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The possibility of inflationary models in which inflation is driven by a vector field rather than a
scalar field is discussed. The vector field A e is taken to be self-coupled through a "potential" V(g),
where g= A~A . If Vhas a fiat region, where ~gV'~ && V, then the Universe can undergo a period of
isotropic inflation in which the space is approximately de Sitter. Because the vector field's stress
tensor is not isotropic, the Universe will exit inflation into an anisotropic expansion. If the stable
minimum of V occurs at (=(0=0, then this anisotropy will damp away during the reheating period.
If this minimum occurs at a nonzero value of go, then the anisotropy can be small at late times if
collisionless particles, such as gravitons, are generated during reheating. In this case, the observed
limits on anisotropy of the cosmic microwave background require that (o&(10" GeV) . Finally,
even if V does not have the flat region needed for de Sitter inflation, it is possible to have anisotropic
inflation in which the Universe expands at different exponential rates in different directions. The
conditions under which this can occur are discussed, and the stability of the resulting solutions is
analyzed.

I. INTRODUCTION

Most versions of inflationary cosmology require a sca-
lar field (the "inflaton") whose dynamics governs the
duration and end of inflation. ' The parameters of this
scalar field must be rather finely tuned in order to allow
adequate inAation and an acceptable magnitude for densi-
ty perturbations. The need for this field is one of the less
satisfactory features of inflationary models. Consequent-
ly, it is of interest to explore variations of inAation in
which the role of the scalar field is played by some other
field. In this paper, models in which this role is played
by a vector field are investigated.

ds = dt +a (t)(dx—+dy )+b (t)dz (4)

The Einstein equations for this metric are

2 + +8',ab a
ab a2
e ~

2—+ = —8~p, ,a a

(5a)

(Sb)

T„=F„pF ~—
4 g„F13F

~—g„V+2 V' A „A

Let A, be the nonzero spatial component of A„. Because
the stress tensor need not be isotropic, the spacetime will
not be Robertson-Walker type. We may assume a Bian-
chi type-I metric for our purposes:

II. INFLATING SOLUTIONS WITH VECTOR FIELDS

A. Coupled Einstein-vector field equations

We assume that the vector field A" is described by a
Lagrangian of the form

a ab b—+ +—= —8'a ab b

and the conservation law (with p =py ) is

(Sc)

'F F" + V(g)—

where F„=A „—A„, /=A A, and Vis a "poten-
tial. " If, for example, V= —,'m g, then A" is a free, mas-
sive vector field. More generally, this is a self-coupled
(nongauge) field. For our purposes, V is an arbitrarily
given function, but it may be regarded as an effective in-
teraction arising from the coupling of A" to other matter
fields analogous to the effective potential for a scalar field.
This interaction might arise from a gauge field with spon-
taneously broken U(1) symmetry, much as the massive
vector field arises in the Abelian Higgs model.

The equation of motion which follows from Eq. (1) is

p+ 2 + p+ 2 px + pz 0a b ' a b

a b a " b

We may take Eqs. (5a) and (5b) to be the independent
Einstein equations determining a (t) and b(t), as Eq. (Sc)
follows from these equations and the conservation law.

We are interested in homogeneous solutions, so
A„=A„(t). In the metric of Eq. (4), Eq. (2) implies that
V'A, =O for such solutions and hence A, =O, if V'=O.
The equation for the only nonzero component A, be-
comes

A„—V (V„A )
—2V'(g)A„=O

and the energy-momentum tensor for the vector field is

(2)
A, + 2——— A, +2V'A, =O .

The energy density and pressures for the vector field
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are

—V ~
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"models"New &nfiat&on
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V= Vo —
—,p
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(10
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tic energy scale below which it decouples is of the order
of the scale at which inAation occurs. Thus for inflation
close to the Planck scale, gravitons may be produced in
su%cient numbers to serve this purpose. For inflation at
lower scales, the physical candidates are less clear, but
could include hypothetical particles such as supersym-
metric partners of known particles. Neutrinos are also a
possibility if either inAation occurs at a low enough ener-

gy scale, or if an extended period of anisotropy can be
tolerated until neutrinos become collisionless.

Let p; be the pressures of such a collisionless, relativis-
tic Auid

C)
px py

C2
nd p

a b
(15)

where c& and c2 are constants. A difference in the rates
of expansion of a and b causes p and p, to red-shift
differently. This in turn reacts against the differential ex-
pansion and tends to drive the system toward isotropic
expansion. Thus, if a suScient density of gravitons or
other collisionless particles is generated upon reheating,
there is a possibility of isotropizing the Universe. We
would have that the total stress tensor is isotropic be-
cause the anisotropy of the vector field's contribution is
canceled by that of the collisionless Auids, and the
Universe is a radiation-dominated Robertson-Walker
universe. Because a(t)ccb(t)~t'~, from Eqs. (14) and
(15), both contributions redshift as t and remain in bal-
ance. Once the Universe evolves to a matter-dominated
stage, where a (t) ~ b (t) ~ t ~, then p, ~ t ~ but the
vector-field pressures remain p; ~t . At this point the
vector-field stress tensor ceases to be canceled, and the
expansion begins to become anisotropic again.

We can estimate the rate of growth of this anisotropy
by considering the effect of a small anisotropic perturba-
tion of the form of Eq. (14) to the stress tensor of a
matter-dominated Robertson-Walker universe. Let

Thus if go is characterized by an energy scale of the order
of the grand-unified-theory (GUT) scale or lower, then
the anisotropy will not violate observational limits. It is
of interest to note that 5, )0 and 5z (0 (t ) to). Hence,
the type of anisotropy produced by this scenario neces-
sarily corresponds to a higher temperature along one axis
than along the two orthogonal directions.

C. "Chaotic inflation" models

V(g) = Vo(1 —e

Note that V= —,'m g when g~ Vom, so the field is ap-
proximately a free massive vector field when g is small.
During infiation the equation for A, (t) is

3,+HA, +2V'A, =0 . (22)

However, for g)) Vom, V' is exponentially small and
A, is at most a linearly decreasing function of time. We
may estimate the length of the period of inAation, ~, by

The models discussed above in which A, is initially
zero and later evolves to nonzero values is the vector ana-
log of new inAation. An alternative possibility is that ini-
tially A, was nonzero and that at late times it evolves to-
ward zero. This would be analogous to the situation in
chaotic infiation. In this case V ( g ) must have a
minimum at (=0 and be rather Aat for large g, as illus-
trated in Fig. 2. The need for Aatness arises from the
constraint that the period of inAation be sufticiently long.
Because V is a function of /= A, /b, the growth of b
tends to drive the system toward /=0. Thus the efFect
which tended to prolong inAation in the previous new
inflation-type models now tends to shorten it.

Let us consider an explicit example of a suitable V(g):
—m g/2V

(21)

a =t +5] and b =t +5 (16)

Then the linearized equations for 5, and 62 are

9t 5, +6t5, —25, =8m.got
i' (17a)

and

3t5~+52+6t5, +25, =4~got ~ (17b)

The solution of these equations which vanishes when
(0=0 ls

5, = —,'rrgot ln(t/to), 5~= —25, , (18)

where the initial condition 6, =6&=0 at t =to has been
imposed. If to teq the time at which matter begins to
dominate, then at the present time, t/to=10 . The ob-
servational limits on the quadrupole anisotropy of the
cosmic blackbody radiation tell us that

(19)

This implies

go
~ 10 =(10' GeV)

FIG. 2. A potential which leads to de Sitter inflation at /%0
and reheating as $~0.
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taking A, = A, (0), its initial value, and setting

m'g(r)= V, . (23)

Universe which is exponentially expanding at different
rates along di6'erent axes. We will look for solutions
where g =

go =const, so

Then using b (r)=e 'and H =8m Vo/3 yields

e '=mA, (0)V

A, (t)=g'~'b (t),
and let

(26)

for the net expansion during inflation. Since- we want to
have e ~~ 10, we can think of this relation as putting
an upper bound on Vo if m and A, (0) are specified. For
example, if m = A, (0)=m pi, the Planck mass, then

Vo ~ (10 GeV)

Equivaleritly, for arbitrary m and Vo we could always ob-
tain adequate infiation with a large enough A, (0). How-
ever if the required initial value of A, is far above the
Planck scale, it would be hard to see how such initial con-
ditions could arise. Thus, in this type of model consider-
able fine-tuning is needed for adequate inAation.

The problem of anisotropy at late times does not arise
in this class of models because A, ~0 and hence the vec-
tor field's stress tensor vanishes. The vector field will in
general oscillate around A, =0, but these oscillations will
be damped both by the coupling of A" to any other fields
and by the cosmological expansion, the effect of which is
represented by the A, term in Eq. (7). Once the anisotro-

py of the stress tensor disappears, the expansion does not
immediately become isotropic, but it does so rapidly
enough that it is soon negligib1e. This may be seen by ex-
amining the exact solutions of Einstein s equations for Bi-
anchi type-I metrics with an isotropic Auid as source.
For a pressureless Auid, the relevant solution was given
by Heckmann and Schiicking and for radiation by
Thorne. If one examines the late-time behavior of these
solutions, one finds that

=O(t ),
Q

where o. = 1 for the pressureless case and 0.=—,
' for the ra-

diation case. The above quantity will be of order unity
just after inflation, but will have decayed to order
(tlltD) by the time of decoupling tD, where tt is the
time of inAation. New inAation-type models and the
chaotic inAation-type models with vector fields may be
compared by stating that for the latter, obtaining ade-
quate inAation requires a rather special choice of parame-
ters, but the disappearance of anisotropy at late times
arises naturally. For the former, the reverse is true.

D. Anisotropic inflation

So far we have assumed that the inAation driven by a
vector field is described by de Sitter space, i.e., there is a
Aat region of the potential where V' is sufficiently small
to ensure that p =p„=p, = —p. However, the solution
of the horizon and Aatness problems does not require that
the inAationary expansion itself be isotropic. All that is
required is that all directions expand by factors of.at least
10 . This could conceivably occur anisotropically so
long as this anisotropy later disappears. Let us examine
the condition under which a vector field gives rise to a

Hlt Hzta(t)=aoe ', b(t)=boe

Vo = V(go), and Vo = V'(go) .
(27)

The Einstein equations, Eqs. (5a) and (Sb) and the
vector-field equation of motion, Eq. (7) now yield three
algebraic equations relating H&, H2, Vo, and Vo. These
equations may be expressed as

and

H) = —H2 'Vo,

H2 = —(1+8ag) '
Vo

(28a)

(28b)

8m(1+8irgo) Vo+(3+16@go)(1+4mgo) Vo =0 . (29)

Equation (29) is the constraint which must be satisfied in
order to have anisotropic infiation. If there is a point go
at which it is satisfied, then Eqs. (28a) and (28b) yield the
values of H& and Hz at that point. Clearly we can only
have such solutions in regions where V' (0. A given po-
tential V(g) can have several points at which Eq. (29) is
satisfied, and these points can correspond to either stable
or unstable solutions.

To analyze the stability of our solutions, we need to
consider small perturbations by writing

Hl ta(t)=aoe ' (1+a),
b(t)=boe ' (1+P),
A, (t)=g' b e ' (1+y)

(30)

U'=M'JU~ . (32)

The solution is unstable if the matrix M'J has any eigen-
values with positive real parts. Writing out the eigenval-
ue equation for M'~ reveals two zero eigenvalues, and that
the three remaining eigenvalues are solutions of a cubic
equation:

and deriving linearized equations for a, P, and y. The re-
sult is

y+(2H, Hz)y+H2(2a —P—)+4' Vo (y —P)

+2(H, H~+ Vo)y=0, (3la)

a+ 3H
&
a 4~koH2y+4mgo(4goVo +2Vo H2 )

X (y —P) =0, (31b)

and

(H i +Hp )a+H iP 4ttkoH2y 4ir(o(H z+ 2 Vo)—
X(y —p)=0 . (3lc)

These equations may be expressed as a set of five first-
order equations. If we let U'=(y, y, a, a,p), then this set
of equations is expressible as
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+32H (4x +3)A, +4m(2xo+ I) [4V2xo(2xo+ xo i o2+ 3x + 1)—Vi (20xp+ 9)]k

6—4m H2 '(2xp+ I) xpV, (4xp+3)[V2(2xp+3xp+ I)+ Vi(4xp+I ]=0, (33)

r=(Rek, ,„) (34)

here A, is the eigenvalue with the largest real part.
constant fac-Note that if we rescale the potential by a cons an

tor A, i.e.,, V A V then we have a new solution at the
same time of go with

Hi A'i Hi, H2 A H2,

A. —+A' A, , and r~A
(35)

The maximum expansion factors, H&~H ~ and H w, are un-2

changed by this rescaling. This scaling property allows
us to adjust a solution to correspond to inflation at any
given energy scale.

~ ~ ~ ~ ~ ~

An example of a potential which exhibits anisotropic
inflation is

where xp=4mgo, V&
= Vp/(4m), and V2= Vp'/(4'ir

Rek. ~0 for all solutions of this equation, the solution of
ble. Otherwise itthe Einstein-vector-field equations is stab e.

is unstable on a time scale of

V=x'(x' —Dx+C), x =4~/. (36)

If, for example, we set C=1 and take D in the range
2.0)D ~ 1.9089, then there is both a stable and an unsta-
ble solution. (Here we may take all quantities to e in
Plane units. e ak

'
Th above scaling property generates solu-

tions at lower-energy scales. ) As D approac es
r + 1.9089,the instability time scale increases, and or 1.

trated in F' 3 and 4. With appropriate choices of the
parameters of the potential, one can have anisotropic
inflation at a marginally unstable point. This inflation
will then last for a finite period of time and then cease. If
the growing perturbation is in the direction to cause g to

('. P~
— )0) then the system can evolve to-decrease i.e., —y

~ ~ ~

ward /=0. In this case, one has a reheating and isotropt-
zation scenario similar to that in chaotic-type de Sitter
'

fl t' n based upon potentials such as that in Fig. 2. Ain aion a
eneralquestion a neethat needs to be studied further is how g

inflation.t e iniia ch
' t' 1 conditions may be for anisotropic in a ion.

Th t iven a potential such as that of Eq. (,w ic
ion to beinitial conditions cause the inflationary so ution

reached?

C7

CD

CD
CD

I

0.4 1.20.80.0 0.2 0.8
X

FIG. 3. The potential V=x (x —Dx+1) is plotted for vari-
ous values of D as a function of x =4m.g. This potentia1 leads to

The oints marked with open circlesanisotropic inflation. e p
re resent stable solutions, whereas those marked with open tri-
angles represent unstable solutions. For
no anisotropic inflation solutions for this potential.

c/200

1.9089

FIG. 4. The various parameters for the anisot pnisotro ic inAation
solutions of t e poten ia oh t' l f Eq. (36) are shown as functions of D

=4
& is the point at which the solutionwith C=1. Here x = m is e

arises, H& an 2 are ed H are the expansion rates, and ~ is t e insta i i-

ty time sca e. o i1 . S l'd curves refer to stable solutions an as e
curves to unstable solutions.
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III. QUANTUM FLUCTUATIONS
AND DENSITY PERTURBATIONS

The peculiar features of vector-field inflation which we
have encountered thus far are due to the anisotropy of
the stress tensor. However, there is another distinction
between scalar and vector fields which is relevant to
inAation: the massless vector field is conformally invari-
ant, whereas the massless, minimally coupled scalar field
is not. This lack of conformal invariance causes such a
scalar field to undergo large quantum fluctuations in de
Sitter space, so that (P ) grows linearly in time
(P ) =H t/(2') . This growth of the rms value of P has
the effect of shortening the period of inAation. In the
case of a vector field, this growth will not occur; in de Sit-
ter space there is a de Sitter-invariant vacuum and
( A„A") =const.

Quantum fiuctuations also play a key role in the forma-
tion of density perturbations in inflation. " ' The mag-
nitude. of the relative density perturbation generated in
scalar inflation is'

Here b,P, the magnitude of the mean quantum fiuctua-
tions in P, and P are evaluated at the time the scale in
question leaves the horizon during the de Sitter phase,
and 5p/p is evaluated at the time this scale reenters the
horizon after reheating. This formula leads to a pertur-
bation spectrum that is independent of the scale, apart
from logarithmic factors. This arises because P is ap-
proximately constant for a long period and b,/=II, in-
dependent of the scale. Here hP may be defined as"

1/2
bP= (2tr) k Jd x e'""(P(x,t)P(O, t)) . (38)

It is of interest to consider what would happen if the sca-
lar field were conformally invariant. (Note that scalar
inflation only really works with a minimally coupled field;

here we are using the conformal scalar field as a
simplified analog of the vector field. ) For such a field in
de Sitter space, Eq. (38) yields

(3&)

where g=H 'e ' is the conforma1 time. At first sight,
this appears to introduce a dependence on the scale k into
b, ((i and hence 5p/p. However, at the time of horizon
crossing, ~g~ =k ', so again hP and 5p/p are indepen-
dent of k. Although scalar inflation with a conformal
field is not equivalent to vector inAation, this result does
suggest that vector inflation would also produce a scale-
invariant perturbation spectrum, at least for de Sitter
inflation. Further work is required to test this conjecture
in detail. It is also not clear what effects anisotropic
inflation will have upon the density perturbations.

IV. SUMMARY AND CONCLUSIONS

We have seen that vector fields can drive inAationary
expansion. If V has a Aat region, then a de Sitter expan-
sion is possible. More generally, vector fields can give
rise to anisotropically inflating universes. Such aniso-
tropic inAation is still capable of solving the same cosmo-
logical puzzles as isotropic inAation. With suitable
choices for the parameters of the model, adequate
inAation is possible and excess anisotropy at late times
may be avoided. A detailed study of density perturba-
tions in these models remains to be done, but one expects
isotropic vector-field inflation to yield a scale-free spec-
trum of perturbations.
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