasonably so. As they
note, these can be explained by a string loop at Z =0.07
with Gp=10 . Cowie and Hu, and Bennett and Koo,
are undertaking a deeper redshift survey in the same ze-
gion to look for further double images along the "lines"
between their lensed galaxies. It remains to be seen
whether further searches will reveal more events.

IX. CONCLUSION

In the course of this paper we hope to have convinced
the reader that the evolution of a cosmic-string network
is both an interesting and solvable problem in nonequili-
brium statistical mechanics.

It is also important —the existence (or proven absence)
of cosmic strings would have far-reaching implications
for our understanding of grand unification physics, and
the nature of the Universe at very early times. And
cosmic strings could also provide a firm foundation for
our understanding of large-scale structure in the
Universe.

Our model for the scaling density, and our statistical
discussion of the form of the loop production function,
provide the necessary tools with which to follow the
string network through the transition from radiation to
matter domination. This will be essential for any precise
calculation of the final effects of the string network. The
heuristic picture of the string network as a hot radiating
body provides a good description of the network on all
length scales.

We have briefly discussed the consequences of our new
results for large-scale structure, and found that as far as
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predicting the observed mass spectrum of objects, the
cosmic-string scenario with Gp=10 is still in good
shape. The cold-dark-matter scenario is now complicat-
ed, however, by merging of low-mass objects. The hot-
dark-matter scenario seems to fit the mass function from
galaxies up to clusters quite well in the one-loop —one-
object picture, The long strings are likely to be quite im-
portant, however, and we defer a discussion of their
effects to future work.

The correlation properties of string-induced perturba-
tions are now within reach of precise calculation. While
our simulations confirm the existence and approximate
magnitude of the r loop-loop correlations originally
found by one of us, ' there is clearly more work ahead in
translating them into a precise observational statement.
We are optimistic that the result will soon be available.

We have discussed in some detail the other observa-
tional predictions and constraints on the cosmic-string
theory. In particular we discussed the microwave back-
ground, the millisecond pulsar timing constraint, the nu-
cleosynthesis constraint, and gravitational lensing. The
Gp=10 scenario is very close to being convincingly
ruled out by pulsar timing, and is only marginally
consistent with the nucleosynthesis constraint. The
millisecond pulsar constraint is the most likely to rule out
(or confirm) the theory in the near future. As we have
emphasized, precise calculations of the string parameters
are crucial in this.

Note added in proof. Since this paper was submitted
we have performed exact string simulations for strings in
Aat spacetime to check the scaling model we present here.
The model works very well, but the value of the chopping
efficiency c is higher (by less than a factor of 2) than in
the simulations reported here. From this, and consider-
ing the effect of extrapolating the form of our loop pro-
duction function to smaller scales (below our resolution),
we estimate that our value for c could be too low by as
Inuch as a factor of 2. If we make the simplistic assump-
tion that all moments of the energy production functions
f(x) and fNi(x) have the same uncertainties, then we
find that y, could be too high by a factor of 2, A,, too
high by a factor of 2 =3, y could be too high by 2'
and A, by a factor 2' . In fact higher moments are less
dependent on small x and so should have lower uncer-
tainties. We caution also that there could be systematic
uncertainties on the scale of the resolution which would
alter these estimates.
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FIG. 19. The numerical string world sheet. At a given value
of the conformal time (g) the positions in space x(o.l,, ) of a
discrete set of points on the string labeled by parameter values
o.z, do. apart, are stored. These points are labeled with crosses
in the figure. The velocities x and tangent vectors x' are stored
at the points half-way between, labeled with circles. To update
the left mover at k one first calculates the left mover at AL and
BL and then interpolates on a unit sphere to find the left mover
at O'. Similarly the right movers at Az and Bz are calculated
and then interpolated between. Thus one recovers the velocity
and tangent vector at k'.

APPENDIX: NUMERICAL METHODS

In this section we give some details of the methods we
have used to form and evolve the strings and detect their
crossings. We have run our program on a VAX 8600. A
typical 26 run takes around 50 hours of CPU time.

We choose initial conditions by throwing down phases
for the string-forming field at random on a cubic lattice
and checking edges for the presence of strings. These in-
itial conditions are slightly artificial —the string is static
and has 90 degree kinks on it. We believe this is not
important —the string starts moving at relativistic veloci-
ties very soon, and all indications are that within a time
of the order of a few correlation lengths the network ap-
proaches the scaling solution.

To evolve the strings, as we emphasized in See. II, we
use our new nonsingular variables with the gauge fixed
throughout. We discretize the string in o. but the posi-
tions and velocities of the points on the string are con-
tinuous. We actually evolve the "left-movers" I, "right-
movers" r, and e of Eq. (2.14). Our large runs are done in
cubes of 26 initial correlation lengths on a side with 10
points on the string per initial correlation length. We use
periodic boundary conditions throughout.

The program actually stores the positions x(o k) of the
points O.

k marked with crosses in Fig. 19 and the momen-
ta u= ex at the points half-way between, marked with cir-
cles. x' is calculated from the difference between the po-
sitions at neighboring crossed points divided by do. ,
which is fixed (typically at —„of an initial correlation
length) from the beginning. Thus left and right movers,
and e =+u +x' are defined at the circled points.

In Bat spacetime the evolution is trivial. If e is uniform
along the string initially, it remains so. The left mover at
k' —1 simply equals the left mover at k, and the right
mover at k'+ 1 equals the right mover at k.

In the expanding Universe case this is no longer quite
true. Nevertheless, the corrections are small, and we
wish to remain close to the exact Aat-space solution.
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=1+d 1+— 1"+ 1 — 1 '+
2 g 2 E

= l(o, rI ) (Al)

using 1=1'/e to reexpress all g derivatives as o. deriva-
tives. Of course this is just a reAection of the Aat-space
solution.

Including all terms up to dg from the full equation for
I we find

First, e is no longer uniform. To respect the Courant
condition dg (@der required for stability (essentially the
information used should be sufficient to fill the backward
light cone of any new point) we must choose our time
step according to the minimum value of e on the entire
network. This does not include small loops, which are
evolved separately as we will explain. One could choose
di6'erent time steps for di8'erent loops, but we have not
found this necessary. We find that the minimum value of
e evolves approximately as a ', where a is the scale fac-
tor.

We proceed by first calculating the left mover at the
points Az and BL in Fig. 3. This is sensible because in
the Taylor expansion of l(o dg/e, r—I+drI), an infinite
series of terms in I', I",I'", . . . cancel; ignoring deriva-
tives of e- and h-dependent terms we have

l(cr —dg/e, g+dg)

=a(o, rI)= h(1 r+I r ) — hl r
d'g dn'
2 Q Q (A5)

up to order dr) . Here l„and r„are the new values of I
and r at cr, i.e., Ik and rk. .

Now from the updated 1, r, a,nd e along a loop we can
reconstruct x' and u=ex. However reconstructing the
position of the whole loop is a bit more complicated. In
particular the constraint Jdo. x'=0 required to close the
loop may be violated by numerical errors. We deal with
this by making sure that such errors are distributed even-
ly over the whole loop, so no "gaps" appear.

We use the "center of mass" of the loop
x, =(1/N)gx„which is evolved separately as each point
xk on a loop of length X is evolved. This is exactly the
center of mass if e is not uniform, but is always perfectly
well defined. Having updated x, we reconstruct the posi-
tions of points on the loop by

errors of order dg, no longer than those we have includ-
ed anyway.

We calculate rk similarly. To update e we note that
a=in(ae) obeys

ci = —hl. r
~a(cr, g+drI)

dn 2
=a(o. , g) —dq h1 r — [hl. r+h (I.r)]

2

l(~ —d~/e/q+ dr) )

=I+de[ —hr+h(1 r)I]
dn'+ — Bl +Cl'+Dr —2h 1+2h—

2 E' E'

B=—h +3h (I r) +h(1 r), (A2)

1 —+h(1+I r)
~2

D= —h —2h2l. r .

Now we notice that to this order we may remove the 1'
and r' terms by defining

(A3)

so that (A2) becomes

I ( o de/e, rI+ d rI) =—I +d g [ —h F+ h ( I 8)I ]

+ (BI+Dr) .
2

(A4)

How do we calculate (A3)? Recalling that in our
scheme 1 and r are unit vectors, we interpolate along a
great circle on the unit sphere between 1& and 1k+, a dis-
tance Cd' /2 (for C) 0) or between lk and I&, for
C&0. We finds'similarly. Now we have 1 at Az, we cal-
culate 1 at Bz similarly. We then interpolate between l~

L
and Is to find Ik.. Note that (A4) preserves the con-

L

straint 1 =1 up to terms involving dg, but not exactly.
We therefore rescale 1 at Az and BL to make its length
unity before interpolating on the sphere. This introduces

Xl —Xc

X =X
2 c

[(N —1)x)+(N —2)x2+ +x~, ],
(A6)

[(N —1)x2+(N —2)x3+ +x~],

and so on. Here xk=(xq+, —xk)/ds. These formulas,
being cyclically related, obviously treat all x& on the same
footing, and so errors in gx'k =0 are distributed evenly.

Loops whose energy is less than pRH are evolved sepa-
rately as follows. e is treated as uniform along the string,
and the left and right movers are evolved as if they were
in Aat spacetime, with the global time step instead of the
time step appropriate to the loop. The center of mass
and e are evolved using the analytic approximation ex-
plained in Sec. I for loops well inside the Hubble radius.
We do not believe that these two approximations can lead
to serious error —the first readjusts each loop once as it is
chopped o6'by a small amount and the second means that
the loop evolves slightly faster than it actually should.
Since the oscillatory motion is periodic anyway, this re-
sults in self-intersections occurring slightly earlier than
they should. There are no cumulatiue numerical errors
introduced in the internal oscillation of the loops with
this procedure (it is periodic to machine accuracy), which
is very important since small loops have to undergo many
internal oscillations over the course of the simulation,
and cumulative errors would lead to spurious self-
intersections. This is particularly important for loops
with small numbers of points where evolving anything
but the Aat-spacetime solution would quickly produce
nonperiodic motion.

Now we turn to the method for detecting and enacting
string interactions.



This part of the program is the most time consuming,
and it is very important to use a method which is
efficient. The most naive method, checking each string
segment with every other for crossing each time step ob-
viously scales as X where X is the total number of points
on the string (typically 250000 or so in our large simula-
tions) and is prohibitively slow. We use a method which
scales as X. The procedure is first to divide all of space
into small (comoving) boxes (typically —, of an initial
correlation length). Each box corresponds to an element
of a large array. Then we look for self-intersections of all
loops in turn. We do this by tracking along a loop, calcu-
lating which box we are in, and recording the label of the
present point in (the array element for) that box. We up-
date the boxes as we go, with the result that each box
contains the label for the last point on the string in it'or is
empty. If we come to a new box and find a point on the
current string in it, we have a candidate crossing event.
Now we track forward from the current point, and back-
ward on the detected point up to and including the first
point that leaves the box in both cases. We now have two
stretches of string which may intersect in the current
time step. Every pair of segments, one segment from
each stretch of string, is checked for crossing in detail.

The detailed crossing check works as follows. We use
the fact that in our chosen evolution method the velocity
of a segment is always perpendicular to the segment. We
assume that each segment has this velocity for the whole
of the foHowing time step, so the world sheet we assume
for the segment during the next time step is a rectangular
blade of length do and width V d g, where V is the veloc-
ity of the segment. Imagine going to the rest frame of
one segment by a Galilean transformation (i.e., simply
adding the negative of its velocity to the velocity of the
other segment). Now the problem of whether the two
segments intersect becomes simply whether the first
string segment (stationary in this frame) pierces the paral-
lelogram swept out by the other segment. This is a sim-
ple geometrical problem which may be solved exactly us-
ing two cross products. The details are explained in Fig.
20. One drawback with our method is that the world
sheet assumed, with rectangular blades swept out by each
segments, has "gaps" between neighboring segments so
that it is possible for us to miss intersections where the
rectangular blades do not intersect. We have checked for
the significance of this by increasing the number of points
along the string, which should have the effect of narrow-
ing the "gaps" for the same curvature along the string,
and as we shall discuss this did not have much effect.

If a pair of segments do intersect, then the values of x
at the ends of each new segment are determined but the
segments are not. We choose the magnitude of the veloc-
ity for each segment so that each segment carries off half
the total energy of the initial two segments. The direc-
tion of the velocity is chosen as follows. First, the center
of mass of the four points involved in the intersecting seg-
ments is found. Then for each of the two new segments,
the vector joining this point to the center of the segment
is constructed. Finally, this is projected onto the plane
through the center of each segment to make it perpendic-
ular to the segment. Since the velocities of the segments

z

E

FIG. 20. Detailed crossing detection for two segments on the
string. In the Galilean rest frame of segment FG, the other seg-
ment traces out a parallelogram ABCD (which is in the x-y
plane in the figure). Now the line obtained by continuing FG,
given by x'(t) = AI' + tFG, pierces the z =0 plane at the point E.
This is found by calculating w= AB R, AD and then solving
x(t) m =0 for t. The first test is that we must have 0& t & 1.
Then we must have 0 & ( AE A AD ).w & m ', so E lies between
the parallel lines through AD and BC, and finally
0&(AB A AE) m & w, so E lies between AB and CD. If all
three conditions are met, the segments intersect. .

before projection are away from each other, and projec-
tion changes each by at most 90', the velocities of the two
new segments are guaranteed to be away from each other,
so they will not intersect in the same time step. Our pro-
cedure is rather artificial, and undoubtedly could be im-
proved on, by solving for the motion of the intersecting
segments in Rat spacetime, for example. One must how-
ever avoid creating low-energy new segments, since these
would slow down the time step of the simulation.

Once a self-intersection is found, the new loop is bro-
ken off, the boxes it passes through (including the box
where the intersection was found) reinitialized (i.e.,
labeled as empty), and the tracking process continued.
This could in principle miss multiple self-intersections in
the same box (which are rather unlikely). All self-
intersections are found this way. We also impose the
condition that any loop have at least three points on it, a
fairly minimal requirement.

Then loops are checked for intersections with other
loops. One again tracks along each loop, leaving point la-
bels behind in the detection boxes. If one enters a new
box where a point from a different loop is located, then
one checks all pairs of segments on the two stretches of
string running through the box, just as above. The same
procedure is followed for defining the new segments.

Now the biggest problem with this method is that one
may miss (a) segments which cross over a face of two ad-
joining detection boxes or (b) loops smaller than the size
of the detection boxes. We remedy these problems by re-
peating the whole procedure outlined above not just once
but 3 times per time step, but choosing the lattice for the
detection boxes to be displaced by 0, —,', and —,

' of a detec-
tion box side in each of the x,y, z directions each of the 3
times. This makes our resolution for crossing detection
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(the maximal size of the largest loop which could escape
detection) one-third of a detection box side. This is cer-
tainly a cautious estimate for the breakup of small loops,
since these are moving and if a crossing is not detected in
one period it may be the next time around.

We found that repeating the detection 3 times did
indeed increase the number of detected crossings
significantly, but repeating it 6 times did not then pro-

duce a noticeable difference. We discuss a test run where
we used 50 instead of 10 points per initial correlation
length on the string, and used detection boxes of —,', in-
stead of —, of an initial correlation length. In addition we
repeated the checking process in offset boxes 6 times in-
stead of 3; thus providing an overall factor of 5 increase
in detection resolution.
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