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SU(3) X SU(2) X U(1) model with Fritzsch mass matrices
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Discrete symmetries associated with the roots of unity are employed to construct Fritzsch-type
mass matrices for the three generations of fermions in the standard model with
SU(3) X SU(2) XU(1) gauge symmetry. The model requires four conventional Higgs doublets to ac-
count for the hierarchy of fermion masses and mixings.
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In spite of the successes of the standard model in
describing well the strong and electroweak interactions'
there still remains the fundamental problem of under-
standing the pattern of masses and mixing angles of the
quarks and leptons of the three families. In the absence
of a dynamical theory, specific forms of mass matrices
have been put forward that relate masses to mixing an-
gles and also give mass relations. In all these schemes the
mass of the top quark remains a model-dependent param-
eter. Of all the mass matrices considered, the form sug-
gested by Fritzsch is the most popular. The elegance of
a Fritzsch-type mass matrix lies in the fact that the ele-
ments of the matrix are easily related to the physical
masses of the fermions and for the quarks contact with
the Kobayashi-Maskawa mixing matrix of weak interac-
tions is also easily established. To see this, all fermion
fields are initially taken as eigenstates of weak interac-
tions. Left-handed fermions are weak-interaction dou-
blets and right-handed fermions are weak-interaction
singlets. Their transformations under the SU(3)
X SU(2) X U(1) gauge interactions are

EO
fields 4 =(e,p, r ). These mass matrices are referred
to as M, M, M matrices. A feature common to
M, M, M is that two of the three eigenvalues corre-
spond to the masses of the fermions of the first two gen-
erations and are vanishingly small as compared with the
mass of the third-generation fermion. Also from weak-
interaction phenomenology the mixings between the fer-
mions is inferred to be small. These considerations can
be met in one possible way if the mass matrices
M, M, M in the first approximation contain one driv-
ing mass term and there is weak mixing only among the
fermions adjacent to each other (nearest-neighbor mix-
ing). With the ansatz all Fritzsch mass matrices are of
the form

0 Ae' 0
M= Ae' 0

Be '~ Ce'~
(3)

0 A 0

with the hierarchy C »B,B » A, A. The matrices
M, M, M are of this form. It is convenient to write M
in the form M =P&MP& where Pj are diagonal phase ma-

ECX iP ~

trices P =diag(e ', e .', e '), j=1,2 and a=P2+a„
ct=/3i+ct2, p=p2+pi, p=pi+p2, 1'=1'i+1'2. ECOnOmp

in the choice of parameters results if one takes +=K,
p= p, 3 = A, and P i

=P2. With these simplifications the
matrix M is of the form

et' pR rtt —(1, 1, —2), M= A 0 B
0 B C

(4)

where i = 1,2, 3 for color which will be suppressed hence-
forth. In what follows neutrinos will be taken to be mass-
less. In order to discuss mass eigenstates the weak-
interaction eigenstates are grouped according to their
weak-isospin (I3) quantum number. Since leptoquark
transitions do not occur in the standard model, there are
three fermion mass matrices to consider. These involve

UOthe (I3 ) = —,
' quark fields 4 =(u, c, t ), the (I3 ) = —

—,
'

quark fields 4 =(d,s, b ), and the (I3 )= —
—,
' lepton

In this form A, B,C can be related to the eigenvalues
(M„—Mz, M3) of M; TrM gives C =M, —M2+M3,
DetM gives A C =M&M2M3, and TrM gives
2(A +B )+C =Mi+M2+M3. From these rela-
tions one gets 2 =[MiM2M3/(M, —M2+M3)]'
and B =[(M3 M2)(M3+M, )(M2 —M, )/(M, —M2
+M3)]' . The orthogonal matrix J that diagonalizes M
is given by
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Thus each mass matrix M, M, M has its own rota-
tion matrix J,J,J for diagonalization. Let the eigen-
states of the mass matrix for the quarks be denoted by

=(u, c, t), 4 (d, s, b) T. hese are related to the q ark
eigenstates of weak interactions through J and P,
%1 =J P VL, %1 =J P 4 . Expressing the weak in-
teractions (g/2&2)%z WVL in terms of the mass eigen-
states gives (g /2&2)+I W(J ) (P )'P J %1 from
which the Kobayashi-Maskawa matrix VKM in terms of
the elements of the Fritzsch matrices is

—
(JU) T(P U) ePDJD
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The effective phase matrix P =(P )*P has only diag-
onal elements expressed in terms of two parameters
o and g, P =diag(2~N+o, o+.y, y) where X
=0, +1,+2, ... denotes periodicity. It is interesting to
note that in the absence of weak mixing terms A, B, the
mass matrix with just one element C is equivalent to a
matrix with all elements equal. Such rank-one matrices
are suggestive of a universal mass-generating interaction
that mixes the three generations with equal masslike
terms.

In the past, Fritzsch-type mass matrices for the quarks
and leptons of the three generations have been written
down only in models with extended gauge symmetry such
as SU(3) XSU(2)1 X SU(2)ii XU(1) and grand unified
models such as SO(10). In this paper Fritzsch mass ma-
trices are derived in the standard model with
SU(3) X SU(2) X U(1) gauge interactions. The additional
ingredients required are discrete symmetries and an ex-
tended Higgs structure. Let the elements of the discrete
symmetries be the square roots (1,—1) and the cube
roots (l, e ' ~, e ' ~

) of unity. These are denoted by X,
X, and (co,co', co ). Under the discrete symmetries, the
left-handed and right-handed quarks and leptons are tak-
en to transform in the following way:
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0

y0 0
L

0

7 JL
'Tg ~X N 7 (12)

H1 —+Xco H1, K2 —+Xco H2,
(13)

The subscript 0 on the fermion fields denotes weak-
interaction eigenstates. To get the desired Yukawa cou-
plings, four Higgs doublets H1, Hz, H3, H4 are intro-
duced. Under SU(2)I XU(1) all four doublets transform
as (2, —1) and under the discrete symmetries the Higgs
doublets transform in the following way:

H3~X co H3, H4~XcuH4 .

The interaction Lagrangian for the fermion-fermion-
Higgs-boson couplings that is invariant under SU(3)
X SU(2) XU(1) gauge interactions and the aforemen-
tioned discrete symmetries is

L ~ =y„,uLH1c~ +y,„cLH, uz +y„cLHertz +y„tLH2c~ +y«tLH3t~ +yd, dLH, s~
—0 0 —0 0 —0 0 -0 0 —0 0 0 0

+y,dsLK1dz+y, bsLH4bz +yb, bl H4bz +yb, bLH4bz +ybbbLH3bz +y,„eLH1p& +y„,pLH1e&
—0 Q —0 0 0 0 0 0 0 Q —0 Q —0 Q

+y ~pLH47g +yqptL84pg +y~, &LH37 g +H. c.—0 Q —0 Q -0 Q (14)

where H=io2H, ' (a =1,. .. , 4). The Fritzsch-type mass
matrices for fermions are arrived at by substituting for
the vacuum expectation values of H1, H2, H3, H4 and tak-
ing Yukawa couplings to be

the phase matrices P; the matrix M can be related to the
matrix of Eq. (2) as discussed in the preceding para-
graphs. Thus the mass matrices take the forms

o yU&a, &

U ia

U

y y Ueig

D

U i-U

D pD

D iaD

pD

I = y (H) o y,'&H, &

y, &H, & y, &H, &

yD&a, ) 0

(16)

E ia E

E APE EiE

By choosing this form for the Yukawa couplings, all
mass matrices are of the form as in Eq. (1) with the Yu-
kawa couplings y," not taken to be symmetric; only the
magnitude ofy; and y;. are taken to be of the same order.
As discussed previously, there exists the freedom to
choose the phases a, a, P, 13,y such that the resulting mass
matrices are Hermitian with the appropriate choice for

I

MD= yP&a, &

0

0
M~= y~&a, &

0

0 y2 (H4)

y, &a, & y, &a, &

y f(a, ) 0

0 y~2&H4)

y2 (H4) y3 (H3)

(17)

The vacuum expectation values (H, ), (a =1, . . . , 4)
determine the ground state of the scalar potential
V(af H2 H3 H4) where

4

V(H„H2, H3, H4)= g [ IJ,,(H, H, )+(—,')A—,,q(H, H, )(aqaq)]
a, b=1

4
+ Q [( ~~ )A.,"q(a,aq )(HqH, )+( ,' )X,'1, (agHI, )(H—qa,)]

ash=1

+k](Hta3 )(H)H3 )+A2(H, H3 )(H)H4)+A3(H3H2 )(H3H4 )

+A4(a 2H4)(H)H4)+A'5(H)H2)(H 2H4)*+A6(H2H'3)(H3H4) +H. c. (19)

The couplings k,b, A,,'b, i,,"b, are symmetric and all Yu-
kawa couplings are taken to be real. The scales of
(H, ), a =1, . . . , 4 are restricted by the electroweak
scale

where GF is the Fermi coupling constant of weak interac-
tions. The desired hierarchies among the elements of the
Fritzsch mass matrices are implemented by taking
(a'3) )&(H2) ))(H, ) and (H2) =(H„) and the
bound

g &H. )'=(2&26 )-',
a=1

(20)
4

g &H. )'=(174 GeV)'.
a=1
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The doublets ensure that the tree-level boson mass rela-
tion Mw=MzcosOw is still satisfied with the extended
'Higgs structure in the present model. The mixings of the
flavors in the Yukawa couplings and the extended Higgs
structure lead to flavor-changing neutral currents medi-
ated by neutral-Higgs-boson exchange. The currents
contribute to the KL —K& mass difference. There are
seven neutral Higgs bosons that contribute to the
KL —E& mass difference. Their tree-level contribution is
of the form

7

L~g '2 = g G~f V'mmmm, /MHp(s) sd )(sy5d)
i=1

(22)

and is related to the KL —Kz mass difference by

2(K [~Lags' ~[K ) &&Mx —M -3.5X10 ' GeV,

(23)

where f, are mixing angles in terms of the parameters of
the Higgs potential. In evaluating the K -K matrix ele-o —o

ments we use the vacuum-insertion method and also take
the conservative approach of f, and all Higgs-boson
masses to be equal. This gives the following conservative
lower bound on the Higgs-boson mass:

MH «Sv'f TeV .
t

(24)

In what follows we will take all Higgs-boson masses of
order 1 TeV (Ref. 9). This seems a reasonable value in
view of the uncertainty in determining the mixing angles
f; and the approximate validity of the vacuum-insertion
method.

CP violation in the present model is spontaneous rather
than intrinsic in nature and comes about due to the possi-
bility of having complex vacuum expectation values for
H, (a = 1, . . . ,4). These nonzero phases are denoted by 8,
(a =1, . . . , 4). The constraints on the relative phases for
spontaneous CP violation to occur are

02 —8,&n rr/2, 03 8,%l tr/3, 0~—8—,&m ~/3, (25)

where n, l, m =0,+1,+2, . . . . Next we establish the CP-
violating character of the model in the presence of

—10 b, (9)Re(f )Im( f ) . (26)

This quantity can easily be adjusted to the experimentally
measured value of 2X10 . The strength of the CP-
violating interaction is 10 GF and is microweak in na-
ture as opposed to the milliweak character encountered
in multi-Higgs-boson models with natural flavor conser-
vation. ' The value of e' is also readily accommodated
around 10 e. Finally, we consider the electric dipole
moment of the neutron. There are two contributions to
consider, one due to the charged Higgs boson and the
other due to neutral Higgs boson. Once again all scalar-
boson masses are taken to be approximately equal. The
expression for the electric dipole moment of the neutron
is determined to be

eGFm "Im(f ) b,e m
(27)

In view of our previous conservative estimates, the elec-
tric dipole moment of the neutron is found to be of order
10 ecm. It is to be noted that this value is 2 orders of
magnitude smaller than the one predicted by models in
which the Higgs interactions are flavor conserving. In
working out the various CP effects the value of the top-
quark mass used is 60 GeV. Finally we note that one im-
mediate consequence of high-mass scalars of order 1 TeV
in the Higgs potential is that some of the scalar couplings
in the potential are greater than unity. This would seem
to violate the perturbative unitary bound of Lee, Quigg,
and Thacker. " The scalar sector of the theory becomes
strongly interacting. '

Helpful discussions with Dr. E. Ma and Dr. J. Pantale-
one are gratefully acknowledged.

Higgs-boson masses of order 1 TeV. The ratio of the
CP-violating to the CP-conserving matrix elements for
the E -K system is related to the CP-violating parame-
ter e as follows:

77p71ym Mwsln Owe= b, (0)Re(f)Im(f )
oM Om,
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