
PHYSICAL REVIEW D VOLUME 40, NUMBER 3 1 AUGUST 1989

Pion Auctuations around a moving and rotating Skyrmion
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Fluctuating pion fields around a moving and rotating Skyrmion are quantized by Dirac's method.
Both the rotational and translational collective motion of the Skyrmion are described by collective
coordinates and then all six zero-frequency modes of the pion field are eliminated. The method al-
lows us to treat fluctuations around a soliton consistently with its collective rotational and transla-
tional motion. Pion-baryon linear couplings are studied and the h~N~ decay rate is calculated.

I. INTRODUCTION

For the past several years, the Skyrme model, in which
the nucleon emerges as a soliton of a nonlinear pion field
equation, has provided us with some important under-
standing of hadronic structure at low energy. ' Its close
tie with quantum chromodynamics is its main strength in
comparison with most other baryon models. The nu-
merical predictions for many static properties of the nu-
cleon, such as nucleon size and magnetic moments, are
typically within 30%%uo of the experimentally measured
values. ' The model is successful also in describing the
qualitative behavior of pion-nucleon scattering amplitude
in high partial waves, although it is not so satisfactory for
the lower partial waves.

The nucleon-nucleon interaction has also been studied
in- the Skryme model. The static potential between two
solitons has been calculated. A strong short-distance
repulsion and a long-range one-pion-exchange potential
are well reproduced, although the medium-range attrac-
tion, which is responsible for the nuclear binding, does
not appear in the static potential. In the conventional
picture of the nuclear force, an effective pion-nucleon
field theory with Yukawa coupling is remarkably success-
ful. The medium-range attraction is attributed to two or
more pion exchanges between nucleons. In the Skyrme
model the two-pion exchanges are not described at the
classical level. Therefore the pion field must be quantized
around the Skyrmion. We must also understand the
correspondence between the quantized Skyrme model
and the effective pion-nucleon theory. The relationship
may not be straightforward, because one naively expects
no linear (Yukawa-type) pion-Skyrmion coupling.
Remember that the Skyrmion is a stable classical solution
of the Euler-Lagrange equation for the pion field. Any
linear quantum Auctuation must vanish around such a
solution.

It has been pointed out, however, that two global sym-
metries of the Lagrangian, i.e., the isospin (or spin) rota-
tional invariance and translational invariance, modify the
naive quantization. The classical soliton solution breaks
those symmetries of the original Lagrangian. Thus in
quantizing field Auctuations around the soliton, one en-

counters zero-frequency modes associated with the bro-
ken global symmetries. Schnitzer was the first to devel-
op a systematic chiral expansion of the pion-Skyrmion
system. But in his early work, the zero modes were not
treated carefully. More recent work shows that the intro-
duction of collective coordinates and the elimination of
the zero modes induce a new linear Yukawa-type pion-
nucleon coupling. The method of the Dirac quantiza-
tion ' has been applied by Saito, Otofuji, and Yasuno"
to the standard Skyrme model and by Zahed and his co-
workers' to the vector-meson stabilized version of the
Skyrme model. Work along this line also includes that of
Holzwarth, Hayashi, and Schwesinger. ' In most of the
above-mentioned work, three zero-frequency modes asso-
ciated with the translational motion have been ignored.

In this paper, we discuss the quantization of field Auc-
tuations around the single Skyrmion with all six zero-
frequency modes being taken into account by introducing
both the rotational and translational collective coordi-
nates. The formalism is analogous to Ref. 12, where the
Dirac quantization method is applied to a gauge-field sol-
iton. Our main aim is to study the effects of the transla-
tional motion of the Skyrmion in the pion-baryon cou-
pling. In Sec. II, we present the Dirac quantization
method for the Skyrme model. We introduce collective
coordinates for the rotational and translational motions
of the Skrymion as well as quantum Auctuations around
the soliton. Then zero modes are eliminated by imposing
constraints on the quantum variables. Under the con-
straints, the quantization leads us to a Hamiltonian
which contains a Yukawa-type coupling of the pion and
Skyrmion. In Sec. III, the pion-baryon coupling matrix
elements are calculation. We use a plane-wave approxi-
mation for the pion field. Comparing the coupling matrix
element with the effective pion-nucleon (b, ) field theory,
the coupling constant and the form factor are calculated.
The 5—+Nm decay rate is calculated as an example. Be-
havior of the form factors obtained is discussed. Con-
clusions and discussions are given in Sec. IV.

II. THE DIRAC QUANTIZATION

We choose the simplest Skyrme-model Lagrangian
given by
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X(x)=—Tr[B U(x)i3" U (x)]
f2

4 p

+ TrI[B„U(x)U (x), B U(x)U (x)] I
32e

2 2

+ Tr( U —1)
2

with 5T=5,"—P, P. and P; =P;(x)/P(x). The magnitude
of P is defined by P = (P; )'

Substituting (2) into (3), we find that the generalized
momenta defined by

BL
I,=, P;=

BA.

with

U(x) =exp(ir. /If ),
satisfy constraint equations (f constraints according to
Dirac )

p'(x, t)= A, , (a(t))p', (x—q(t))+2}'(x, t), (2)

where 2} '(x, t) is the time-dependent pion field and p, (x) is

the hedgehog soliton in its rest frame, Up(x)
=exp[i'. P, (x)]. a(t) represents three angles specifying
the isospin direction of the soliton. We find it convenient
to recast the Skyrme Lagrangian into a diFerent form be-
fore we substitute (2) into (1):

X(x)= ,'d„P'K, d"PJ m—f(1 —c st—/f ),
where

K, =g,, + X,, r}„P'd„P (ij, . . . =1,2, 3)
1

e

and

(3)

(4)

where the first term is the Lagrangian of pion fields P/f
in the nonlinear sigma model and the second term is the
Skyrme term introduced to stabilize the soliton solution.
The third term introduces the pion mass. The Skyrmion
is a chiral-soliton solution for the above Lagrangian with
hedgehog symmetry:

Up(x)=exp(ir P, /f )=e px[ir rF(r)],
where the chiral profile F(r) satisfies the boundary condi-
tions: F (0)=~ and F ( ~ ) =0. The Skyrme Lagrangian is
invariant under an isospin SU(2) rotation: U~ A U A

with an arbitrary A C:SU(2) matrix. A rotating soliton is
described by promoting 3 to a time-dependent collective
coordinate. By quantizing the collective coordinate, one
obtains the physical states with definite spin and isospin
corresponding to N and A. The Skyrme Lagrangian is
also invariant under spatial translation U(x)~ U(x —q).
Again we can promote q as a time-dependent collective
coordinate and quantize it. For a moving soliton, the
quantization adds the kinetic energy term to the Hamil-
tonian to the lowest order in P (Ref. 14).

Next we introduce quantum Auctuation around the ro-
tating and moving soliton:

x, &
I =0,

Bcx;

yl =0,a ~
I'; — E. x, t 3 I

Bg;

where i, i ' = 1,2, 3. Here, as well as in the rest of this text,
the integration is understood as integration over x,
i.e., f = f d x. By defining

(10)

With naive canonical commutation relations (Poisson
brackets)

IP„Qb] =5,b (a, b=l, . . . , 6),
IE;(x, t), 2}J(y,t)I =515(x—y) (i j =1,2, 3),

we see that Eqs. (10) are the first-class constraints of
Dirac;" i.e., they satisfy

The Hamiltonian is determined only up to linear com-
binations of the P, 's:

H'=H+A, ,Q, ,

where the A,, 's are arbitrary functions of P and Q. The
canonical equations of motion derived from such a Harn-
iltonian will therefore contain some arbitrary functions.
(The number of the arbitrary functions in the general
solution of the equations of motion is equal to the num-
ber of independent first-class constraints. ) To eliminate
this arbitrariness, we impose the following "gauge" con-
ditions (X conditions):

Q. =(a, (t), q,'(t)}, P.=(I, ,P, ),
with i,i ' = 1,2, 3 and a = (i,i '), Eq. (g) can be expressed in
a more compact form:

sin( / ) ri;K; A.ig,'=0 (a. =1,. . . , 6), (12)

(6)

sin (Plf )
X;i. ($)=(5; 5i —5; 5i )J J m ™J (P/f )4

+(5;,0 Pi+5 i4;4, 5;i0 4'&-
sin (2P/f )

4(glf )'

which satisfies

The physical meaning behind it is clear: the pion Auctua-
tion should be orthogonal to the infinitesimal translation
and rotation of the soliton. The set of constraints includ-
ing both (10}and (12) is second class now. Therefore, ac-
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cording to Dirac, by appropriate modification of the
canonical brackets (11), the system can be described by
the ordinary Hamiltonian equation of motions. Canoni-
cal quantization can then be carried out in the usual way.
The transformation to a new variable set, rr and P,

a~y,
%.= rr Pp-

a
(13)

where

any, any,
pb f ILK

a~y,
=,b

= f r)I —(a, b —1, . . . , 6 (15)

P=P(1—
JLt

'= —p, '0),
is canonical and satisfies

pg+ f~q=pg+ f ~q+pq 'f rc-
ag

=Pg+ j~q,

BAQ,
b f9gg

(14) In terms of the new variables 5. and P the Hamiltonian is

H=pg+ feq jx-
= —f,'~K 'Tr+ f —,'V'( AP, +r))ICV'(AP, +rt)+m f„[1—cos( AP, +g)/f ]

+ — 1 p ~ p 0 p 1 p ~ p (16)

and the /=0 condition becomes

f, —:f 5; (A, ig,')=0 (a =1, . . . , 6) .a
' Bg,

(17)

It is easily seen that we obtain pion-nucleon coupling
of order N, ~, which is of higher order by 1/N, than
the ~-X coupling expected in chiral symmetry. ' In fact,
the Goldberger-Treiman relation

The conditions (12) and (17) require that m and il be or-
thogonal to the zero modes (a/ag. )( A,.,P,').

Further simplification can be made if we introduce
soliton-fixed fields g and ~ via

rt (x, t)=A, '(~)i) (x+q, t),

~;(x, t)= 3, '(ct)F~(x+q, t) .
(18)

Equations (10), (12), and (17) will be made independent of
u and q with the aid of (18).

We next expand the last term of our Hamiltonian (16)
in terms of the pion field g. As expected, the
independent terms include the rest mass M and the rota-
tional and translational kinetic energies of the Skyrmion:
I /2A+I' /2M, where A, moment of inertia, and M,
mass of the Skyrmion, are the diagonal matrix elements
of the matrix p.

The-terms that are linear in q represent Yukawa-type
couplings of the pion field to the soliton (N or 6} of the
form

H~= —,
' I,P po

' —pl+:-1+=)+0&+Bi po
' I,P

(19)

i,j,i ',j= 1,2,3 where we have expanded p, =, and 0 in the
power of g, p =pa+ p&+ . , etc. , so that the matrix M
is linear in q. The explicit form of M is given in the Ap-
pendix.

~Asi 4~f ex= F„

leads the pion Yukawa coupling constant f zz of order
of +N, . This is also consistent with the order of the
one-pion-exchange energy between two nucleons. How-
ever, the Hamiltonian (16) for the Skyrmion-pion system
does not have a O(QN, ) coupling, while the leading Yu-
kawa coupling is given by (19). The 0(+N, ) coupling
vanishes in the Skyrme model due to the stability condi-
tion of the soliton solution. The soliton is a solution of
the Euler-Lagr ange equation and therefore is stable
against a linear Auctuation. Thus no linear coupling of
the pion (fluctuation) is allowed. The Yukawa term (19)
emerges in imposing the constraint conditions, i.e., by the
canonical transformation (13).

This apparent inconsistency can be solved by distin-
guishing the classical (or static} and the quantal (or non-
static) couplings of pion and nucleon. ' Because the
Skyrmion is a solution of the classical equation, it is
dressed by a static pion configuration (pion cloud) around
a bare nucleon. This is analogous to the Coulomb field
around a point charge. Indeed, if one places another
Skyrmion at a distance R apart, then the total classical
energy (order N, ) of the system contains a Yukawa po-
tential, whose coupling is of the order of QN, . When we
consider the Auctuation around the (dressed) Skyrmion,
we obtain the "leading" Yukawa coupling (19), which is
the lowest-order nonstatic coupling. In the elec-
tromagnetism, the nonstatic coupling is the coupling of
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transverse photons via the spatial current, say
e%'y 4—e (P /M )%f, which is of higher order of
1/M —1/N, .

III. PION EMISSION MATRIX ELEMENT

In dynamical processes such as X—+Km and A~Na,
where a nonstatic pion is emitted, we must evaluate the
matrix element of the nonstatic Yukawa coupling H~ of
Eq. (19). Here we use the plane-wave approximation.
Namely, instead of using the solution of the pion equa-
tion of motion derived from the Hamiltonian (16), we em-
ploy the plane wave

1
g, (x, t)= f d k [a,&exp(ik x —icokt)+H c ]., .

+2cok V

(20)

where a,k is an annihilation operator of pion field with
isospin index c and momentum k. This approximation is
allowed only for large pion momentum k, while for a
small k the pion wave will be modified by the zero mode,
because all the continuum solutions must be orthogonal
to the zero modes. We neglect pion distortion in the
present calculation, because the complete solutions are
very complicated and we are interested here only in quali-
tative behavior.

The matrix elements of Mr defined in (19) are calculat-
ed for the N'~N+ m process:

&N, p, ~', k~H, ~N', p) =i &N~r (~k)IN'&

X5(p —p' —k)u "~~(k) (21)

massless pion, the pionic cloud in the classical Skyrmion
solution falls off as p and thus the form factor diverges
quadratically. This does not happen for a realistic pion
mass m =138 MeV, with which our numerical calcula-
tions have been done.

The Hamiltonian (19) is not Galilei invariant. The
above calculation was done in the rest frame of the initial
baryon and therefore we set P«, =0. Then the last term
of Eq. (19) does not contribute to the matrix element.

The quantum Hamiltonian H~ is not uniquely defined.
Instead of (19) we may choose

Hr= ,'(l, l M—; +M, I;I )+. (24)

2m~+ M' 12&2 '

2m& 2m& 2d 2m~u~ = ——'4c +'c +
MA 15 M' 90

(25)

which has the same classical limit as that of (19) but will
end up with different quantum theory. It is impossible to
avoid this ambiguity in our derivation of H . In fact any
linear combination of (19) and (24), aH&+PHD, with
a+@=1 is just as good as (19). Let us call Hr in (19) as
ordering A and Hr in (24) ordering 8 and repeat our cal-
culation for the ordering B to see how much our final re-
sults change. In place of (24) we now have

2m~ 2m' d 2m' h
u = ( ——')c + —+

M 18

2m~ 1 2m
—( —10c„——", ct, )+

with the form factor

2m~ 5 2m~
u "~~(k)=

2
—[cq(k)+ce(k)]+

A

where

d(k)
6

h(k)= ,' f T—,+2T, + 3T3
5

3j,(kr)k d r . (26)

where c„, cia, and d are defined in Eq. (22) and h is
defined by

3ji(kr)
cz(k)= —

—,', fRi d r,
3ji(kr)

c~(k)= —,', fR~ d3r,

d (k) =
—,
' f (3Ni =N2+N3)jo(kr)d r .

(22)

The definitions of the functions R and X are given in the
Appendix and r =2ef x is a dimensionless radial vari-
able and k the momentum in units of 2ef . Similarly,
b, ~nN and b, ~nb, matrix elements are given by

2m~ 5 2m~ 1
u INK 2

—( 4CA CB )+
A 8 2 MA 2V2

2m~ „2m~ 2d
3O

c~ +
3O cubi ) +

A

5d
2

(23)

The form factors c„(k) and cia(k) are divergent at
k =0 if m =0, because R, -2R2 fall off as r for large
r This is an .artifact of the chiral limit (m =0). For the

In numerical calculations we employ two sets of parame-
ters: (1)f =54 MeV and e=4. 84 (Ref. 3); (2) f =93
MeV, and e =7.00 (Ref. 4). The first two rows of Table I
show the +X', etc., "coupling constants, " which are
defined by g»=u» (k =0), etc. Note that this is not
the static mÃN coupling constant, but rather represents
the strength of the nonstatic coupling. Corresponding
form factors E(k)=u(k)/u (k =0) are plotted in Figs.
1 —3. The form factors we obtained are very soft. The
numerical results for ordering B are given in the third
and fourth rows of Table I. Now the values of g && and
g zz are reduced by almost 50%. But the magnitude of
g &z has increased by a factor of about 3. Also the sign
(relative to g z& and g zz) of g zz has been changed.

Table II shows contributions of various terms of Eq.
(19) to the coupling constants. Note that we would only
have the first term of Eq. (19) if we had not considered
the translational zero modes. We find that the first term
gives the major contribution (about 80% to 90% depend-
ing on the particular coupling constant), while the second
and third terms account for a 10—20% effect. The last
term has no contribution at all to coupling constants be-



PION FLUCTUATIONS AROUND A MOVING AND ROTATING. . . 887

EJl

CI

Cl
O CI

Cl

4 Ill

K

4
0

I

Q Cl

X:
a&
t O
CC
I

CD
4J

I

CC

4J O
CD

I

P4
CI

O
D

eeeee eeeeeeeeee e
O

e e ee e eeeee
e e ee

0.00 0.25 0.50 0.&5 I .25 1.50
1

2.00 0.00 0.25 0.50 0.FS 1.00
4

1.25 1.50 1.75
I

2.00

cause h (k =0)=0.
The 6 decay width can be calculated using the formula

u+~ )=g.x~F.~~«)++ + 2 Z

12~ m'm~

with ~k~=225. 61 MeV/c and E =(k +I )'~ =966.7
MeV, which gives I =0.2705g ~zF &&

= 17 MeV for pa-
rameter set one and =61 MeV for parameter set two.

(27)

FIG. 1. Calculated ~NN form factor E &z(k) as a function of
three-momentum transfer k in unit of 2ef {=523 MeV/c). The
solid line is for the A ordering and the dashed line is for the B
ordering.

FIG. 3. Calculated mhh form factor F z&.

With the 8 ordering we get for the b width I =350.94
MeV for parameter set one and 620 MeV for parameter
set two. The experimental value is I,„,=115 MeV.
Similar calculations on the 6 width without including the
quantization of the translational motion have been per-
formed by Saito, " Hayashi, and Schwesinger' using the
standard Skyrmion model and Adami and Zahed' with a
vector-meson stabilized Skyrrnion model.

IU. CONCLUSION AND DISCUSSION
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FIG. 2. Calculated mN4 form factor F &~.

We have applied the Dirac quantization method to the

fluctuating pion field around a moving and rotating Skyr-
mion with all six zero-frequency modes eliminated. The
pion-nucleon and pion-5 coupling matrix elements have
been calculated and the 6—+Km decay width evaluated.
Though the coupling strength obtained agrees with that
of phenomenological pion-nucleon (b, ) effective field

theory within an order of magnitude, the ordering ambi-

guity in the quantization has prevented us from giving an
unambiguous prediction. We found that the contribution
of the translational motion of the Skyrrnion to the mX
coupling is less than 20%. This mainly because the iner-
tia M for the translation is much larger than A for the ro-
tation.

The form factors we obtain are very soft compared
with the known h~m. X form factor. It has been suggest-
ed that the pion-nucleon vertex form factor becomes
harder when vector rnesons are introduced explicitly into
the model Lagrangian. ' '

The static pion-baryon coupling constant can be ob-
tained from the asymptotic (large-r) behavior of the soli-
ton profile. It is known that the pion-nucleon coupling is
consistent with the axial-vector coupling constant gz via
the Goldberger-Treiman relation. The semiclassical eval-
uation of the axial-vector current of the nucleon satisfies
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TABLE I. Calculated pion-nucleon "coupling constants, "g»=U» (k =0), etc. The first and
second rows are those predicted by the ordering-A quantum Hamiltonian (19) with f =54 MeV,
e=4.84 [those introduced by Adkins and Nappi (Ref. 13)] and f =93 MeV, e =7.0 [those introduced
by Jackson and Rho (Ref. 4)], respectively. The third and fourth rows are obtained using the ordering-
B Hamiltonian (24) again for the two sets off and e.

AN"
JR

JR

8 n.NN

24.54
27.05

—13.06
—13.92

g AND,

—48.23
—61.44

—151.4
—177.8

17.26
20.43

—9.58
—10.58

g~w~ ~g~»
—1.96
—2.33
11.59
12.76

g~~~ ~g~»

0.70
0.73
0.73
0.77

the PCAC (partial conservation of axial-vector-current)
relation, too. Such classical pion-baryon coupling, how-
ever, does not describe dynamical pion-nucleon process-
es, such as b —+N~ decay, because the pion is not a quan-
turn particle but is treated as a classical field. Although
the classical approach gives the static one-pion-exchange
potential between two nucleons, the two-pion-exchange
force does not appear unless the pion field is quantized.
The present quantization of the pion Auctuation around
the soliton will, in principle, give an efFective pion-
nucleon field theory with nonstatic couplings. ' (In anoth-
er paper, we have shown that the covariant one-meson-
exchange amplitude can be obtained by including such
nonstatic meson-soliton coupling in 1+ 1 dimensions. '

)

+
p& j j k 2 &jp j N3 A2

with

2$1
rF f e

2s (y")
rF

s'
r F

where F=F(r) is the Skyrmion profile and s =sin(F),
c =cos(F), and F'=dF'/dr i)& =. ilk(x, t) is the soliton-
fixed pion field:
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APPENDIX

The expressions of the matrix M in Eq. (19) are given
below:

+ 1

f2e2

2scF'3— F
2$

rF

2$ F" $ F'
r 2

4sc s3 4

r r F

2sc(F') 2s (F')
r r

(A3)

M,"= f rl„[5, r„R, +(5;„r,+5,„r;)R2]
A

with

+ 1

f2e2
s (F') 4s (F') 4s cF'

Fr Fr 2

2s4

Fr

R& = —2sc+ 1 2 „4s2s F"+ F'+2sc(F')—4$ c
f2e2 r r 2

J

(Al)

M, , , = f rtk[5; 'rkT, +(5; kr'+5J kr; )T2~l ~2

2
1

2 4

R2 = + (F')—
f2 2 F Fr2

with

+r; rj'rk T3], (A4)

TABLE II. Different contributions to the "coupling constants. "

Rot. only
Total

22.51
24.54

B

—11.03
—13.06

—58.98
—48.23

B
g mNh

—153.5
—151.4

A

18.88
17.26

—7.96
—9.58
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2F'1—
r

2sc 1

r2 f2e2
4s F'

r 3

2s F
r4

2s'
4F2

+ 1

f2e2
2$ sc F

2$ 4
+(F') +

Fr4
2s FF' 2s F" 4sc(F')+ +

r r r

2s 2 2scF' 2s 2F'

F' F F'
1 2s2, F

f 'e' F'r
2 2 2 I

+(F')' + i — +
r 2 r3 F2 r

c —— (F') +$, 2 2$
r2

1

f2e2
s F' $21—
r 3 F2

s 2s (F') s FF' s (F') 2sc(F')3 2s2F'F"
Fr Fr r r r r

(A5)

T3 =2F"+ 1

f2e2
6s F" 4sc(F') s 2s (F') 4sc(F') 4s F'F"

+ c ——+ + +
r 2 2 F r

4sc (F')
r 2

T. H. R. Skyrme, Proc. R. Soc. London A260, 127 (1961);Nucl.
Phys. 31, 556 (1962).

G. 't Hooft, Nucl. Phys. B72, 461 (1974); E. Witten, ibid. B160,
57 (1979); A. P. Balachandran, V. P. Nair, S. G. Rajeev, and
A. Stern, Phys. Rev. Lett. 49, 1124 {1982);E. Witten, Nucl.
Phys. B223, 422 {1983);B223, 433 (1983); I. Zahed and G. E.
Brown, Phys. Rep. 142, 1 (1986).

G. S. Adkins, C. R. Nappi, and E. Witten, Nucl. Phys. B228,
552 (1983); G. S. Adkins and C. R. Nappi, ibid. B233, 109
(1984).

4A. D. Jackson and M. Rho, Phys. Rev. Lett. 51, 751 (1983).
5J. D. Breit and C. R. Nappi, Phys. Rev. Left. 53, 889 (1984); A.

Hayashi and G. Holtzwarth, Phys. Lett. 140B, 175 (1984); A.
Hayashi, G. Eckart, G. Holtzwarth, and H. Walliser, ibid.
147B, 5 (1984); I. Zahed, U.-G. Meissner, and U. B. Kaulfuss,
Nucl. Phys. A426, 525 (1984); K. F. Liu, J. S. Zhang, and G.
R. E. Black, Phys. Rev. D 30, 2015 (1984); M. P. Mattis and
M. E. Peskin, ibid. 32, 58 (1985); M. P. Mattis and M. Kar-
liner, ibid. 31, 2838 (1985).

A. Jackson, A. D. Jackson, and V. Pasquier, Nucl. Phys. B432,
567 (1985); A. Jackson and A. D. Jackson, ibid. B446, 89c
(1985); B457, 687 (1986); R. Vinh Mau, M. Lacombe, B.
Loiseau, W. N. Cottingham, and P. Lisboa, Phys. Lett 150B,
259 (1985); M. Oka, K. F. Liu, and H. Yu, Phys. Rev. D 34,

1575 (1986); M. Oka, Nucl. Phys. A463, 247c (1987); Phys.
Rev. C 36, 720 (1987).

7H. Verschelde, Phys. Lett. B 181, 203 (1986); B.-A. Li, K.-F.
Liu, and M.-M. Zhang, Phys. Rev. D 35, 1693 (1987).

SH. J. Schnitzer, Nucl. Phys. B261, 546 (1985).
9P. A. M. Dirac, Lectures on Quantum Mechanics (Belfer Grad-

uate School of Science, Yeshiva University, New York, 1964).
' E. Tomboulis and G. Woo, Nucl. Phys. B107, 221 (1976);

Ann. Phys. (N.Y.) 98, 1 (1976).
S. Saito, Prog. Theor. Phys. 78, 746 (1987);S. Saito, T. Otofuji,
and M. Yasuno, ibid. 75, 68 (1985).

' C. Adami and I. Zahed, Phys. Lett. B 213, 373 (1988); S. H.
Lee and I. Zahed, Phys. Rev. D 37, 1963 (1988).
G. Holzwarth, A. Hayashi, and B. Schwesinger, Phys. Lett. B
191,27 (1987).

J.-L. Gervais, A. Jevicki, and B. Sakita, Phys. Rev. D 12, 1038
(1975);M. Oka, Phys. Lett. B 175, 15 (1986).
M. Uehara, Prog. Theor. Phys. 75, 212 (1986); M. Uehara and
H. Kondo, ibid. 75, 981 (1986).
M. Oka, H. Liu, and R. D. Amado, Phys. Rev. C 39, 2317
(1989).
N. Kaiser, U.-G. Meissner, and W. Weise, Phys. Lett. B 198,
319 (1987).

ST. D. Cohen, Phys. Rev. D 34, 2187 (1986).


