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We derive the chiral Lagrangian including instanton corrections in a consistent way. CP viola-
tion associated with the 0 term in @CD is discussed in terms of this chiral Lagrangian. A particular
emphasis is given to a phenomenological determination of m„and 0. It is shown that, contrary to
the previous conclusion that m „=0.56md and 0=0, all three distinct cases (i}
0.56 + m„/md )0, 0=0, (ii) m„=0, (iii) 0.56 ~ m„ /md )0,0=m are phenomenologically acceptable
depending on the strength of the instanton corrections. In cases (i) and (iii), the ratio m„/md can be
much smaller than the usually quoted value 0.56. As a result, the models of spontaneous CP viola-
tion which predict ~8~ ))10 can be phenomenologically viable. Also in the axion models, because
of the possibility of m„/md being arbitrarily small, the cosmological upper bound on the axion de-

cay constant can be relaxed.

I. INTRQDUCTH3N

In QCD of three flavors of massless quarks, the quark
part of the classical QCD Lagrangian is invariant under a
global ffavor symmetry Gf =U„(1)XSU(3) XSU(3).
The axial U„(1) symmetry, while being valid classically,
is broken at the quantum level by the anomaly and in-
stanton effects and thus the U„(1) problem is resolved. '

If the Aavor symmetry G„ is not an exact symmetry even
at the classical level due to the nonzero intrinsic quark
masses, MAO, instantons provide not only U„(1)-
breaking effects but also the pieces which violate
SU(3) XSU(3), e.g., effective current masses of quarks,
combined with the insertion of the intrinsic current
masses. Also in this case a peculiar role is played by the
instantons in connection with the CP violation via the 0
term, viz. , the strong CP violation is the result of instan-
ton effects. Therefore it is essential to include instanton
effects carefully in studying physics associated with the
flavor-symmetry breaking or with the strong CP viola-
tion.

Recently it has been observed that instantons can
charige the previous conclusion on the value of the in-
trinsic current mass of the u quark. Instantons gen-
erate an effective mass of quarks of the form ( detM/
A&cD)qM 'q, where M = diag(m„, md, m, ) denotes the
intrinsic current mass matrix which appears in the renor-
malizable QCD Lagrangian. This instanton-induced
mass does provide an explicit breaking of 6f which is
second order in M and thus corresponds to an effective
current mass. Note that it is the result of combined
effects of both the explicit breaking of U„(1)by instan-
tons and the explicit breaking of Gf by the intrinsic
current mass M. Even though it is still a subject with no
definite answer, it has long been suspected that instantons
do play some role in spontaneous chiral-symmetry break-
ing. We emphasize here that the instanton-induced

effective current mass under our consideration is com-
pletely independent of the details of spontaneous chiral-
symmetry breaking, in particular it is independent of
whether or not instantons are responsible for the nonzero
quark-antiquark condensate, and can be clearly dis-
tinguished from the constituent mass which is the result
of the spontaneous chiral-symmetry breaking. For exam-
ple, as we will see, it gives a contribution to the pseudo-
Goldston-boson masses (i.e., the pseudoscalar-meson
masses) in exactly the same way as the intrinsic current
mass does, while the constituent mass does not.

Even though second order in M, the above instanton-
induced effective current mass can be important for the
amplitudes concerning m„. Note that the instanton-
induced u-quark mass ( detM/A&cD)(M ')„„=mdm, /
A&zD can be even larger than the original intrinsic mass
m„because m, is not much smaller than AQQD This im-

plies that we should include instanton effects carefully in
estimating m„by studying the explicit breaking of the
Aavor symmetry in hadronic amplitudes.

In addition to the classic example of the application of
instantons to the U& (1) problem, ' some other phenome-
nological implication of instanton physics, e.g., to the
pseudoscalar-meson masses in the framework of QCD
sum rules, to the baryon masses in the framework of the
nonrelativistic quark model, and to the EI=—,

' rule,
have been considered. In this paper we consider the
chiral Lagrangian which includes the instanton effects
that explicitly break Gf in a consistent way for a sys-
tematic study of the phenomenological implications of in-

stantons. In particular, following the analysis of Ref. 10,
we include the above-mentioned instanton-induced mass
which is second order in M without worrying about the
other second-order effects. The main observation from
our chiral Lagrangian is that the SU(3) XSU(3) breaking
in the CP-conserving hadronic amplitudes is described by
the effective current mass
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M,s.= diag(m„, md, I, ) = diag(( —)"(1+F2)m„+1imd, (1+F2)md+( —)"1im„, (1+F2)m, )+(—1)"A im„md /m, ,

while the CP-violating amplitudes are proportional to
68(m„md/( —)"m„+md), viz. , are proportional to the
intrinsic current masses of the u and d quarks. [Here A, ,
and A,2 are parameters characterizing the strength of in-
stanton effects. n and b, 8 are defined as 8=no+68(n
=0 or 1, ~58~ ~ 1).]

The CP-conserving hadronic amplitudes determine the
efFective current mass M,~; e.g., they give nz„/md =0.56,
m, /md=20. However both n and I„/md which are
relevant for the phenomenological determination of 0 de-
pend strongly on the magnitudes of A,

&
and A,z. In Appen-

dix A we provide a numerical estimation of the strength
of instanton corrections within the semicla'sical
instanton-gas picture supplemented by the phenomeno-
logical constraints coming from the g-g' mass matrix.
Then we find that, even in the semiclassical instanton gas
regime, the instanton correction can be strong enough to
completely change the previous conclusion on m„/md
and 8. For example, the case of 8=sr (Ref. 11) which
has been argued as being inconsistent with low-energy
phenomenology' can be phenomenologically viable due
to the instanton effects. Also m„/md can take an arbi-
trarily small value without any difticulty with phenome-
nology. Even though we draw our conclusion via the
chiral Lagrangian, we emphasize here that the observa-
tion does hold for all hadronic amplitudes which may be
used to determine m„/md or 8 phenomenologically as
long as we take into account instanton effects carefully.

The possibility of m„ /md being much smaller than the
usually quoted value 0.56 readily indicates that the bound
on 60 from the neutron electric dipole moment can be re-
laxed because the neutron electric dipole moment rather
gives a bound on b, 8(m„/md ), not directly the bound on
b, 8 (Refs. 12—16). This implies that many of the models
of spontaneously broken CP, which have been con-
sidered as being inconsistent with phenomenology be-
cause of their prediction of relatively large value of 50,
can now be phenomenologically acceptable. ' Another
implication of smaller values of m„ /md appear in axion
phenomenology. As we will see, the axion mass squared
m, is also proportional to m„/md. As a result, for a
given axion decay constant, both the nonzero- and zero-
temperature axion mass become smaller. An immediate
consequence would be the relaxation of the cosmological
upper bound on f, (Ref. 18), viz. , f, ~ 10' GeV, coming
from a consideration of the axion energy density.

The organization of this paper is as follows. In Sec. II
we present the Aavor-symmetry-violating interactions of
quark fields, including the instanton-induced ones. The
corresponding chiral Lagrangian is derived in Sec. III
and its phenomenological applications are described in
Sec. IV. Appendix A is devoted to the numerical estirna-
tion of the strength of instanton effects and Appendix B
provides the phenomenological determination of various
strong-interaction parameters which appear in our chiral
Lagrangian.

2g+ F F"
32m'

(2.1)

where F" denotes the gluon field strength, F"
=

—,'e" " F„ is its dual. Under the global Aavor symme-
try GI=—U„(1)XSU(3) X SU(3), quark fields transform
as

gI. ~e Igl. ,g~ ~e Rg~ (2.2)

Here L and R are independent SU(3) matrices and a gen-
erates U„(1)rotations. G& is spoiled by the QCD anom-
aly as well as nonzero quark masses. One may consider
the transformation group 6& which is defined as the fol-
lowing transformation of parameters together with the
above 6& transformation of quark fields:

M —+e ' I.MR, 8~0+6m . (2.3)

Then the QCD Lagrangian, including the contribution
from the path-integral measure of quark fields which
gives rise to U~(1) anomaly, is invariant under Gj. Even
though 6& is not a symmetry on the physical Hilbert
space (because it changes parameters), it plays a useful
role in identifying the low-energy effective Lagrangian.
The effective Lagrangian should also be invariant under
Gg.

One can do the same for the parity symmetry P. Un-
der P, the quark and gluon fields transform as

ql a(x) —+qz i (x ), A„(x)~A "(x), (2.4)

where x„=x"with metric il„=(+,—,—,—). The cor-
responding P' which is the analog of 6& includes the
transformation of parameters

M~M, 0~ —0 . (2.5)

Then the QCD Lagrangian of Eq. (2.1) and the resulting
low-energy effective Lagrangian are also invariant under
Pl

As is well known by now, the CP (or P) violation in
strong interactions via the 8 term in the Lagrangian (2.1)
is the result of the QCD anomaly and instanton effects.
The most convenient way to include instanton effects is
the effective Lagrangian method in which the instantons
are integrated out first and their effects appear explicitly
in the effective Lagrangian of quark fields. In this section
we consider the effective Lagrangian of light quarks in-
cluding terms induced by instantons. The chiral La-
grangian as a low-energy realization of this effective La-

II. INSTANTON-INDUCED INTERACTIONS
OF LIGHT-QUARK FIELDS

Consider the renormalizable QCD Lagrangian of three
Savors of light quarks q = (u, d, s):

+QCD gPp + "+qi&q (ql M—qli + H c. )
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grangian of light-quark fields will be the subject of the
next section.

The relevant interactions of qnark fields mediated by
instantons can be found in the literature. ' The CP viola-
tion associated with 0 appears through amplitudes which
violate the flavor symmetry Gf explicitly because 0 can
be rotated away in the case when one of the light quarks
(say, u quark) is massless. After integrating out instan-
tons, the part of the effective Lagrangian which explicitly
violates Gf (but is invariant under both Gf and I") can be
written as

~QcD= ql M— +e ' (detM )(M )
'

qzA

+e ' det@[trM (4&) '];0y2
A

4 2

y, = A J D(p, )Z '(p/A),
3 p

y2=8mA D pZ p Adp
p

y.='" A' "".D pz'p A

(2.7)

Z(p/A)=[a(A)/a(p)] is a multiplicative renormal-
ization factor of the intrinsic quark mass and D (p) is the
instanton density whose explicit form will be given later
[see Eq. (A2) in Appendix A]. The quark fields and
masses in Eq. (2.6) are renormalized at the scale A. No-
tice ~QcD is invariant under the renormalization-group
transformation

—e ' detN+ H. c. ,
;g y3

(2.6)

M ( A) ~M (A') =Z (A/A')M (A),

qq —+Z '(A/A')qq
(2.8)

where 4& is defined as 4&;. =(ql m)(wqlii ) for a color-
triplet spinor ur depending on the instanton orientation in
the color space. Here the terms with the phase e ' are
the ones generated by instantons and

and thus is independent of our choice of the renormaliza-
tion point. For the terms in ~QcD containing @, the
average over the instanton orientation is taken and then
we have

det+= —', det(qL qit )+ [terms containing color-SU(3) generators],

det@[trM (N) ']= 9e~keim„M~i(q~l qmz )(qkI q„z )+[terms containing color-SU(3) generators] .
(2.9)

)=y)m, /A,
x2= —2yz(ol qL, qadi lo & /9A',

A3=2y3((olq, q, lO& )'/9A'i',
(2.10)

Among the instanton-induced terms in Eq. (2.6), the
six-quark operator det@ is invariant under SU(3) X SU(3)
and violates U~(1) only. However, we note that the oth-
er two terms have a dependence of the intrinsic quark
mass M and therefore they violate not only U~(1) but
also SU(3) X SU(3). It has been argued that the
instanton-induced niass y, (detM)M '/A, even though it
is second order in M, can play an important role in the
isospin-violating low-energy amplitudes. ' Furthermore
a careful analysis of the full second-order effects with
respect to M (including electromagnetic corrections) indi-
cates that only this particular form of second-order
effects can significantly change naive first-order results. '

Therefore we include this instanton-induced mass term in
our analysis without worrying about other second-order
effects. For the six-quark operator, it is zeroth order in
M and thus one might worry that its coefficient cannot
serve as a useful expansion parameter. However it turns'
out that one can still consider an expansion with respect
to its coefficient in the following sense.

For this purpose let us define the renormalization-
group-invariant (i.e., A-independent) diinensionless pa-
rameters A,, (a =1,2, 3) as

where (Olql q~ lo) denotes the chiral condensate of each
quark flavor. Then the effective Lagrangian of Eq. (2.6)
can be written as

bXQcD=[M+e '
A, ,(detM )(M ) '/m, ]; I,"'

+e 'AM"I''+e 'A, m I' '
~j ~'j e 3ms

where

T (I)—
9'gL, QJg ~

~ikl~j (qkLq R )(qiiq. ~ )/&olqr, qtt Io& ]

+ [terms containing color-SU(3) generators],

(2.12)

I' '= —[det(qL qadi )l((olqI qz lo) ) ]
+ [terms containing

color-SU(3) generators] .

Now it is not unreasonable to assume that the effects of
I ' ~'s (a =1,2, 3) to the low-energy hadron amplitudes are
the same in the order of magnitudes. For example,
within the vacuum-insertion approximation we have

(ol r',,"lo) = (ol r,',"lo)

=s,, &olr"'lo& . (2.13)

Then the success of the first-order SU(3)XSU(3) chiral
perturbation with respect to M readily implies that, as
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long as A 2 Ar3 ( l, the results which are first order in the
coefficients of I"'s can be a good approximation. In fact
our estimation of A,, suggests (see Appendix A)

(2.14)

and therefore we can restrict ourselves to the first-order
results. Note that within this approximation, there is no
ambiguity of double counting the instanton effects. In
the next section we will consider the chiral Lagrangian
up to terms which are first order in ~QcD.

fiavor symmetry G& and parity P (Ref. 19). The unitary
matrix-

X = exp(im. ) (3.2)

of the meson nonet m =+ A, /f +2//i/6 f0 [A, =Gell-
Mann matrix, f =93 MeV=pion decay constant,
f0=decay constant of the SU(3)-singlet meson P] can be
identified as a long-wavelength Auctuation of the chiral
condensate of quark fields, viz. , —,

'
& qi(1 —y/)q; )

v X J and thus it transforms under 6& and P as

III. CHIRAL LAGRANGIAN
WITH INSTANTQN EFFECTS

X(x) =e ' LX(x)R, X(x) =X (x) .—2,ia (3.3)

The chiral Lagrangian which describes the low-energy
interactions of the pseudoscalar mesons of the baryon oc-
tet can be written as

The 6& transformation law of the baryon octet B is a lit-
tle bit more complicated. It is represented by an SU(3)
matrix 3 as

(3.1) :ABA (3.4)

where Xo is invariant under the fiavor symmetry
G&=U„(1)XSU(3)XSU(3) and ~ is the G&-breaking
piece which contains the meson potential ~M and the
nonderivative couplings of mesons to baryons, ~R. As
was noted in the previous section, this chiral Lagrangian
should be invariant under both 6& and P'.

To obtain an explicit expression of X,i,;„„let us define
the transformation law of mesons and baryons under

:e' L(At=e ' AgR (3.5)

where g =X. The parity transformation of 8 is the usual
one for the Dirac spinor.

In the leading approximation of the derivative expan-
sion, the G/-invariant part Xo can be written as

where A is defined through the transformation of g
which is a square root of X, viz. ,

Xo= —,'(8 P) + ,'f trB„UB"—U +i trBQB+i trBy„[V",8]+Ftr(By„y5[A",8])

+D tr[By&y5[ A",8 }]+ — d"p trBy„y58 —mR trBB,1 S
6 o

(3.6)

where Uis an SU(3) matrix of the meson octet, i.e., U = exp[i(m A, /f)], and

(3.7)

for the SU(3) matrix ri defined as ii = U. The meson potential which is invariant under G/ and P' and is the first-order
result of ~QcD of Eq. (2.11) can be obtained by using the vacuum-insertion approximation for the condensates of mul-

tiquark operators, e.g.,

(qL qR qLqR ) ~ & (qLqR ) &i& (qi qR ) &
=U'XX

The resulting meson potential is free of the U„(1)problem and takes the form

~M=U ( tr[[M+e '
A, ,(detM )(M ) '/m, +e' A2(detX)M]X )+e' A3m, detX+ H. c. ) . (3.g)

The nonderivative meson coupling to baryons, ~R, which is also invariant under G& and P and is first order in

~QcD is given by

Si,[(trg Msi g )+e' A, i m, detX+ H. c. ] trBB

+S„[(trg Ms~ g ) +e ' k „m, det X—H. c. ] tr8 y 58 +Fi, trB [ ( g MRi g + H. c. ),8]
+F„trBy5[(g MF~g —H. c. ),8]+Di, trB [(g' MDi g + H. c. ),8 j

+D„ trBy5[(g MD~/ —H. c. ),8 [ (3.9)

where

Mr= [M+e '
A. , (detM )(M ) '/m, J+e'ak~(detX)M (I=SV SA, FV FA, DV DA) . (3.10)
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B=nm+b, O (n =0, 1) . . (3.11)

Then with the meson potential of Eq. (3.8) we find

(n ) =2X = diag(x„, xd, x, ), (3.12)

where

Here the terms with the coefficients A,l's (I
=SV, . . . , DA) are the low-energy results of the four-
quark operator 1 ' ' (with the coefficient A,2) in ~QcD of
Eq. (2.11) and terms with A.„i, come from the six-quark
operator 1 ' ' (with the coefficient k3). Then with this ob-
servation we are lead to expect A,I ——A,2 and A, ~ z —-X3.

Even though ~ii given above is the most general one
which is invariant under Gf and P', and is first order in

~QcD it contains too many (in principle calculable) pa-
rameters which spoil the predictability of our chiral La-
grangian. Therefore we improve the situation by assum-

~sv=~so ' '
ADA =kz. In fact any physical

result from ~ii of Eq. (3.9) does not depend much on
this assumption as long as A.l's are less than one. Then
most of the strong-interaction parameters, i.e.,
Si„S„,. . . , D„, can be determined by the SU(3) break-
ing in the baryon masses and in the meson-baryon cou-
plings (see Appendix B for details).

Flavor-symmetry breaking or the strong CP violation
in the amplitudes involving the pseudoscalar mesons and
the baryons can be studied with the chiral Lagrangian
given above. Note that our chiral Lagrangian manifestly
shows that there is no CP violation in the limit of vanish-
ing instanton efFects, i.e., A,,~O (a =1,2, 3) which cor-
responds to the limit N, ~ OD (N, denotes the number of
color), or in the limit when one of the eigenvalues of M is
zero. In these limits the potentially CP-violating phase in
M or e' can be rotated away by the Gf transformation of
X and B.

For the study of CP-violating amplitudes it is con-
venient to remove the tadpole of the pseudoscalar-meson
field m. From now on, let us put M as being real-diagonal
and semipositive definite. One can always make M to be
in such a form by the Gf transformation of fields and
then the only CP-violating phase is e' . The vacuum ex-
pectation value of m can be determined by minimizing the
meson potential V,it= —XM. As we will see in the next
section the vanishingly small neutron electric dipole mo-
ment implies that ~58~ &&1 as long as m„/md ))10
where 60 is defined as

mdx„=—n, m —60
( —)"m„+md

md1+0
m

J

( —)"m„
xd = —50

( —)"m„+md

md1+0
m

(3.13)

1 —A, —
A, (1+2K, )2 2

A,2+ A3(1+ A, 2) m

(3.14)

Note that in our convention, the intrinsic current-quark
masses are all semipositive definite.

The above meson tadpole can be removed by the chiral
rotation of meson field:

i' iX (3.15)

In fact, this chiral rotation of meson field and the corre-
sponding transformation of baryons are the low-energy
realization of Baluni's chiral rotation' of quark fields
which has been considered to be suitable for the chiral
perturbation of CP-violating amplitudes. However in
Ref. 13, the instanton effects which violate not only
U„(l) but also SU(3) XSU(3) (i.e., terms with coefficient
A, i or A, 2) has been neglected. Furthermore it is implicitly
assumed that the Uz(1) breaking by instantons is much
stronger than the generic chiral-symmetry breaking due
to the light-quark masses (including m, ). Therefore in
our language, Baluni's analysis corresponds to the limit
A, &, A,2((1 and A,3))1. Note that in this limit our result
of Eq. (3.13) reproduces Baluni's result 2X= —OM '/
trM ' (in the case of n =0). However our numerical es-
timate of A,, 's (see Appendix A) indicates A, , ) A,z) A, 3.
Because of this discrepancy, our final formula for CP-
violating amplitudes would be slightly different from the
ones derived by using Baluni's result.

After the chiral rotation defined by Eq. (3.15) we finally
obtain

(
—)"m„md

x, = —60
[( —)"m„+md ]m,

2A,~+ A, 3( 1+A, ~
—A, , ) md

A,~+A,3(1+A,~) m

In deriving the above meson tadpole, the inequalities
md) m„, m, ))md have been used. Another quantity
whose explicit expression is useful in discussing the CP
violation is

( —)"m„m„
0+2 trX =60

[(—)"m„+md ]m,

~=~M+5& =U [tr(MX )+A3m, detXe' + " '+ H. c. ] Si,(trg M—gt+Avm, detXe' + " '+ H. c. ) trBB

—S„(trg Mg +A, „m, detXe' + " ' —H. c) trBy~B

I'v trB[(g Mg + H—.c. ),B]—F„trBy5[(gtMgt —H. c. ),B]

Di, trB [(g' Mg' + H—.c. ),B j D„ trBy~[(gtMg't —H. c. )—,BI, (3.16)
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where

M —(1+g detgei(e+2trx))M

+A, ,[(detM„')(M,') '/m ]e '"+""x'

lxMe lx
(3.17)

where

M,g
= diag(m„, mq, rn, },

m„=( —)"(1+',)m„+A, ,md,
(4.2)

IV. APPLICATIONS: PHKNOMENOLOGICAL
DETERMINATION OF m„ /mg, 0,

AND THK AXION MASS

Flavor-symmetry-violating amplitudes (both CP
conserving and CP-violating ones) involving the pseudo-
scalar mesons and the baryons can be studied by using
the chiral Lagrangian of Eq. (3.16). For this purpose, it is
convenient to put detX=1 and thus make the SU(3)-
singlet component P disappear. Then M which appears
in our chiral Lagrangian can be written as

(
—)"m„md

M=M, ~+i b 8(1+A,~ —', , }
(
—)"m„™d (4.1)

We emphasize here that in the above expression of chiral
Lagrangian, the meson field m has vanishing tadpole and
thus one can do the usual perturbation with the expan-
sion X= 1+i~+0(m ). In the next section we will use
this chiral Lagrangian as a starting point of the phenome-
nological determination of the mass ratio m„/md and of
0.

md =(1+A,')md+( —)"A,,m„,

m, =(1+F2)m, +( —)"A&m„md/m, .

A remarkable thing here is that the flavor-symmetry
breaking in the CP-conserving amplitudes is represented
by the e~ectiue current mass M,z while the CP-violating
amplitudes which come from the nonvanishing ImM are
proportional to the determinant of the intrinsic current-
quark mass matrix M. (In fact m, of detM does not ap-
pear explicitly in ImM because we have used the mass
hierarchy m„& md « m, in deriving the expression of Im
M. )

The usual current-algebra analysis without taking into
account the corrections which are the results of the com-
bined effects of both the instantons and the intrinsic
current-quark mass insertion [i.e., SU(3) XSU(3)-breaking
A,

&
and A, 2 terms in our Lagrangian] has produced the

mass ratios m„/md-0. 56 and m, /md ——20 (Ref. 21). In
our case of including instanton corrections in a consistent
way, the same analysis would give rise to

m„/md =[(—)"(I+A2)m„+A, ,md]/[(1+hz)md+( —)"A, ,m„]=0.56,

m, /md =[(1+F2)m, +( —)"A,&m„mdlm, ]/[(1+F2)md+( —)"A, ,m„]=20.
(4.3)

These phenomenological equations for the effective
current mass M,& give the following relation for the in-
trinsic quark mass M:

m„(—)"(0.56+0.56k' —A, , )

md 1+X2 —0.56k. ,
(4.4)

m, 20(1+A2+A, , )(1+A2 —A, , )

mg (1+A2)(1+A2—0.56K, , )

Note that if we simply neglect the instanton-mediated
SU(3) XSU(3) breaking and thus put A. , =k,z=O, then we
have (

—1)"m„/md =0.56 which implies that n =1 (i.e.,
8=@) or m„=O is phenomenologically not allowed. '

(Note that in our convention, all intrinsic current masses
are semipositive definite. ) However as we can easily see,
the instanton corrections parametrized by k, and X2 can
completely change this phenomenological conclusion, de-
pending on the magnitudes of A,

&
and A,2. For example, if

A,
&
&0.56 (1+F2), then the value of n which is determined

by the low-energy phenomenology is n =1 (i.e., 8=m.);
and m„=O can be possible for A, , =0.56 (I+A2). In the
case of A, , &0.56 (1+A.2) we are led to the conclusion
n =0 (i.e., 8=0) but still the numerical value of m„/md
does sensitively depend on the magnitudes of A

&
and A.2.

Any reliable estimate of k, s requires a quantitative un-

derstanding of the infrared QCD dynamics which is out
of reach for us at present time. Note that the main con-
tribution comes from the instantons of size around QCD
scale. As an illustration we provide an estimate of A, 's in

Appendix A based on the semiclassical instanton-gas pic-
ture which is supplemented by the phenomenological
constraints from g —q' mass matrix and the numerical
results are given in Table I. Because of the various as-
sumptions on the infrared QCD dynamics adopted in our
numerical estimation, the result should be understood as
an order of magnitude estimate.

A remarkable result of our analysis is that, for a
reasonable choice of m„AMs (MS denotes the modified

minimal subtraction scheme), and of the gluon conden-
sate (0~(a/m)FF~O), instanton effects can be strong
enough to completely change the previous conclusions on
0 and m„even in the semiclassical instanton-gas regime.
For example with A,, 's in Table I, even though
m, /md —-20, all the following three distinct cases of m„
and 8: (i) 0.34&m„/m~»10 ', 8=0; (ii) m„=O; and
(iii) 0.22&m„/md»10 ', 8=sr, can be consistent with
the phenomenological relations of Eq. (4.3). Although
the upper limits on m„/mz are somewhat different from
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TABLE I. Numerical values of dimensionless instanton pa-
rameters k&, A,&, and A, 3 as functions of the infrared cuto6' A.

A(Me V)

620
630
640
650
660
670
680
690
695

0.959
0.813
0.693
0.592
0.508
0.437
0.378
0.327
0.305

0.381
0.329
0.284
0.245
0.212
0.183
0.158
0.137
0.127

A3

0.154
0.136
0.119
0.104
0.090
0.078
0.068
0.058
0.054

the standard value 0.56, the difference is insignificant in
view of the approximation involved in estimating A,, s. In
fact m„/md can be arbitrarily small. In other words, it
implies that we cannot draw any firm conclusion on the
values of m„and 0 due to the ambiguities in the strength
of the instanton corrections.

The importance of instanton corrections in the phe-
nomenological determination of m„and 0 can be easily
understood as the result of the explicit symmetry break-
ing due to the anomaly and instantons. As an illustrative
example let us imagine the world in which m„=0. (From
the arguments given above, such a world can be a realis-
tic one. ) Then at the classical level, the axial-vector
current u y„ysu is exactly conserved with the correspond-
ing axial U(1) symmetry. However at the quantum level,
this U(1) symmetry is explicitly broken by the anomaly
and instantons, and as a result, a finite but nonzero
effective current mass m„=A, &md is generated. The ap-
pearance of md in m„ is due to the d quark zero mode
under the iristanton background and the effects of heavier
quarks, i.e., the s, c quarks, etc. , reside in the parameter

In all CP-conserving amplitudes we see the effective
current mass m„and thus there is no clear sign of vanish-
ing m„as long as A,

&
is not much less than one. However

this anomalous U(1) symmetry of the axial transforma-
tion of u quark, even though explicitly broken by instan-
tons, guarantees that 0 can be rotated away by the axial
transformation of a u quark and thus there is no CP
violation. Note that the CP violation due to the 8 term is
proportional to detM, the determinant of the intrinsic
current-quark matrix.

Until now we have considered the CP-conserving part
which gives information on m„and n, . The neutron elec-
tric dipole moment (NEDM) D„provides the most
stringent bound on the strength of CP violation due to
the nonzero 50. As in other CP-violationg amplitudes, it
is proportional to b, 8m„md(68((1). As was noticed,
with instanton corrections, any value of m„/md smaller
than m„/md=0. 56 (if we adopt the range of A,, 's given
in Table I, m„/md is smaller than 0.34) is consistent with
the low-energy phenomenology. An immediate conse-
quence is the relaxation of the bound on ~b, 8~ because the
NEDM gives a bound on m„md ~ 68~, not on ~b8~ itself.

In the literature, the contributions to D„ from the
low-lying baryon resonances, ' the nucleon-pion inter-
mediate states, ' the CP-odd nucleon mass, ' and the
mixing between the scalar and pseudoscalar mesons'

2f " ' 4m~
8 rr'Ny~y~r'N+ F" No+N, . (4.5)

where F" is the electromagnetic field strength, mz being
the nucleon mass, Z = diag(p~, p„)= diag(1. 79, —1.91)
denotes the anomalous magnetic moments, and gz =D
+F=1.25 is the pion-nucleon axial-vector coupling con-
stant. The CP-violating interactions relevant to the

FIG. 1. Diagrams generating NEDM. The dark triangle is
the CP-odd neutron mass and the dark blob denotes the CP-
violating ~XXcoupling.

have been considered. Among these contributions, the
scalar-pseudoscalar mixing has been claimed to give the
largest contribution. However the phenc)menological
model of Ref. 15 within which the NEDM via the scalar-
pseudoscalar mixing has been computed does not satisfy
the proper anomalous %"ard identity, e.g., CP-violating
amplitudes do not vanish in the limit m„=0 even though
they do vanish in the different limit m =0. Apart from
this ambiguous contribution of the CP-odd scalar-
pseudoscalar mixing, it has been argued that the CP-odd
nucleon mass gives a dominant contribution to the
NEDM (Ref. 14). Here we evaluate, as another applica-
tion of our chiral Lagrangian of Eq. (3.16), the NEDM
induced from the CP-odd nucleon mass and pion-nucleon
coupling s.

Our method of evaluating the NEDM from the pion-
nucleon intermediate state is slightly different from the
one used in Ref. 12 in the sense that we use the axial-
vector coupling for the CP-conserving pion-nucleon cou-
pling, while the pseudoscalar coupling has been used in
Ref. 12. However we find that both prescriptions of -the
CP-conserving pion-nucleon coupling give rise to the
essentially same result. Note that the equivalence of the
axial-vector coupling and the pseudoscalar coupling is
nontrivial in our case due to the off-shell propagation of a
nucleon in the diagram [see Fig. 1(b)] responsible for the
NEDM (Ref. 22). For the NEDM from the CP-odd nu-
cleon mass, our method of estimating the size of the CP-
odd nucleon mass within the chiral Lagrangian is com-
pletely different from the one used in Ref. 14 and thus
would be an independent check of the result of Ref. 14.

The CP-conserving part of the effective Lagrangian
describing the interactions of the nucleon doublet
N = (~~ ), the isotriplet pions m, ( a = 1,2, 3 ), and the elec-
trornagnetic fields includes
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(
—)"m„mda —28

(
—)"m„+md

h, Ni y 5N +h 2 Nr'N

(4.6)

where

NEDM can be obtained from the chiral Lagrangian of
Eq. (3.16) and then we find

~Lc~

Then it has been observed that, with a reasonable choice
of the Yukawa coupling of g' to the nucleon, h, can be as
large as 20. Even though the range of hi given in Eq.
(4.9) contains a region which is in broad agreement with
the result of Ref. 14, our method of estimating h, via the
chiral Lagrangian indicates that h, can be much smaller
than the value obtained in Ref. 14. We will not discuss
the ambiguities in both approaches of estimating h, any
more because here we are more interested in the intrinsic
current mass dependence of the NEDM. Then we ob-
serve that both D„' and D„are proportional to

h ) =2(1+A2 —A, , )[(3+e)S„+2D„],
h2=2(1+A2 —A. , )(Fi,+Di, ) .

(4.7) m„50
( —)"m„+md m,

L

1+A, 2
—Xi

1+A, 2

Here e=A&(1 —
A&

—
A2

—2Az)/(A2+A3+A2A3)(1+F2—
A, , ) and

~
e~ & 0.5 for the values of A,, 's in Table I (with

the assumption A, „=A,3), and thus this will be neglected
in the following. Our chiral Lagrangian also gives the
phenomenological relations (see Appendix B for the de-
tails and notations)

F ~=- —~x 65 Mev
2(1+A2)m, (1+A2)m,

(4.8)

2(1+A2)m,

3&3
NXK ÃNr]

&3 G~px +3.2

which give rise to

X ( —150—1300)MeV,1

(1+A.2)m,

1+A2
h, = X (

—300—2600) Me V,
(1+A@)m,

1+A2 —A, i
h2 —— X130 MeV .

(1+A2 m,

(4.9)

The CP-violationg interactions of Eq. (4.6), combined
with the CP even interaction-s given in Eq. (4.5), give rise
to the NEDM through the diagrams of Fig. 1. Following
Refs. 12 and 14 we obtain

~D„~= ~8
( —)"m„+md

eh ipn

2' N

/Db/= a8 ™
( —)"m„+md

(4.10)

eh2g~ ln(m~/m )

4' f
where D„' and D„denote the NEDM from diagrams (la)
and (lb), respectively.

The Goldberger-Treiman relation g zzf =g„mz as-
sures that D„computed via the axial-vector pion-nucleon
coupling is the same as the result of Ref. 12 which was
obtained by using the pseudoscalar pion-nucleon cou-
pling. In Ref. 14, the size of CP-odd nucleon mass was
estimated based on the assumption of g'-pole dominance.

60
( —)"m„+md

1+X2 —0.56K, i

1+A2+A. )

(4.11)

the experimental bound of D„(Ref. 23), viz. ,
~D„~ & 10 25 ecm, can be used to obtain the bound on
+8m /[( —)"m„+md]. As the most stringent bound
possible in view of the values of h

&
and h 2 determined as

in Eq. (4.9) we find
r

1+A, 2
—0.56K, )

1+A2+ ~1
&3XIO "

( —)"m„+md

(4.12)

If we consider the limit of negligible instanton correc-
tions, i.e., A, &=A2=0 and thus n =0, m„/md=0. 56, the
experimental bound on the NEDM would imply
~b, 8~ ~10 ' . However as we have discussed already,
m„/md can be arbitrarily small due to the instanton
corrections. Therefore the extremely small NEDM does
not necessarily require ~b, 8~ to be smaller than 10
For example, in the case of m„=0 which can be perfectly
consistent with the low-energy phenomenology in view of
our previous discussions, b,8 (or 8= n ir +b 8 ) can take
any value and its effect is not observable. An immediate
consequence of this relaxation of the phenomenological
bound on 60, is that many of the models of spontaneous
CP violation' which predict ~b, 8~ ))10 ' and thus
have been considered to be not viable phenomenologic-
ally can now be acceptable.

Finally let us brieAy consider the implication of the ar-
bitrarily smaller value of m„/md to the axion models.
Of course if m„/mz ~ 10 ', axion is no longer motivat-
ed because in this case we do not have any fine-tuning
problem for 0. However in principle we can contemplate
the situation in which m„/md ))10 ' and thus still b.8
is required to be very small. As is well known, in the ax-
ion models, O=n~+ 60 is dynamically relaxed down to
zero. By solving the equation of motion for the axion
field a which is defined as 8=a/f, where f, denotes the
axion decay constant, we always arrive at the CP-
invariant vacuum (8)= (a /f, ) =0.

The axion potential V,s[a] can be obtained from the
meson potential of Eq. (3.8) by replacing the meson field
X by its axion-dependent vacuum expectation value
(X)= exp(i(n ) )= exp(2iX) [see Eq. (3.12)]. Then we
find
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V [a]=—. A, AdetMe' +u (I+A, e' + " ') tr(Me ' )+A. detM tr(M 'e ' + ')a a — . o e
S

ei (0+2 trX) (4.13)

where

r

a md mu mumd
diag m„+ md m„+md (m„+md )m,

2kz+ A,3(1+A, z
—A. , )

Az+A3(l+Az)
(4.14)

10=—f dp, D(p)Z (p/A) . (4.15)

Note that the first term of the axion potential, with the coefficient A, o, has not been included in the meson potential be-
cause it has nothing to do with the meson dynamics. The axion mass from this axion potential is

2 2 d
ma fz m„+m„

mu md
AOAm, (m„+md)+u w (I+Az)+(3 —2w)A, , +z (Az+k3)

m„+my m
(4.16)

where

w =[Az+A3(1+hz)]/ Az+A3(l+Az)+ (1—
A, , —Az+A3+A3Az A3Aj)

(m„+md )m,

mumd
z =[1—1)—Az(I+2hz))/ Az+A3(1+hz)+ (1—A) —Az+A3+A3Az A3k))

(m„+md )m,

(4.17)

In fact one can obtain the temperature-dependent
axion mass by considering the temperature dependence
of A,, 's (a =0, 1,2, 3) which is determined by the
temperature-dependent instanton density D(p:T) (Ref.
25) and also of u ( T) which is the order parameter of the
spontaneous chiral-symmetry breaking in @CD at the
temperature T. For example, at T=0, with A,z+A, 3(1+
Az) ))m„md /(m„+md )m„we get the usual formula for
the axion mass

2U
mg =

f2

m md

m„+md
( I+A, , +A,z)

m„md fm

(m„+md) f,

'2

(4.18)

where the formula for the pion mass

m =2u (m„+m„)/f
=2u (m„+md)(1+A, , +A,z)/f

is used for the second line of the above equation. At the
high-temperature limit of the chiral-symmetry restora-
tion, viz. , u(T)=0, the axion mass is simply given as
m, =2Am„mdm, A.O(T)/f, . In any case, the axion mass

squared is proportional to m„/md for all temperature
range. Therefore if m„/md is much smaller than the
usually quoted value 0.56, the cosmological upper bound
on f, (Ref. 18), i.e., f, ~ 4 X 10' GeV, obtained from the
consideration of cosmological axion energy density can
be relaxed up to the value much larger than 10' GeV.
Note that in the limit of m„=0, even though the axion is
not strongly motivated in this case, the axion is massless
and thus there does not exist any cosmological upper
bound on f, . This relaxation of the cosmological upper
bound on f, due to the very small value of m„/md may
be applied for some superstring models which predict the
existence of the axion with the decay constant f, = 10'
GeV (Ref. 26). A detailed discussion on the cosmological
axion energy density for an arbitrary value of m„/md
will be discussed elsewhere.
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2
2

4m
2 3

U (A) J D(p)Z(p/A),8p
p

(A1)

' ' ' J ""D( )Z'( /A)
3 m (A) ps

APPENDIX A: NUMERICAL ESTIMATE
OF THE STRENGTH OF INSTANTON EFFECTS

In this appendix we provide an example of the numeri-
cal estimate of the renormalization-group-invariant pa-
rameters

2

m, (A) J ~ D(p)Z '(p/A)
p

where U (A)5; = —(O~q;Lq+ ~0) for the quark fields re-
normalized at the scale A. For the evaluation we use the
instanton calculus, based on the semiclassical instanton-
gas picture with the background gluon condensate, whose
physical meaning has been elegantly explained in Ref. 2.
Because of the lack of quantitative understanding of the
infrared behavior of QCD, our estimate is not reliable
enough so that it should be understood as an order-of-
magnitude estimate. However we believe it provides a
useful guideline for the numerical values of A., 's.

The instanton density D(p} which includes the effect
of gluon condensate was obtained by Shifman, Vain-
shtein, and Zakharov as

T '6

D (p ) =3.64 X 10
a(p}

2~
exp 1—

a(p) 16a(p)

where a(p) is the running QCD fine-structure constant
and ((a/~)FF) denotes the gluon condensate. A naive
use of the above expression over all scales gives rise to an
enormous infrared divergence. Therefore it is important
that we restrict ourselves to instantons of relatively small
size. Here we introduce an infrared cutoff for the size of
relevant instantons and put our renormalization point A
as this infrared cutoff scale. It is assumed that at energies
below A, the semiclassical picture of instantons is no
more valid and the large size ( ~ 1/A) instantons are
effectively destroyed. In Ref. 2 it was argued that the in-
stanton density of Eq. (A2) is valid (at least qualitatively)
up to scales above SOO MeV and thus we expect A to be.
not far from 500 MeV.

The numerical values of A,, 's strongly depend on our
choice of the infrared cutoff A. In Table I we present the
values of A,, 's for 620 MeV & A & 695 MeV which is be-
lieved to be the most probable range of A in view of our
later discussion. For numerical analysis we use

a(p) = [2ir/9 ln(p/A~&)],

Z(p/A) =[a(A)/a(p)]

A I
(A4)

Then from the chiral Lagrangian of Eq. (3.16) we find

(1 —2A,~)

AB (1+X~)(1+4A~+9A3)
(A5)

This quantity can also be expressed in terms of m„, m „',
and the g-g' mixing angle 6 as

r2
AB

(m „—m „) sin e cos e
(m„cos 8+m„sin e)(m„, cos 6+m„sin 6)

(A6)

Phenomenologically the most favored value of e (Ref.
29) is —20 . Then by inserting m„=549 MeV, m„=958
MeV, e= —20' to Eq. (A6), we obtain I /AB =0. 124.

However the value of I /AB obtained from Eq. (A6) is
very sensitive to 6 whose value is also sensitive to the po-
tential corrections which are ignored in our approxima-
tion. For example, within our approximation, we have
the Gell-Mann —Okubo relation

0 —FF 0 = 330 MeV
3 =—mz ——'m =m cos 6+m ~ sin 6 (A7)

(O~qq~O} =2U'(A)= f m /(m„+m„),
m„=(m, /36) =(1+A~)m, /36,

m& =(m, /20) =(1+A&)m, /20,

(A3)

m, (1 CseV)=200 MeV, A~&=200 MeV .

The value of the gluon condensate is taken from Ref. 28
which estimates it from the charmonium decay.

The reasoning which leads to the range of infrared
cutoff scale 620 MeV &A&695 MeV is as follows. The
allowed range of A., 's can be constrained by the g-g' mass
matrix (upon neglecting the mixing with eric)

which gives rise to 6= —10 . This discrepancy between
the value of 6 determined from phenomenology and the
one obtained by using the Gell-Mann —Okubo relation in-
dicates that much of the observed mixing angle (= —20 )
is the result of the higher-order corrections ignored in
our approximation. Note, for example, that the potential
chiral loop corrections to the off-diagonal mass term r,
which is expected to be of the order of 10%%uo of 2, can
change 6 by the amount of the order of 10'. Therefore
based on the above observation, here we will effectively
take into account the whole ambiguity of our approxima-
tion by considering the following range of 6:

—35 &6& —5
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while fixing m„and m„as their experimental values.
Then for the above range of 6, Eq. (A6) gives

p2
0.01+ +0.23 .

AB
(A9)

This range of I /AB can be realized via Eq. (A5) for the
range of the infrared cutoff scale

620 MeV ~ A ~ 695 MeV, (Alo)

where the corresponding values of A,, 's appear in Table I.
For this range of A, let us check the validity of our in-

stanton calculus at A ~ 620 MeV, which can be tested by
evaluating the quantity

appear in the chiral Lagrangian. As is well known, I and
D can be determined by the nuclear f3 decay and the
semileptonic hyperon decay which yield '

I =0.45, a=0.8.
Also recent European Muon Collaboration (EMC) data
can be used to determine S as

S =0.15+0.3 .

For the SU(3)-breaking parameters, e.g. , F~, Dv, etc. , we
are interested in the parameters which are relevant to our
discussion on the electric dipole moment of the neutron.
With the chiral Lagrangian of Eqs. (3.6) and (3.16) we
filnd

D, (sA)=
A

0)q, q, )0

A

APPENDIX B. STRONG-INTERACTION
PARAMETERS IN CHIRAL LAGRANGIAN

Here we briefiy discuss the phenomenological deter-
mination of various strong-interaction parameters which

(Al 1)

This quantity corresponds to the number of instantons of
size A ' within the space-time volume A ". If
D,z(A)=1, then the instantons are closely packed and
thus the semiclassical instanton-gas picture would be no
longer valid. In our case we have D,tr( A 620
MeV) ~

D, (sA= 26OMeV) =3X10 which implies that
the semiclassical instanton-gas picture is a reasonable ap-
proximation.

Finally we consider the dependence of our results on
the values of the input parameter m„AMs, and
((a/n)FF ). Our choice m, =200 MeV, AMs =200 MeV,
((a/w)FF ) (330 MeV) is a reasonable one in view of the
various estimations of these input parameters and is tak-
en to provide a suggestive example showing that the in-
stanton corrections can be strong enough to completely
change the usual conclusion on m„/md and 9 which has
been, obtained without taking into account instanton
effects. However the magnitude of these input parame-
ters are uncertain to a somehow large extent. Then one
can easily see that for larger (smaller) input parameters,
the resulting instanton corrections become stronger
(weaker). Recent studies of the @CD sum rule indicate
that the gluon condensate is larger than (330 MeV)
which is the value used here. Therefore for the values I,
and AQCD less than 200 MeV (as long as they are still
reasonable), we can obtain a similar conclusion on the
strength of instanton corrections.

I

2&3fG~Ax = (D +3F)(m~+ m A )

—2m, (1+A2)(D„+3F~),
2fG~zx =(D —F)(m„+m~) —2m, ( 1+A2)(D„F„),—

where mz, mz, and en= denote the corresponding baryon
masses; f =93 MeV is the pion decay constant; and
G~~„, G~«, and G~z~ denote the coupling constants of
Yukawa interactions gXiy5%, Koniy5A, and Koniy5X,
respectively. These Yukawa coupling constants are
defined at the Born approximation and thus include the
contributions from both the SU(3)-invariant meson-
baryon axial-vector couplings and the SU(3)-breaking
meson-baryon pseudoscalar couplings in the chiral La-
grangian of Eq. (3.16).

The phase shift analysis of the baryon-baryon scatter-
ing amplitudes within the Born approximation gives rise
to the following values of the Yukawa coupling con-
stants:

G~~q=7 —10, G~« =13—16, G~~~ =1—7 . (84)

Then, together with the baryon masses, the above phe-
nomenological information allows us to express the
strong-interaction parameters in terms of (1+F2)m, . For
example, we obtain the following expression for the
strong-interaction parameters which appear in the CI'-
violating interactions of Eq. (4.6):

2(Dy+F~)(1+A2)m, =m- —m~,

2(DV F~)(1—+A.2)m, =m~ mz,—

&3fG~~„=(3F D)m—~+4m, (1+A,~)(S~ +D~ F~ ), —

(B3)

F~+D~=(m= —mz)/2(1+A~)m, = 65 MeV
1+F2 m,

+ 3&3 — ( —150—1300) MeV
NxK 2 NNg NAK

(B5)
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