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Relativistic description of quark-antiquark bound states. Spin-independent treatment
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We present the results of a detailed study of light- and heavy-quark —antiquark bound states in

the context of the reduced Bethe-Salpeter equation with static vector and scalar interactions. In the

present paper, we consider the spin-averaged spectra. Spin effects are considered in a separate pa-

per. We find that this approach, although apparently successful for the heavy-quark bb and cc
states, fails for the ss, ll, and light-heavy states. The reasons for the failure are intrinsic to the

method, as we discuss. Difficulties are already evident for the cc states.

I. INTRODUCTION

The discovery of the P and Y resonances and their in-
terpretation in terms of cc and bb quark-antiquark bound
states led to a large number of theoretical analyses of
these heavy-quark systems based on nonrelativistic poten-
tial models with relativistic corrections treated as pertur-
bations. More recently, there has been considerable in-
terest in describing these systems using wave equations
which incorporate relativistic kinematics from the begin-
ning and can therefore be applied, at least in principle, to
systems containing light quarks.

In this paper we present the results of a rather exten-
sive analysis of the spin-averaged heavy- and light-quark
qq spectra using the reduced Salpeter equation, a stan-
dard approximation to the full Bethe-Salpeter equation.
Spin-dependent effects are treated in the same approxi-
mation in a separate paper. ' We treat the equation in
position space, where it is relatively easy to vary the in-
teraction potentials between the quark and antiquark,
solve the resulting nonlocal problem retaining all quark-
mass-dependent effects exactly, and attempt to fit the
spin-averaged data by adjusting the potentials. Although
we obtain ostensibly reasonable fits to the bb, cc, and ss
data using an interaction containing a short-range
Lorentz-vector one-gluon-exchange term and a long-
range Lorentz-scalar confining interaction, the results
are misleading. We identify (and explain) systematic
discrepancies between the data and the fit which, supple-
mented by calculations of light-quark (ll ) Regge trajec-
tories and the spin splittings in the ce and bb spectra, '

show that there is an intrinsic Qaw in this approach. A
new starting point is needed if one is to obtain a con-
sistent theory of light- and heavy-quark —antiquark sys-
tems. We comment briefly on what we think is the main
missing element in the present model: namely, the dy-
namic energy of the color fields between the quark and
antiquark which is needed to describe the "stringlike" be-
havior of the Il states. "

We begin in Sec. II with a brief derivation of the re-
duced Salpeter equation in position space. The spin-

independent terms are identified and the equation is then
reduced to a radial wave equation and put in a form in
which the mass eigenvalues can be calculated efBciently
using a new matrix technique. ' The results of our calcu-
lations and the detailed analysis which leads to our con-
clusion that a reduced Salpeter equation with scalar
confinement cannot describe the bb, cc, ss, and ll data
adequately are given in Sec. III. We collect a number of
details of the theoretical analysis in an appendix.

II. RELATIVISTIC DESCRIPTION
OF qq BOUND STATES

A. The reduced Salpeter equation

The Bethe-Salpeter equation' describes the bound
states of a two-fermion system in terms of the interaction
kernel specific to the field theory in question. The full
equation can be written in momentum space as

('91~+/™i )X(P)('92~ P+rn2)

d4=i f ~ V(p, p', P)y(p'), (1)
(2~)

where g&+g2=1, y is the momentum-space wave func-
tion for the quark-antiquark system, P is the four-
momentum for the bound state, and V is an interaction
kernel which acts on y. The short-distance behavior of V
can be calculated in QCD using perturbation theory.
However, the long-distance behavior of V involves non-
perturbative effects, and is not known in detail except in
the case of static quarks where it can be determined in
the lattice approximation to QCD (Refs. 14—16). We will
therefore treat the form of V in part phenomenologically.
We will also make several approximations which have be-
come customary in the treatment of the Bethe-Salpeter
equation. Although we cannot check the approximations
in detail as in QED because of the uncertainties in the
form of V, we think they are generally reasonable, and
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are unlikely to affect our conclusions.
The first approximation we make is to assume an in-

stantaneous interaction: V(p, p', P)~ V(p, p'). This is
equivalent to using a position-space description in which

the interaction potential is calculated with the equal-time
restriction xo=xo and neglects the retarded nature of the
interaction. After some standard mathematical manipu-
lations we arrive at the Salpeter equation'

1,, & (P)1'OV(p P')4'(P')y & ( p)
P(p)=, &'p'

(2m ) CO~ C02

(p)y'OV(p, p')P(p')y A+( —p)
M +co~+6)2

(2)

Here M is the mass of the bound state, co,. =(p +I; )'
A +—(p) are the projection operators

co+(y y p+y m)

4'(P)= f ~POX(p Po) . (4)

(M —co, —co~)P(p)

~'a'&+ p XoV p p'1

(2~)

The formal product of VP in Eq. (6) represents a sum
of scalar potentials V; and bilinear covariants:

Our second approximation is the dropping of the
second term in Eq. (2). This approximation is usually
justified for heavy-quark systems on the grourrds that

3f +co] +c02 4mq )+M co] c02 V

so that the second term can be ignored relative to the
Qrst. The approximation is also reasonable on the aver-
age for (co, +co2) &)—,'( V). It corresponds to dropping
contributions to the wave function in which an outgoing
quark is replaced by its antiquark in an incoming state,
contributions which do not have a clear wave-function in-
terpretation, and leads to a well-defined eigenvalue prob-
lem. With this approximation we obtain the standard re-
duced Salpeter equation used in a number of studies of
relativistic bound states:"'

VP~g V, (p, p')0;QO;,

where 0,- is a Dirac matrix. The proper choice of the
Lorentz structure of the interaction is very important in
fitting the spin dependence of the qq bound states. The
short-distance interaction between a quark and an anti-
quark is expected to be vector, G=y„, corresponding to
the perturbative one-gluon-exchange interaction, a result
which is supported by nonperturbative calculations of the
heavy-quark interaction in lattice QCD (Ref. 16). The
nature of the coupling at large qq separations can be
determined for heavy quarks from lattice calculations by
determining the rate of decrease of the spin-dependent
part of the potential. Recent calculations of this spin
dependence' are accurate enough to establish clearly
that the large-r coupling is scalar as naively expected,
0=1. The change in the nature of the coupling as one
moves from small to large values of r leads to some com-
plication in the choice of coupling for the intermediate
region of the potential. We will assume that it is a ro.ix-
ture of scalar and vector terms.

B. Reduction of the relativistic wave equation

We next develop the formalism necessary to put the re-
duced Salpeter equation in a form which can be solved
numerically. ' As noted above, the coupling at short dis-
tances is expected to be vector, while the long-distance
coupling is expected to be scalar. We will assume that
the interaction kernel involves only these two Lorentz
structures. The reduced Salpeter equation is then

3

(M —~i —~2)4(p) =A+(p b'0I,[ Vv( Ip —p'I)) „4(p')X'+ Vs( lp —p'I)4(p') f)"& ( —p» (8)

where Vz and V& are scalar potentials, and the wave
function P is a 4X4 matrix.

We will represent P in block matrix form as

y+ — y+ +

~
—+ (9)

where each component is a 2 X 2 matrix. Relations im-
plied by the projection operators in Eq. (8) allow us to ex-
press the "small components" of P in terms of the large

I

component P+

p+ — p++ o"p
co2+ m2

~
—+ o p ~++

co(+ m i

o"p ~++ ~ p
6) i +m i F2+ m 2
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and to reduce Eq. (8) to an equation for P++ alone.
Some details of this reduction are given in the Appendix.
If we convert to a normal spin basis using the relation

((', ,(P) =[4+ (P)1~21, ,

(M —co, —co2)$(p)

6 p'
+I P~P ~~i~~Z ~i P P P(2&) i =s, v

given in Eq. (A8), the resulting matrix equation for the
wave function p with spin projections m „m 2 has

1 2

the form The functions Fv and Fs which appear in Eq. (12) are

(12)

and

1
Fv(I I' ~1~2)= 4' ~co~

co)+m)
(~l ™1)(~2™2)+(~'P~')1(~'Pcr.)2+, (cr Pcr P

co~+ m2

2 2, ~2™2, ~1™1+, (crpcr; )1(cr;cr.p')2+, (cr.pcr p'), +, (cr, cr"p'), (cr".Pcr, ),~2™ 2 ~I+m I ~1+m ~

(cr pcr"p')1(cr".Pcr p')2 (coi+mi )(co2+m2)+ ~, + (cr; cr"p'), (cr;cr.p')2
(~1 1)(~2™2) (~1™1)(~2™2) (13a)

1 co2+m2 coi+m 1 (cr.pcr. p')1(cr.per. p')2
Fs(p p' ~i ~2)= (coi+mi )(co2+m2) — (cr pcr p')1 — (cr.per". p')2+

46)~c02 co'1+ m 1 co2+ m 2 (co'1+ m 1 )(co2+ m2 )

(13b)

where matrices labeled 1 and 2 act on the first and second spin indices of P . The terms containing more than one
1 2

Pauli matrix can be reduced. The results of the reductions are given in the Appendix.
In this paper we will neglect the spin-dependent parts of the interaction in Eq. (12), and deal with spin-averaged data

for the qq bound states. The e6'ects of spin will be considered in detail in a separate paper. ' It is straightforward to
separate out the spin-independent parts of the I' s using the identity

F,"(p,p') =-,'Tr, Tr2F, (p, p', cr, , cr2) . (14)

The results are

1
Fv'(p, p')= (coi+m, )(co2+m2)+p +4' ~c02

c0$+m] ct)2+m2 6)]+m $ c02+m2+ + + p p
c02+m2 ct)$+m $ M/+m $ c02+m2

and

Fs'(p p') = 1

4co ~c02

(co, +m, )(co2+m2)+, , + P(~1™1)(~2™2)(~1™1)(~2™2)

M)+ m ) cop+ m2
(co1+m 1 )(co2+ m 2 ) — +

c02+ m 2 co ) +m )

( . ')'P P
(co'1+m, )(co2+m2)

(15a)

(15b)

Using the spin-independent F's in Eq. (12) we obtain an equation in which P (p) can be factored into the product of
I 2

a scalar function i)I(p) and a standard singlet- or triplet-spin function. The singlet and triplet states are degenerate and
we will deal henceforth only with $(p) and the associated wave equation

d p(M —~, —~, )P(p) = J P, g F;"(p,p') & ( lp
—p'l )0(p') .(2')' =s, v

(16)

Equation (16) gives a well-defined eigenvalue problem for the masses M of the qq bound states. The momentum
dependence of the interaction is treated exactly within our (standard) approximations. It is not necessary to make a fur-
ther expansion of the operators F," in powers of p/m as is frequently done in treatments of heavy-quark systems. Use
of the complete expression is in fact essential if one wishes to investigate ss or light-quark systems.
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C. Reduction to a position-space radial equation

It will be convenient in fitting qq bound states to transform Eq. (16}to position space where the potentials V~ are local
and easy to handle. A Fourier transform gives the equation

(M E, —Ez—)g(r)= g f d r' f d r"f f 3e'i'" ''e' " ' ' g F;"(p,p') V(r')g(r"), (17)d P d P i (r —r') i '.(r' —r")

where E; is the nonlocal operator ( —V' +m; )'~ obtained as the formal Fourier transform of ri); =(p +m; )'~, V;(r')
is the Fourier transform of V;( ~p

—p'~ ), and g is the Fourier transform of P(p).
Equation (17) is intractable as it stands because of the multiple integrations in the interaction term. However, when

we write F,"(p,p') as a sum of products of functions which involve p or p' separately,

F;(p,p')=g &;,(p)B;,(p'),
J

we can rewrite Eq. (17) as

(M Ei E—z)g(—r)= g g f d r' f d r"f f A; ( iV—„)e' " "V;(r')B;~( iV„.—)e'r'" "g(r"),dp dp
;=s v J (2m) (2m}

(19)
where we have replaced p and p' in 3 and 8 by gradient operators.

The integrations can now be performed, and we are left with a simple but nonlocal expression:

(M E, E2—)f(r)—= g g A,J( iV„)V—(r)B, ( i V„)f(r"), —
i=s, v j

(20)

where the nonlocality introduced by the operator E =( —V' +m )'~ appears in the "potential" on the right-hand side
of the equation as well as in the kinetic energy operators on the left. The operator E can be handled by a matrix
method which is sketched in Sec. III, and described in detail elsewhere. '

There is no coupling of different orbital angular momenta in Eq. (20). We can therefore extract the angular depen-
dence of 1i in a single spherical harmonic:

(21)

The consistency of this construction can be seen by pushing the spherical harmonic Yl through the differential opera-
tors in A and 8 using the identities

V F(r)YI (r)= Y~ (r)V~F(r}, ( V' +m )'~ —F(r)YI (r)= Y& (r)( V&+m )—'~ F(r),

[V; V(r)V; JF(r)YI (r)= YI (r) + V(r)V& F(r),dV(r) d 2

dr dr
(22)

[V;V, V(r)V;V~]F(r)Y) (r)= Yi (r) + V) + V, + V(r)VIV( F(r),
dr dr

where
1 d 1 (i + 1)

I r d 2
(23)

We will restrict the analysis of Eq. (20) to the case of equal quark and antiquark masses for the remainder of this sec-
tion. The generalization to systems with unequal masses is straightforward. With this restriction we can rewrite Eq.
(20) as a radial equation:

(M 2EI )R&(r)= —(EI+m) [Vs(r)+ Vv(r)]
1

4EI
L

T

dVs(r) dVv(r)
+(EI+m) 2 —4 +[2'(r) 4Vv(r)]V&—

dr dr dr EI+m

d Vs(r) d Vv(r) d2 dVs(r) dVv(r)+ + + +
dr dr dr dr dr

p2 + +2
dr dr

(24)
+2

+[Vs(r}+ Vv(r)]V, V, —V, Vv(r) (E, +m ) Vv(r) — R,(r), .
(E, +m) (E)+m)
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where EI is a nonlocal operator. In the nonrelativistic
limit, Eq. (24} reduces to the usual local Schrodinger
equation

Q2
M —2m+ R&(r)=[V+(r)+ Vv(r)]RI(r) .

m
(25)

D. The quark-antiquark interaction

The general features of the qq interaction in QCD are
well known. The details are not, especially for light
quarks. For large quark-antiquark separations, both lat-
tice QCD (Ref. 14) and hadronic string models" predict
an asymptotically linear interaction between heavy
qua rks:

V(r) =Br —+-
r

(26)

+0 CXS

m.2
(27)

Here p is the mass parameter introduced in the dimen-
sional regularization scheme. A (r) is the Fourier trans-
forrn of the qq vacuum-polarization function, given to
good approximation through the bb bound-state region
b 20

This confining part of the potential is expected to have a
Lorentz-scalar structure, a result confirmed by the spin
dependence of V found in lattice calculations. '

The 1/r or Liischer term' in Eq. (26) arises from the
transverse zero-point oscillations of the string, and can be
identified as a Casimir energy. For a standard Nambu
string, the most appropriate string to identify with a
QCD flux tube, 12p/n. =

—,'(d —2) =1 in d =4 dimensions.
Otto and Stack indeed obtain 12p/n. =0.95+0.08 in a
lattice SU(3) calculation. ' We will take P=m /12.

For small quark-antiquark separations, the qq interac-
tion is described by perturbative QCD, and is given in the
approximation we will use by a static, Lorentz-vector
single-gluon-exchange potential including vacuurn-
polarization corrections

4 a, (p) a, (p)
V, &„,„(r)= —— 1+ [bplnpr+ A (r)]r 7T

4 a, (r)
V (r)= ——

1 gluon (30)

where the r dependence of a, ( r) =a, ( Q ( r) ) is determined

for Q(r)/A f )—)1 by the QCD renormalization-group
~
Ms

equation, with Q given to next-to-leading order by
r

Q (r} z 2~ 2b& bpaz
boln („) = + ln

a, bo 2m.
MS

1+
O 77

(31)

Here

bo =——-nf—11 1 (32)

b 2 b1 Ibo
Q(r)=A f — =1.12A'—', nf =4,

MS 2b MS'

e.g., for r=1.50 GeV '=0.3 fm for A—''=200 MeV.s
This Landau singularity is unphysical, as the expression
in Eq. (31) is only valid for a, /m. ((1. We have therefore
regularized a, ( r ) by making the replacement

+
MS MS . 1

(33)

(34)

This change has the effect of moving the singularity in
a, (r) to r = oo for any choice of AMs, but changes a, (r)
very little for r small. The exact form of the regulariza-
tion at large r will not be important in our final potential.

The results above restrict the form of the qq interaction
and its Lorentz structure for r ~0 and r ~~, but not for
intermediate values of r. The heavy-quark potential de-
rived from lattice QCD calculations is consistent with a
simple superposition of the two types of behavior, but
rather little is known about the intermediate range poten-
tial otherwise. We will therefore use a fairly flexible pa-
rametrization of the potentials in fitting the data in qq
systems, and take the interaction as a sum of scalar and
vector terms with

for a color-singlet qq system with nf active quarks, and
A~ is the corresponding QCD scale factor in the

MS
modified minimal subtraction scheme. The expression
for a, (r) obtained from Eq. (31) diverges for

A (r)= —",yz+ 333+—,'[yz+inm, re +E,(m, re )], a, (r)
Vz(r) = —— e ""+5( Plr +Br)(1—e "")—

3 r
(35)

(2&)
and

—3 (r)lbo
Q(r) =—e

r

With this choice

(29)

where yz =0.5772. . . is Euler's constant and E&(z) is an
exponential integral function. '

We can identify the logarithmic term in Eq. (27) as the
first term in a perturbative expansion of a running cou-
pling constant with an r-dependent rnornentum scale
Q(r). Following Hagiwara et al. , we choose this scale
to eliminate the entire O(a, } term within the square
brackets in Eq. (27), and define Q (r) as

Vz(r)=(1 —5)( Plr +Br—)(1—e "")+Vp
'

+(Cp+C, r+C2r )(1—e "")e (36)

where p= m /12. The vector term incorporates the ex-
pected short-distance behavior from single-gluon ex-
change, but with a damping factor e ""to eliminate this
term at large r where the r ' dependence is associated
with the Luscher term in Vz. We. have also included a
multiple of the long-range interaction in Vz to see if we
can determine the vector-scalar nature of the confining
interaction. We expect 5=0. V~ includes the expected
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long-range interaction and a purely phenomenological
intermediate-range term. In the parametrization above,
p ' acts as a confinement radius, around which the na-
ture of the qq interaction changes. A different way of in-
troducing an efFective confinement radius by splicing to-
gether the short- and long-range interactions has been
considered by Nickisch and by Fulcher. We find the
method above to be simpler and more Aexible.

III. FITS TO qq BOUND STATES

A. Data and procedures

The data which we used in our studies consisted of the
spin-averaged masses of the bb, cc, and ss states given in
the first column in Table I (Ref. 24), with

M&= g(2j+1)M(j, l, s) .1

4 21 +1 (37)

The averaging eliminates spin-dependent contributions to
the masses to first order in the usual spin-spin, spin-orbit,
and tensor interactions between the quarks. The data are
incomplete; the n 'So and 2 'P& bb and cc masses are not
known, and the situation with respect to excited So ss
states is unclear. We have therefore used the results of
previous spin-dependent fits to the data to estimate the
centers of gravity of incomplete multiplets, but have in-
creased the uncertainties in the masses accordingly.

Our theoretical calculations of the qq spectra were per-
formed using Eq. (24) with the vector and scalar poten-
tials in Eqs. (35) and (36). The crux of the calculation
was the generation of matrix representations for the non-
local operators which appear. The method used is de-
scribed in detail elsewhere. ' We note here that for
equal-mass qq systems we can scale the particle masses
out of such operators as E&+m. We then choose a finite
basis IXi(x), j=1, . . . , n I of associated Laguerre func-
tions (these are appropriate for the solution of Coulomb-

type problems), and construct a matrix DI which gives
the exact action of (

—VI+1) on the basis functions at
the zeros Ix„+, ;, i =1, . . . , n I of X„+,(x). The matrix
representation of the square-root operator ( —7&+ 1)'~ is
then constructed as SI=DI =UIXI' UI ', where k& is
the diagonal matrix of eigenvalues of D&, and U& is the
matrix of eigenvectors. Equation (24) can then be re-
duced to a standard matrix eigenvalue problem. The
wave functions R I are represented by their values at the
points x;, that is, by column vectors, and operators such
as E&, E~ ', or (E&+m) ' are represented by SI, SI ', or
(Sr+1) '. This method for solving Eq. (24) converges
much more rapidly with increasing matrix size than that
used in our earlier work. It was sufficient in the calcula-
tions reported here to use 25 X 25 matrices which can be
manipulated quickly. The method is also considerably
more Aexible and convenient than momentum-space
methods ' ' for problems such as the present one, where
one wishes to vary positron-space potentials within
known constraints.

B. Results

1. Form of the qq interaction

In an attempt to determine the extent to which the
spin-averaged data on the bb, cc, and ss systems in Table
I restrict the form of the quark-antiquark interaction, we
fit those data using the full, nonlocal relativistic wave
equation in Eq. (24) with variable mixtures of scalar and
vector confining terms, and also using the local relativis-
tic equation used in many other works: '

(M 2E& )RI(r) =—[ Vs(r)+ Vz(r)]RI(r) . (38)

The potentials in these equations are defined in Eqs. (35)
and (36). The potential parameters and the quark masses
were determined using a nonlinear least-squares fitting
routine. Because of the theoretical uncertainties in the

TABLE I. Fits to the spin-averaged ss, cc, and bb spectra using the full relativistic interaction in Eq.
(24) with scalar confinement (5=0) and an equal mixture of scalar and vector confining potentials
(5=—), and using the local potential approximation in Eq. (38). The masses used in the spin averaging

were taken from Ref. 24.

State
Data
(GeV)

5=0
(GeV)

1

2

(GeV)
Local
(GeV)

1S
2S

1S
2S
1P

1S
2S
3S
1P
2P

(10 points)

1.004
1.624

3.068
3.663
3.525

9.436
10.013
10.341
9.899

10.261

ss states
1.004
1.556

cc states
3.079
3.657
3.514

bb states
9.423

10.014
10.345
9.896

10.257
5.06

1.004
1.660

3.070
3.662
3 ~ 524

9.436
10.014
10.343
9.900

10.260
0.24

1.004
1.623

3.077
3.658
3.519

9.431
10.014
10.351
9.896

10.257
2.85
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I,=0.482+0.059 GeV,

I,=1.636+0.042 GeV,

mb =4.962+0.042 GeV,

A=0.430+0.042 GeV,

B=0.177+0.023 GeV

Vo 0.366+0.093 GeV,

Co =2.45+0.54 GeV,

Ci = —0.074+0.405 GeV

C2 =0.343+0.217 GeV

p=0. 933+0.177 GeV,
p'=0. 740+0. 101 GeV .

(39)

The shape of the corresponding local potential
V'= Vs+ Vz, and the probability densities for the low-

lying ss, cc, and bb states are shown in Fig. 1. We note
that ss and excited cc wave functions extend well into the
linear confining region, and are the most important in
determining the slope parameter B in the confining term.
The bb wave functions are concentrated at small r, and
give the strongest constraints on the short-distance in-
teraction.

The parameters given above appear to be quite reason-
able. For example, the value of the slope parameter,

model and further uncertainties in the spin averaging, we
did not use the quoted experimental errors in the masses
to weight the data used in the fit, but rather weighted all
states except the ss 2S state equally with assigned uncer-
tainties of 10 MeV. The ss 2S state, which is poorly
determined experimentally, was assigned an uncertainty
of 100 MeV. The values of y for the three fits given in
Table I correspond to these uncertainties.

The fits given in Table I correspond to the theoretically
favored case of pure scalar confinement (5=0), to a value
5= —,

' near the optimum for this parameter, and to the
case of the local interaction, Eq. (38) which is indepen-
dent of 5. There is a clear preference in these fits for the
nonlocal wave equation with an approximately equal
mixture of scalar and vector couplings (5=—,

' ). However,
in a separate analysis of the full, spin-independent spec-
tra' we found that smaller values of 5 are mildly pre-
ferred by fits to the spin splittings. While the quality of
the 5=0 fit to the spin-averaged data given in Table I is
not as high as that of the 5= —,

' fit, it is certainly accept-
able, with a value of y per point of 0.5. We conclude
here only that the Lorentz structure of the confining in-
teraction cannot be determined using the spin-averaged
data alone. We will henceforth restrict our attention to
the case of pure scalar confinement at large distances
(5=0), as expected theoretically, and examine the
characteristics of the corresponding model in some detail.
We will conclude ultimately that this model is not accept-
able and that our starting point, the reduced Salpeter
equation, is deficient.

The parameters for the 5 =0 fit given in Table I are

SS

—3
0 4 6

r (GeV ')
10

FIG. 1. Plots of the low-lying ss, ec, and bb wave functions as
functions of the interquark separation r for the local potential
approximation, Eq. (38). Comparison of the curves with the lo-
cal potential V= Vs+ V& indicates the regions of the interac-
tions to which the different states are most sensitive. Solid lines:
1S and 2S states. Dashed lines: 1P states. The wave functions
obtained using the full nonlocal spin-independent interaction in
Eq. (24) are similar.

B=0.177+0.023 GeV is in remarkable agreement with
the value 1/2ma'=0. 177 expected in a string model for
the confining interaction if one uses the observed slope
a'=0. 9 GeV of the p Regge trajectory. However, this is
accidental, as we will show in the next section. The value
of the QCD parameter, A=0. 430+0.042 GeV, is some-
what larger than that determined from high-energy ex-
periments, but it is not unreasonable. The b- and c-quark
masses are well determined, with the mass difference
mb —m, =3.326+0.030 GeV better determined than the
separate masses. Finally, the parameters p and p' are
such that the Lorentz-vector single-gluon-exchange term
is damped out, and the scalar confining term becomes im-
portant, for qq separations greater than —1.2
GeV =0.2 fm. This transition is evident in the poten-
tial curve in Fig. 1, which becomes quite linear outside
the transition region.

Close examination of the 5=0 results in Table I shows
a disturbing systematic trend: namely, that the separa-
tions between the 1Sground state and the excited S and P
states are too large in the bb system, but markedly too
small for the cc and ss systems. This effect is hidden in
Table I by the tendency of the fitting program to split the
error between the 1S and the 2S and 1P states to mini-
mize the value of y, but is clearly evident in Table II. In
that table we give the results of a fit in which all the bb
states, but only the 1S states in the cc and ss systems were
fitted. The parameters are quite similar to those given in
Eq. (39).

We have found no way of eliminating the systematic
trends evident in Tables I and II. The difficulty is even
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TABLE II. Results of a fit to the spin-averaged bb data and
the ss and cc ground states using the full relativistic interaction
in Eq. (24) with scalar confinement (6=0). The states marked
with asterisks were not included in the fitting procedure.

State
Data
(GeV)

Fit
(GeV)

Error in fit
(MeV)

1S
2S*

1S
2S*
1P g

1S
2S
3S
1P
2P

1.004
1.624

3.068
3.663
3.525

9.436
10.013
10.341
9.899

10.261

ss states
1.004
1.567

cc states
3.068
3.645
3.499

bb states
9.436

10.015
10.343
9.900

10.259

0
—57

0
—18
—26

0
+2
+2
+1
—2

I I I I
i

I I I l
[

I I I I
i

I li

more striking if we extend the calculations to light-quark
systems as discussed in the next subsection, and point to
a fundamental Qaw in our (standard) procedure.

2. Regge trajectories

In Fig. 2 we show the Regge trajectories calculated for
light-quark (Il) systems using the full relativistic wave
equation with m I

=200 MeV and scalar confinement
(5=0), and compare the results with the observed Regge
trajectories for the spin-triplet and spin-singlet ll mesons.
The slopes of the calculated trajectories are strikingly
large compared to those observed for the p, co, and m tra-
jectories. The I.=0 Regge intercept for the leading tra-
jectory corresponds to a mass of the lowest 1S ll state of
540 MeV, somewhat below the spin average of the p and
vr masses, 613 MeV. A change in the light-quark mass to
I& =320 MeV removes this discrepancy, but still leaves
the Regge trajectories much too steep, with slopes greater
than twice the observed slopes. The large slopes corre-
spond to overly close spacings of masses with increasingI. Thus the first two spacings on the leading trajectory
are calculated' as 440 MeV and 290 MeV, to be compared
with the observed spacings M(a2) —M(p, )=550 MeV
and M(p3) —M(az ) =370 MeV on the p trajectory.

It is customary to determine the asymptotic slope of
the scalar confining potential Vz =Br for r large by using
the string theory result, " B =1/2+a', where a' is the
slope of the (approximately linear) Regge trajectories.
The value of B given in Eq. (39), B =0.177 GeV, agrees
essentially exactly with the string model result for the ob-
served slope of the p trajectory, a'=0. 9 GeV, but has
no relation to the calculated slopes of the ll trajectories in
Fig. 2. %e have found, in fact, that there is no value of
B, reasonable or unreasonable, which will lead to an ll
Regge slope consistent with experiment. The light-
quark systems clearly satisfy stringlike dynamics, but not
the relativistic potential dynamics considered here.

V (GeV)
FICz. 2. (a) Regge trajectories calculated for light-quark (ll)

systems (mI =200 MeV) using the pure scalar confining interac-
tion (6=0) in the spin-independent relativistic wave equation,
Eq. (24). The dashed curve indicates the slopes of the p Regge
trajectory. (b) The observed Regge trajectories for the spin-
triplet (upper curve) and -singlet {lower curve) ll mesons. The
meson masses are from Ref. 24.

The calculated separation of the 1S and 2S ll states of
440 MeV given above continues the trend evident in the
5 =0 column in Table I of a decrease in the separation of
the 1Sand 2S states with decreasing quark mass, i.e., 591,
576, 552, and 440 MeV for the bb, cc, ss, and ll systems.
This trend is opposite to that in the spin-averaged bb, cc,
and ss data where the 1S-2Sseparations are 577, 595, and
624 MeV, hence increasing with decreasing quark mass.

The foregoing problems appear to be intrinsic to the
relativistic wave equation in Eq. (24) with scalar
confinement. In an earlier investigation of the Regge
trajectories using the local interaction in Eq. (38), we
found that it was possible to fit the spin-averaged ss, cc,
and bb spectra and at the same time to get good slopes
for the ll trajectories, although not good values for the
ground-state ll mass. The effect of including the mass-
dependent terms in the full interaction in Eq. (24) has dis-
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rupted those results in a way which apparently cannot be
compensated by a change in the potentials provided we
keep a scalar confining interaction.

3. Limit of zero quark mass

To see the origin of the problems above, it is useful to
consider the limit of zero quark mass. In this limit, the
spin-independent interaction operators in Eqs. (15)
reduce to

~, 1
I

( I)2
F"(p p') =—3+4, +

2 2, mz =0,
4 pp p p' (40a)

t

sl(ppI )1PP
4 pp'

mq=O . (40b)

The limits of these quantities are quite different for col-
linear and anticollinear quark momenta:

and

Fv(p p)=» Fs'(p p)=0 p'=p (41a)

Fv~(p P )=0 Fs~(p P )=1 P = P . (41b)

In the nonrelativistic limit p,p'«mq, I'& and I'&' both
reduce to unit operators.

Because of these very different limits, vector and scalar
interactions have quite different effects on the qq spec-
trum for different quark masses and potential types. All
of the components of the vector and scalar potentials in
Eqs. (35) and (36) are sharply peaked in momentum space
for p'=p, e.g. , the gluon-exchange and linear potentials
f»1 off roughly as Ip —p'I ' and Ip —p'I ' «r Ip —p'I
large. Thus, equal collinear momenta are favored by the
forms of the potentials Vv and Vz. However, the
effective magnitude of Vs in Eq. (16) is reduced for p'=p
in the case of light quarks because of the vanishing of
Fs'(p, p), while the effective magnitude of Vv is enhanced.
In particular, light quarks will see a weaker confining po-
tential than heavy quarks at large distances if the
confinement is scalar.

The effects will of course be reduced somewhat when
the angular averages which enter the partial-wave projec-
tions to states of definite I are taken into account, but
will not disappear entirely. The residual effects seem, in
fact, to account for the systematic trends discussed in the
preceding subsection. As may be seen from Fig. 1,
light-quark systems are much more sensitive than heavy-
quark systems to the behavior of the interaction at large
distances. The progressive weakening (or fiattening) of
the effective long-range confining interaction with de-
creasing quark mass accounts for both the compression
of the energy spacings with decreasing quark mass found
in our calculations, and the steepness of the ll Regge tra-
jectories. The corresponding strengthening of the vector
gluon-exchange interaction at short distances is relatively
less important as the lighter quarks are not especially sen-
sitive to this region of the potential.

The effects discussed above can be eliminated to a con-
siderable extent by taking an equal mixture of scalar and
vector contributions to the linear confining potential, that

is, choosing 5= —,
' in Eqs. (35) and (36). The effective in-

teraction then involves the sum of I'&' and F&, a quantity
which remains near unity for ~p

—p'~ small, and the
strength of the confining interaction is roughly indepen-
dent of the quark mass. The 5= —,

' fit to the ss, cc, and bb

data is in fact much better than the 5=0 fit (see Table I),
but 5=—,

' is ruled out by the spin dependence of the static

qq potential found in lattice gauge theory. '

C. Conclusions

The results of this work are discouraging with respect
to the utility of the reduced Salpeter equation for the
description of light- or strange-quark systems. We con-
clude, in fact, that this approach is fundamentally
flawed. The problems recited above —the incorrect sys-
tematic trends in mass differences, and the drastically in-
correct slopes of Regge trajectories —are intrinsic to an
approach based on the use of the reduced Salpeter equa-
tion with static scalar confinement. However, the failure
of the model to reproduce the observed "stringy" behav-
ior of the ll Regge trajectories suggests that the problems
would be eliminated in a theory which included the
dynamical energy of the color field between quark and
antiquark as well as the static field energy represented by
the static one-gluon exchange and confining interactions.

The kinetic energy terms of Eqs. (16) and (24) refer
only to the motion of the quarks. The energy of the color
fields is entirely in the interaction terms. The static field
energy found in lattice calculations' in fact matches
quite well the (Schrodinger) potential between nonrela-
tivistic heavy quarks: i.e., the bb potential. One can
reasonably expect the color field to adjust adiabatically to
slow motions of the heavy quarks and the kinetic energy
in the fields to remain small, and, hence, a nonrelativistic
Schrodinger or Salpeter picture of the dynamics with a
static potential to work well for sufficiently heavy quarks.

At the opposite extreme, the relativistic string model"
gives a good description of the Regge spectrum of light-
quark systems which involves no kinetic or mass energy
for the quarks. The energy of the string is essentially the
energy of a moving flux tube, with the quarks serving
only to carry the appropriate internal quantum numbers.
A realistic model would presumably lie in between, and
take account of the kinetic energy of the quarks, and both
the configurational and kinetic energies associated with
color fields which change as the quarks move. Such an
approach would require a change in starting point, e.g. ,
the use of' the full Bethe-Salpeter equations with a so-far-
unknown nonstatic kernel, or a Hamiltonian approach in
which the color fields appear explicitly, perhaps in a
flux-tube approximation. As a step in the last direction,
LaCourse and Olsson have recently investigated a quan-
tized version of the classical model of a rigid string with
quarks at the ends, and find, not surprisingly, that the
string-model results for the slopes of Regge trajectories
are reproduced, although other problems remain. In any
case, a description based on the reduced Salpeter equa-
tion emphasizes only .the dynamics of the quarks and is
not appropriate for light-quark systems.

We remark that we would expect the kinetic energy in
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a rapidly changing color field to increase the spacing be-
tween mass states in light quark systems relative to the
spacing in heavy-quark systems, a change in the correct
direction, but one which we cannot quantify.

We end with a word of caution. The systematic prob-
lems discussed in the preceding sections extend to the cc
system. Our attempt to improve the spin-independent
calculations relative to those performed using the simple
relativistic wave equation in Eq. (38), or even the
Schrodinger equation, has made matters worse. We con-
clude that the mass-dependent corrections to the interac-
tion which appear in the reduced Salpeter equation or its
expanded form relative to Eq. (38) are unreliable. There
must be other dynamical effects of the same general mag-
nitude in a complete theory. Thus, despite the time we
have invested in its solution, we conclude that the re-
duced Salpeter equation should not be used for phenome-
nological investigations of qq systems, except possibly for
the spin dependence, which we discuss in a separate pa-
per. ' This conclusion unfortunately leaves the theory of
light quark systems unsettled.
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APPENDIX

(P)ror„ct'(P )r"r A ( P)

for the vector coupling and

(P)rot(p )r & ( P) (A2)

for the scalar coupling. We use the standard representa-
tion for the gamma matrices:

1 0
~o= 0 —r

0 o.
—o. 0 (A3)

where o. is the usual representation of the 2 X 2 Pauli ma-
trices. The projection operators A —are defined in Eq. (3).
The components of the 4 X 4 matrix P are defined by

y+ — y++
(A4)

We wish to reduce Eq. (8) to an equation for P +, the
large component of (t. Straightforward matrix operations
give the + + component of V:

This appendix describes some of the details involved in
the reduction of the 4 X 4 matrix wave equation for P to a
2 X 2 form. We consider the case of Lorentz-vector and
-scalar couplings as in Eq. (8). The relevant interaction
matrices are

V++ = I'(co, +m, )P++(p')( co+zm)z+ rcpcr;P++(p')cr;cr p+(co, +m& )P+ (p')o"p
4co ~co~

+cr pcr;P+ (p')cr, .(coz+mz)+cr"PP (p')(coz+mz)+(co, +m, )o.;P +(p')cr;cr p

+cr"pg (p')cr p+(co, +m, )cr;P (p')cr;(coz+mz)] . (A5)

The small components of P can now be expressed in terms of P++ by using the relations in Eqs. (10), with the result

V+ = (co, +m, )P++(p')(coz+mz)+o"pcr;(t+ (p')o;o p
++

Cd ~C02

co)+m ) co2+m2+, 0++(p')~ p'~ p+~ p~;0"(p')~ p'~;
co2+m2 c02+m2

co2+ mp co)+m )+~ p~ p'0+ (p'), +, ~;~ p'0"(p')~;~ p
cu&+m

&
co&+m

&

+ + cr cr p'P (p')cr-p'o~ p~.p'0+'(p')~ p'~ p "~ ~ ~ ++
(co', +m, )(coz+mz) co', +mi 602+ m2

(A6)

where co,
' =(p' +m, )' . The corresponding result for the scalar coupling is

g++ 1

4Q) )c02

f02+ m ~
(co, +m, )(coz+mz)P +(p') — o"pcr p'P++(p')

6)j+m )

~+ ~ ++, ~ ~ p~ p'0" (p')~.p'~ p(p')~ p'~ p+
Q)2+ m2

(co'i+mal)(coz+mz)

(A7)
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The matrix wave function P
+ is connected to the standard spin wave function for two spin- —,

' particles with spin
projections I&, m2 by a factor io.2 acting on the antiparticle index:

(P ) l4 (P )i~2]

In particular, the normalized singlet- and triplet-spin states correspond to the matrices

(AS)

g(S =0)= —cr2, g (S =1)= —o cr2 . (A9)

By using the identity

( i o—2)cr~(i cr2) = —cr~, (A10)

we can convert cr-dependent factors on the right of P++ to ordinary spin operators acting on P from the left, pro-
1 2

vided these terms are taken to act on the second index only. For example,

(cr p'cI)++cr pio2) = (c—r p'), (cr p)
1 2 m&m

&
rnlm2 m]m2

(A 1 1)

Applying this transformation to Eqs. (A6) and (A7), we obtain the interaction operators F1,and I's given in Eqs. (13).
The seven distinct products of Pauli matrices which occur in the F 's can be reduced using the identity

j 6&j+l &&jkk

to the forms

(A12)

(o"pcr p')2=p p'+ip p'Xo2,

(cr po.p')1(o"po"p')2=(p. p'+ip p'Xc.r1)(p p'+ip p'Xo2),
(o"pcr.p'), =p p'+ip p'Xcr. , ,

(cr'P~ )1(cr crp )2 P'P +'p'P X(cr1+cr2)+P'P cr1'cr2 P'cr2P 'cr1 ~

(cr cr p )1(cr cr'p )2 p p crl'cr2+p 'crlp 'cr2

(cr'pcr )1(cr'pcr )2 p p crl cr2+p'crlp cr'2'
(cr'cr p')1(cr pcr')2=p. p'+ip p'X(o1+o'2)+p p'cr, .cr2 —p o'1p' cr2 .

(A13)

The separation of the spin-dependent and spin-independent terms is then trivial. The spin-independent parts of the F s
are given in Eq. (15), and can be extracted easily from the expressions in Eqs. (13) using the trace identity Trcr, =0 to
eliminate the spin-dependent terms.
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