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Origin of proton spin: Rotating constituents'?
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The question of whether the constituents of polarized protons are rotating about their polariza-
tion axes is discussed. Two collision experiments are proposed in which the effects due to rotating
constituents should manifest themselves if such orbital motion exists.

The recent spin-asymmetry measurement of the Euro-
pean Muon Collaboration' (EMC) has attracted much at-
tention. ' The measurement suggests that only a rather
small fraction of the proton spin is due to the spin of the
quarks, in disagreement with the popular picture for nu-
cleon structure. Several analyses ' have been made and
the obtained results had led some authors to argue that
the orbital angular momentum of the constituents may
significantly contribute to proton spin, while other au-
thors argue that the data give no clear conclusion on the
spin content of the proton and that errors, specifically
those arising from the uncertainty of extrapolation, have
been underestimated. That is, the above-mentioned ex-
perimental and the theoretical activities' have not only
revived the discussion of an old question "Can the spin of
a hadron be attributed to the orbital motion of its constit-
uents?" but also have manifested the urgent need of more
direct methods to answer this question.

The concept of velocity distribution for constituents in-
side a nucleon, together with its relation with the spin of
the proton, was proposed by Yang and Kantor ' in the
later 1960s, and has been discussed in connection with
the geometrical picture for elastic hadron-hadron col-
lisions by Chou and Yang in the early 1970s. The im-
portance of orbital motion of the constituents inside the
proton in polarized electron-nucleon scattering was
pointed out by Sehgal in 1974, in connection with the
quark-parton model and related sum rules. Since then,
several authors have discussed the role of orbital angular
momentum in their calculations of sum rules for various
structure functions. But, unfortunately, up to the present
time, these discussions ' did not seem to have attract-
ed much attention, although the answer to the above-
mentioned question may force us to reexamine the
present understanding of nucleon structure.

The result of the recent EMC experiment' taken to-
gether with the subsequent analyses ' is obviously a chal-
lenge to experimentalists as well as theorists working in
this field. One of the problems all of us are now facing is
the following. Can the question "Are there rotating con-
stituents inside a polarized nucleon?" be answered experi-
mentally in a simple, direct way?

In this paper, we show that it is possible. We propose
two polarization experiments in which the effects of ro-
tating constituents should clearly manifest themselves, if
such rotation exists. These experiments are independent
of the usual analyzing procedure. Hence, the results will

be free from the problems associated with the extrapola-
tions and integrations of spin-dependent structure func-
tions, etc. , mentioned above.

Experiment A. Multihadron production in deep-
inelastic lepton-proton scattering with polarized target.
Measurement of the azimuthal distributions of the pro-
duced charged hadrons, or that of the flow of hadronic
energy.

We recall the following. Every lepton-proton scatter-
ing event is characterized by the energy transfer v and
the momentum transfer q by measuring the energy and
the scattering angle of the outgoing lepton. Events asso-
ciated with large invariant momentum transfer Q
( = —

q ) values are those in which pointlike interaction
between the virtual photon/vector boson and one of the
constituents of the target proton take place. We also re-
call that many experimental facts suggest that the target
proton can be envisaged as a system of infinitely many
constituents. Such constituents are known in the litera-
ture either as "stuff" (in the geometrical model ), as "par-
tons" (in the parton model' ), or as "a sea of uncorrelated
quark-antiquark pairs" (in quark-parton and/or QCD
type of models" ).

Under the assumption that these constituents can be
considered as pointlike objects, the interaction between
which can be neglected, jet-production processes have
been successfully described. Hence this assumption can
at least be considered as a useful phenomenological an-
satz in understanding the existence of hadronic shower
due to the large momentum transfer in deep-inelastic
lepton-proton scattering processes. Here, the direction of
the "current jet*' coincides with that of the momentum-
transfer q via a virtual photon/vector boson, provided
that the struck constituent does not have intrinsic trans-
verse momentum. But, since the constituents may per-
form intrinsic random motion inside the proton, the
momentum of a constituent in the transverse direction is
in general nonzero. That is to say, the axis of the pro-
duced hadrons of the current jet may deviate from the
direction of the virtual photon/vector boson. In fact, it
has been shown by Cahn' and by Konig and Kroll' that
such intrinsic motion of the constituents should cause
asymmetry in azimuthal distributions of the produced
hadrons around the momentum transfer q in deep-
inelastic lepton-proton scatterings. Such effects have
indeed been observed by the European Muon Collabora-
tion'" in the muon-proton, and by Mukherjee et al.
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FICx. 1. Azimuthal distributions of charged hadrons pro-
duced by the current jet. (a) Experimental result for h(P) in
deep-inelastic p-p scattering with an unpolarized target. Here,
Ii is defined in Eq. (1) as a function of the azimuthal angle P
measured with respect to the lepton plane. Data are taken from
the second paper of Ref. 14 (Fig. 2 for xF & 0. 1). Note that g (Pl
in our plot is normalized to unity (b) —(d) Calculated result for
h (y) in deep-inelastic lepton-nucleon scattering with polarizedP
target. Here h~ is given in Eqs. (2}, (7},and (9}as a function of
the azimuthal angle g measured with respect to the polarization
plane. (b) —(d) correspond to the cases characterized by the o.

values 1.4, 1.8, and 2.2, respectively. The broken lines are the
results obtained by setting the deviation angle 5=25'. (See text
for further details. )

(MIT —Fermilab —Michigan State Collaboration)' in
neutrino-nucleon scattering processes. To be more pre-
cise, in the coordinate system in which the line /=0 (on
the outgoing lepton side) and n. is the lepton plane and
this line is perpendicular to the momentum transfer q (see
Fig. 1 of the second paper in Ref. 14), the existing data'
shows that the azimuthal distributions (I IN)dN/dg(P)
=g (P) of the produced charged hadrons in the forward
direction have a rather pronounced structure. It has a
maximum at P =sr and a minimum at /=0, 2'. (See, e.g. ,
Fig. 2 of the second paper in Ref. 14.) If we plot, instead
of g (P), the combination'

h (P) = [g (P)+g (P+~)]/2
against the variable P, we see the following. The data for
the P distribution shows that It (P) is approximately a
horizontal straight line [see Fig. 1(a) of this paper]. This
result agrees with the theoretical expectations' ' for
cases in which Q is large compared to the average trans-
verse momentum squared (kt) of the constituents. In
fact, by expressing g(P) in the usual (see, e.g. , Refs. 13
and 14 and the references given therein) way,
g (P)= A +8 cosP+ C cos2$+D sing, all contribti-
tions —including the QCD contributions' ' —to the

FIG. 2. Event geometry: The lepton plane is not shown.

terms 8 cosp+D sing cancel one another in h (p). The
contributions to C cos2$ are of higher order in kt /Q,
and this term is indeed negligibly small in practice. '

Let us now turn our attention to the spin problem and
ask what we expect to see if the orbital motion of the con-
stituents of the proton indeed contributes to its spin. We
erst consider the case in which the proton is polarized
perpendicular to the direction of the virtual photon/
vector boson. In order to compare this with the usual
(unpolarized) case, we adopt the same assumption, con-
cerning the existence of pointlike constituents inside the
proton, such that the only difference between the unpo-
larized and the polarized case is the following. The con-
stituents in the latter case are performing an ordered —in
addition to or instead of the random —motion.

Theoretically, the simplest and the most direct way to
see the efFect due to this difference is to consider those
events in which the plane determined by the momentum
transfer q and the polarization axis (i.e., the polarization
plane shown in Fig. 2) coincides with the lepton plane
(i e , the .pl.ane determined by the incoming and the out-
going lepton, not shown in Fig. 2). In terms of the vari-
ables P defined in the same way as that in the unpolarized
case, the difference between the azimuthal distribution
g (P) for the polarized target and the corresponding dis-
tribution g(P) for the unpolarized target can be most
easily seen in the following way. The distribution

hp(P) =[g~(P)+g (P+n)]I2.
which corresponds to h(P) for the unpolarized case as
de6ned in Eq. (1), should have two maxima, one at
P=rr/2 and the other at /=3m/2. That is, the result
should have qualitatively the form of one of the curves
shown in Figs. 1(b)—1(d). (Details about these curves will
be given below. ) This is because the constituents which
are rotating about the polarization axis (the x axis in the
coordinate system shown in Fig. 2) have nonvanishing ve-
locity components perpendi. cular to the polarization axis
and perpendicular to the lepton plane (i.e., velocity com-
ponents in the y direction of the chosen coordinate sys-
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tern shown in Fig. 2). This means the orbital motion of
the constituents in the polarized proton causes the
current jet to move either to p =a./2 or to p =3m. /2.

The above-mentioned method, though theoretically
simple and clean, is not very practical. This is because
the criterion for event selection strongly restricts the
number of useful events. This handicap can, however, be
overcome in the following way. We recall the following.
(i) In the measured azimuthal distribution g(P) of the
charged hadrons (or the energy fiow) in the current jet,
the azimuthal angle P is defined according to the lepton
plane on an event-to-event basis. ' The observed struc-
ture in g (P), in particular the maximum at P=+ and the
minimum at /=0 and 2m, is in fact nothing else but a
kinematical consequence of the random transverse
motion of the constituent, when it interacts in a pointlike
fashion with the virtual photon/vector boson. In terms
of h (P) [see Eq. (1)], the P distribution of the produced
hadrons in each of those events is essentially Aat in every
event in which Q is large compared with (ki ). (ii) Az-
imuthal distributions for the produced hadrons have al-
ready been measured with considerable precision in col-
lisions with unpolarized proton targets. ' ' The ap-
paratus used by EMC (Ref. 14) consisted of a large open
dipole spectrometer with proportional and drift
chambers. In particular, it is known that the momenta
and the direction of both the incident and the scattered
muons can be well measured, giving accurate knowledge
of the virtual-photon direction. Based on these facts, we
propose the following.

First, polarize the proton target in a direction which is
(approximately) transverse to the direction of the lepton
beam. Measure the outgoing lepton to determine the
momentum transfer q carried by the virtual photon/
vector boson. (We recall that the angle between the
direction of the virtual photon/vector boson and that of
the lepton beam is usually very small, i.e., «m. /2. ) The
straight line along the polarization direction and the
straight line along q define a plane which we call the po-
larization plane. In the ideal case, q is exactly perpendic-
ular to the polarization axis. We choose a right-handed
rectangular coordinate system (xyz) in which the polar-
ization axis is defined as the x axis, the direction perpen-
dicular to the polarization plane is the y axis, while the
direction of q is the z axis. In the general case, q is not
perpendicular to the polarization axis although it is in the
polarization plane (by definition). The direction of q,
which we call the z' axis, has a nonzero deviation-angle 5
with respect to z in the polarization plane. It is con-
venient, as we shall see later on, to define another right-
handed rectangular coordinate system x'y'z' in which the
y axis is perpendicular to the polarization plane. (It is,
of course, the x'z' plane in this system. ) The angle q& is
the azimuthal angle around the direction q, where the
point can=0 is fixed by the polarization plane on the side
of the polarization axis. See Fig. 2. Note that such a
choice of coordinate system is not only possible but also
meaningful because of the facts mentioned in (i).

Second, we measure the y distributions g (y) and
evaluate h (qr) in the same way as in Eq. (2), where y is
measured with respect to the polarization plane. Because

of the fact that the effects due to the random motion of
the constituents do not appear in h~(y) for scattering
events in which Q is sufficiently large [Q» ( ki ) ] the
orbital motion will cause the struck constituent to move
either towards p=m. /2 or towards y=3n. /2. That is, we
expect to see two distinct enhancements in h (p): one at
qr =n. /2 and the other at y= 3m /2, provided that the an-
gle 5 mentioned above is not too large.

We did a simple model calculation to estimate the
significance of this effect quantitatively. In this calcula-
tions, we first discuss the case 5=0, which is evidently
the simplest. In order to compare this effect with that
due to the vandom motion of the constituents discussed
by Cahn, ' we use exactly the same ansatz as Cahn for
the distribution of the transverse momentum of the ob-
served hadron:

—bp~D(k pi) ~e (3)

P (k, k )~exp( —a„k„—a k ),
where (2a ) '=(k ), (2a } '=(k ), with a„~a.
Thus the ratio

(kP) 1/2 1/2

can be used as a measure for the intensity of the effect
caused by the rotating constituents about the polarization
(the x) axis. The above-mentioned qr distribution h~(y)
can be readily obtained. (See Appendix A for details). It
1s

[(g +c„)(g+c~)]'
h (q&)=N(c„,c )j(y) J dg

0 0'+J (v»
(7)

where c„=a„/b,c~ =a„/b,

where p~ is the transverse momentum of the observed
hadron produced by the struck constituent, b and g are
constants. The latter takes the fact into account that
even the fastest observed hadron cannot carry all the
mornenturn of the struck constituent but just some frac-
tion g& 1 of it. (See Ref. 12 and/or Appendix A for fur-
ther details. ) Furthermore, we note the following. (i) The
transverse-momentum distribution P(k„,k ) due to the
random intrinsic motion of the constituents has been suc-
cessfully described' ' ' by the product of two Gauss-
ians,

P(k„,k ) ~exp[ —a(k +k )], (4)

with the same variance (2a )
' = ( k; ) (i =x,y ). The

empirical value' ' for ( k i ) ' = (k„+k ) '~ ranges
from 0.4 to 0.7 GeV/c. (ii) Since. rotating constituents
about the polarization axis (which is the x axis in this
case} will in general cause an asymmetry in the variables
k and k, the corresponding transverse-momentum dis-
tribution P (k„k„)is expected to change its form. A
simple way to incorporate this eÃect is to generalize the
ansatz (4) to
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j(q )=
1+(c /c —1)cos y

P'(k„',k' ) ccexp
Q~ gy &2 I2k„' —a k'

(a —a )sin 5+a

(9)

Here we again use the same value as that in the unpolar-
ized case' '3 (see Appendix A for details). Hence, the

and &(c,c ) is a normalization constant.
In our calculation, we adopted the same ansatz, a =b,

as that given in Ref. I2 for the unpolarized case, and gen-
eralized it correspondingly for the polarized case, which
means 1/(2a )+ I /(2a~ ) = 1/a = 1/b. Furthermore, we

used the same numerical values as those given in Ref. 14,
so that the only unknown is the ratio a defined in Eq. (6).
Now, since our main concern is to find out how
significant this effect must be such that the above-
mentioned enhancements in h (p) at p=vr/2 and 3m/2
can be observed, we begin with a simple guess. I.et us as-
sume that the orbital motion around the axis causes an
increase in (p~ ) such that (p ) becomes twice as large
as (p„).This gives a=1.4 and the corresponding curve
for h (y) is shown in Fig. 1(b). Comparison between the
results given in Figs. 1(a) and 1(b) shows that the efFect
should be visible in this case, provided that the statistics
in the experiments with polarized target is comparable
with that of the unpolarized target. Besides, it is rather
amusing to see that the usual' semiclassical relationship
between angular momentum (spin), the mean intrinsic
transverse momentum (ki ) of the constituents, and the
radius R of the proton (assuming homogeneous distribu-
tion of the constituents inside a sphere) gives 0.=1.4 for
( ki ) =0.4 GeV/c and R =0.8 fm. More detailed
dynamical models seem to suggest that a should be
larger. Hence, we also carried out calculations for
a= 1.8 and for a =2.2, which are shown in Figs. 1(c) and
1(d), respectively. Furthermore, although the y distribu-
tion for protons and that for neutrons may be different
because their electromagnetic form factors and thus their
charge distributions are different, it is yet probably still
too early to discuss these effects.

We now discuss the inAuence of the deviation angle 5
on the azimuthal distribution h„(q&). That is, we consider
the general case in which the angle between the direction
of the virtual photon/vector boson and the polarization
direction (which is shown as the x axis in Fig.2 ) is not
m/2 (which is shown as the z axis in Fig. 2), but m/2+5.
(This direction is called the z axis in the right-hand rec-
tangular x'y'z' system. Recall that the x'z' plane coin-
cides with the xy plane. ) What does the distribution
P'(k,', k' ) of the corresponding transverse momenta
(k„',k') look like. What is the relationship between this
and the distribution given in Eq. (5) that corresponds to
the case 6=0? Since the coordinate systems (xyz) and
(x'y'z') are related to each other through a rotation in
the xz (which is identical with the x'z') plane, where the
rotation angle is 5. It can be readily shown that

infiuence in g~(y) caused by the deviation angle 5 can be
calculated provided that 5 is known.

In Figs. 1(b)—1(d) we show (by the broken lines) the
corresponding results we obtained by setting 5=25 in-
stead of 5=0'. The deviation angle 5=25' is of particu-
lar interest because it is the value we obtained by insert-
ing the limiting Q and E' values in the EMC experi-
ments' in which the azimuthal distributions for the un-
polarized target have been measured.

Third, we rotate the polarization axis (of the target) 90
to (or against) the lepton beam, and measure again the az-
imuthal distribution g (y). Here, the angle y is defined
in the same way as before. To be more precise, it is the
azimuthal angle around the direction of the virtual
photon/vector boson, where y=0 is again fixed by the
polarization plane. We note, also in this case, the polar-
ization plane is fixed by the following two straight lines:
the direction of the target polarization and the direction
of the momentum transfer q via the virtual photon/
vector boson. Because of the facts that have already been
mentioned in the case in which the target is transversely
polarized, the corresponding y distribution
Ii (P) =[g (y)+g„(y+m)]/2 in this case should be fiat.
Furthermore it can be shown (see Appendix A) that the
effect due to the deviation angle 5 is also negligibly small
in this case. Hence, we are led to the conclusion that
measurements of the y distribution g (y) in deep-
inelastic lepton-nucleon scattering with transversely and
longitudinally polarized target can be used to find out
whether the constituents of a polarized proton are indeed
rotating around the polarization axis. In principle, such
experiments can be done by replacing the unpolarized
target by a polarized one in those experiments' ' which
have already been successfully performed. Our quantita-
tive estimates shown in this paper suggest that the num-
ber of events expected in such experiments will be
sufticient to see the effects caused by rotating constituents
if they indeed exist.

It would be interesting to perform the proposed polar-
ization experiments also for small values of Q . For
small Q, the interaction between the virtual
photon/vector boson and the polarized nucleon is no
longer pointlike and hence the individual constituents, in
particular their motion inside the nucleon, are no longer
relevant for the "detecting device. " (Recall that a real or
almost real high-energy photon behaves like a hadron. )

Hence, we expect that this kind of effect will disappear.
Experiment 8. Measurement of the average transverse

momentum of the timelike virtual photon in lepton-pair
production in collisions of polarized proton (or antipro-
ton) beams with polarized proton targets in the longitudi-
nal direction. Here, we compare the result in the case in
which the beam and the target particles are polarized
parallel to one another with that in which they are anti-
parallel. The reasons why we think such measurements
should be helpful are given below.

We recall the following. The lepton-pair production
processes in high-energy hadron-hadron collisions can be
understood, according to Drell and Yan, ' as annihila-
tion of quark-antiquark pairs, where the quarks and the
antiquarks are considered as pointlike constituents of the
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colliding hadrons. The average transverse momentum
usually given in the squared values &p, ) of such lepton
pairs, has been measured in various processes at
different energies. Based on the fact that lepton-pair pro-
duction experiments can be described by the quark-
antiquark annihilation picture, and that the quark-
helicity does not depend very much on the proton polar-
ization, ' we expect to see the following, provided that the
constituents are rotating about the polarization axis. The
transverse momentum of the produced lepton pair de-
pends very much on the polarization directions. To be
more precise, we expect to see that the difference

FIG. 3. Collision geometry: The collision axis is pointing to-
wards the reader.

&&p,') =&p,'(+))—
&p,'( —)) (10)

between the average of the transverse momentum
squared in the antiparallel case (denoted by +) and that
in the parallel case (denoted by —) should be greater than
zero. Note that by considering the difference between
the spin-antiparallel and the spin-parallel cases, we can
simply neglect the contributions due to the random
motion of the annihilation quark-antiquark pairs.

In order to make a quantitative estimate, we complete-
ly neglect the contributions due to the random motion of
the annihilating quark-antiquark pairs and consider the
effects due to the rotation only. Let us denote the over-
lapping domain of the two colliding hadrons P and T by
D. Every point in D can be characterized by the impact
parameter b and the two angles Oz, Oz, shown in Fig. 3.
The transverse momentum of the lepton pair created by
the quark antiquark at the point (b, Op, Or) is obtained
from the vector sum of the momenta kzz and kzz of the

rotating constituents which annihilate each other. That
1S,

pq (»Op Ori+)= Ikpg I + Ikz'g I

+21kpg Ilk' Icos(Op+Or ) (11)

where + ( —) refers to the case in which P and T are anti-
parallel (parallel) polarized. The observed average trans-
verse momentum in the case in which the polarizations of
I' and T are antiparallel, and that in the case in which
they are parallel are

&p (+) ) = f &p (b+) )b db f b db, (12)

respec'tively. Here, &p, (b;6) ) is the mean value of
&p, (b, Op, Oz,'+)) [given in Eq. (11)] averaged over all
possible angles 0~ and Oz for a given impact parameter b.
That 1s,

f &p, (b, Op, Or;+))F(b, Op, Oz. )dOpdOr
&p2(b +) ) D(b)

f F(b, Op, Or)dOpdOr
D(6)

(13)

where we have denoted the overlapping domain of P and T, for the corresponding b, by D(b). F(b, Op, Oz. ) stands for
the product of a given Jacobian and the two-dimensional density functions of the quarks/antiquarks inside the colliding
hadrons. (See Appendix B for details. ) It is clear that, in contrast with & p, (+ ) ), neither & p, (b, + ) ) nor
&p, (b, Op, Oz, +)) can be directly measured. But they are extremely useful for the present calculation because the
impact-parameter concept plays an essential role in discussing orbital motion of the constituents. Furthermore, since
we are primarily interested in the difference of the average transverse momentum squared in the antiparallel-spin case
and that in the parallel-spin case, it is also useful to consider

&&p,'(p)) = &p,'(b, + ))—
&p,'(b, —))

and note that it follows from Eqs. (11), (13), and (14) that

4f Ikp~lllkr~ Icos(Op+Or)F(»Op Or)dOpdOr
~&p'(b)) =

f F(b, Op, Or )d Opd Or.
D(&)

(14)

(15)

The difference b, &p, ) mentioned in Eq. (10) between the
directly measured quantities &p, (+)) and &p, ( —)) can
then be expressed as

~&p,') = f"~&„'(b)»db/(2Z 2), (16)

where the integrand b, &p, (b) ) is given in Eq. (15).
For an exact evaluation of the right-hand side of Eq.

I

(15) and thus that of Eq. (16) we need to know Ikpz I
and

Ikzz I, which are in general functions of the variables b,
8~, and 0~. This means for such calculation we need a
detailed dynamical model in which the orbital motion of
the constituents are precisely specified. As a rough esti-
mate we assume that the dependence of Ikpz I and Ikrz I

on b, 0~, and Oz- is very weak, so weak that we can re-
place them by their average values & lkpz I)=& lkzz I)
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W(b)

10

larized nucleon?" can be answered by performing
different kinds of experiments. In particular, a deep-
inelastic lepton-nucleon scattering experiment is pro-
posed in which neither polarized beam, nor spin-
dependent structure functions, nor sum rules are needed.
Hence, the result of such experiments are expected to
give an independent check on the current picture for had-
ron structure in general, and that for proton spin in par-
ticular.

.0

FIG. 4. Geometrical weighting factor W(b) as a function of
the impact parameter b. Here b is shown in unit of R, the pro-
ton radius. (Note that the result is independent of the absolute
value of the nucleon radius. )
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APPENDIX A

= ( kz ) (which should be the same because of the obvi-
ous symmetry). In this case, Eq. (16) becomes

S(p,')=, f W(b)db .
4(k, )'

(17)
~(2R)'

Here W(b) is a pure geometrical weighting factor:

2'& cos Op +OT F 6, Op~ OT d Opd OT
W(b)= f F ( b, Ot„OT)d Ot, d Oz.

The dependence of this factor on b is shown in Fig. 4.
This impact-parameter dependence implies in particular
that the chance to observe Drell-Yan pairs in the polar-
ized case should be comparable with that in the unpolar-
ized case, provided that the degree of polarization is
sufficiently high. The integral on the right-hand side of
Eq. (17) can be evaluated numerically. The result is

(19)

provided that the proton/antiproton are taken as homo-
geneous spheres. By assuming that (k~ ) is of the same
order of magnitude as (k~), the average transverse
momentum due to the random intrinsic motion of the
constituents, we have

(0.6 GeV/c) for (kj ) =0.4 GeV/c,

(1 GeV/c) for (kz) =0.7 GeV/c .

Compared with the corresponding values for (p, ) ob-
tained in unpolarized hadron-hadron collisions, we are
led to the conclusion that the expected difference men-
tioned in Eq. (10) should be observable at the presently
available energies.

In conclusion, the purpose of this paper is to show that
the question "Are there rotating constituents inside a po-

P ( k, k, k, ) cc exp( ak ak —ak, )—, —(A 1)

where a; = 1/(2( k; ) ), i =x,y, z. Since none of the direc-
tions is distinguished, we have

a =a =a =—a""~" .X g Z (A2)

Hence, if we choose the z axis as the direction of the vir-
tual photon/vector meson, the distribution of the trans-
verse momentum Ik~I

—= (k +k )' is

P ( I k~ I ) =P (k„,k ) ~ exp [ a""""(k„+k» ) ]—.

The polarization along a given axis will in general
break part of the symmetry mentioned in Eq. (A2). In
particular, the relation given in Eq. (A2) should be re-
placed by

(A4)

if the nucleon is polarized along the x axis, and it should
be replaced by

a, —:a, a„=a~—=aII — ) = — II (A5)

We consider the momentum distribution of the constit-
uents inside a nucleon, and discuss the effects caused by
their orbital motion. In particular, we show what hap-
pens when the deviation angle 5 (defined in the text) is
different from zero when the target nucleon is polarized
in such a deep-inelastic lepton-nucleon scattering experi-
ment. In order to do this, we consider the Lorentz frame
in which the (either polarized or unpolarized) nucleon is
at rest. (The constituents we discuss in this paper should
not be identified with objects which are only defined in
the infinite-momentum frame of the nucleon. )

In a given Cartesian coordinate system (xyz) in which
the momentum of a constituent is denoted by (k„,k», k, ),
the momentum distribution of the constituents due to
random intrinsic motion can be considered as the product
of three Gaussians:
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if the nucleon is polarized along the z axis.
Hence, if the z axis is again defined as the direction of

the virtual photon/vector meson, the corresponding
transverse-momentum distributions should be as follows.
In the case in which the nucleon is polarized along the x
axis we have

P(k', k', k,' ) cc exp( a„'k„' —a'k' a—,'k,' ),— (Al')

where a =1/(2(k ) ), i =x,y, z. Here, (k„',k', k,') is the
momentum of the above-mentioned constituent in the
(x'y'z') frame.

It is obvious that we should have

(A2')

P„(k„,k ) ~exp( —a, k —a k ), (A6)

where a„=1/(2(k ) ) ) 1/(2(k» ) ) =a, and in the case
in which the nucleon is polarized along the z axis we have

P~'(k k )~exp[ —a "(k +k )], (A7)

where a ~~ = 1/(2 ( k„)) = 1/( 2 ( k» ) ).
%'e now consider the Cartesian coordinate system

(x',y', z'), which is related to (xyz) in the following way.
The x'z' plane coincides with the xz plane such that y'
axis is the same as the y axis. The angle between the z'
and the z axis (and thus also the angle between the x' and
the x axis) is 5. We wish to know the relationship be-
tween the coefficients a, a, and a, in the momentum
distribution P(k, k, k, ) given in Eqs. (Al) —(A7) and the
corresponding coefficients a', a', and a,' in

axis, we have

where

a Ila II

a'll= Z

(a ~' —a ")sin'5+a ~~

a'Il=a IJ

(A5')

E'sinOtan6= (AS)

where 0 is the laboratory-frame scattering angle. Here
we have neglected the lepton mass. Taken together with
the well-known relationship between 0 and Q = —q,

Q2=4EE'sin (8/2), (A9)

Eq. (AS) can be rewritten as

In order to estimate the order of magnitude of the devi-
ation angle 6, we consider the case in which the nucleon
target is polarized perpendicular to the lepton beam.
Denoting the energy-momentum vector of the incoming
lepton by (E,k), that of the outgoing lepton by (E', k'),
and that of the virtual photon/vector boson by (qo, q), it
follows from energy-momentum conservation that 5, the
angle between the incoming lepton and the virtual
photon-vector boson, is

if the nucleon is not polarized. Hence, if we choose the z'
axis as the direction of the virtual photon/vector meson,
the transverse-momentum distribution is

&Q'(4EE —Q')
2E 2EE'+ Q— (A10)

P(k', k' ) cc exp[ —a"" "(k„'+k' )] . (A3')

The corresponding transverse-momentum distributions
for the polarized targets can be written as follows. In the
case in which the nucleon is polarized along the x axis,
we have

P (k', k' ) cc exp( a„'k,' a' k» ), — —(A6')

where

a aa' =
(a„—a )sin 5+a

a' =a
(A4')

In the case in which the nucleon is polarized along the z

By inserting the maximum values for E' and Q obtained
in the EMC experiments (Ref. 14) into Eq. (A10), we ob-
tain 5=25.5'. This is the largest deviation angle we
would have if we would polarize the target used in Ref.
14 transverse to the lepton beam. The effect of this devia-
tion angle to the azimuthal distribution h (y) is shown as
dashed lines in Figs. 1(b)—1(d).

We recall that, for sufficiently large Q, the efFects due
to the random motion of the constituents do not appear
in h»(y). Hence the y dependence of h~(y) can be ob-
tained by folding the transverse-momentum distribution
P (k, k2) [such as that given in Eq. (5) or that in Eq. (9)]
with the distribution D (g, p„)[given in Eq. (3)] which de-
scribes the distribution of the transverse momentum
given to the observed hadron by the struck constituent.
That is, the distribution of the transverse momentum
(p„,p ) of the hadrons produced by the struck constitu-
ent which carries a fraction g of its momentum [the
transverse part of which is (k„,k )] can be written as

fdk dk»expI b[(p„——gk„)+(p —gk ) ]Iexp( —a„k—a k )

2
Py

a +bg'(A 1 1)
2

=2m [(a„+bg )(a +b g ) ] '~ exp b+-
a„+bg



776 MENG TA-CHUNG et al. 40

provided that the longitudinal momentum of the struck
constituent is much larger than pz and k~. By inserting
(picosy, pisinp) =(p„,p~ ) in the expression given in Eq.
(Al 1), and integrating it over pi, we obtain

[(a„+by )(a~+be )]'
h, (q lg) bIa„a +[a +(a —a, )cos y]bg I

(A12)

This is the contribution to h (y) from those hadrons
which carry a fraction g of the momentum of the struck
constituent. Thus, the right-hand side of Eq. (7) in the
text is nothing else but the integral of hp(pig) over g.
The corresponding expression for h (y) in the case 5%0
can be obtained from Eq. (9) in a similar manner.

APPENDIX B

sinO&cosOTx=b
sin(Op+OT)

sinO&sinOT
y=b

sin(Op+ OT )

We connect the center of P with that of T by a straight
line; and consider the plane which contains this line and
which is perpendicular to the collision axis. This plane is
shown in Fig. 3 together with D (b), the domain of inter-
section, and the set of variables (b, Op, OT) which is used
to characterize an arbitrary point in D(b). The variables
b, O~, OT are related to the usual Cartesian coordinate in a
simple manner. In fact, by choosing the center of T as
the origin of the coordinate system (x,y) and by choosing
the straight line between T and P as the positive x axis,
we have

dx dy=J(b, Op, OT)dOpdOT,

where J(b, Op, OT ) is the Jacobian

sinOpsinOT
J(b, OT, Or)=b

sin (Op+OT)

(B2)

(B3)

Let us now consider the density distributions of the
colliding hadrons P and T. In terms of the above-
mentioned Cartesian coordinate system in which the z
axis is the direction pointing towards the reader, the
two-dimensional density distribution cr r(x, y) of T is
defined as the integral of the density distribution p( xy, z)
over z:

~r(x,y}=f dz p, (x,y, z) . (B4)

The corresponding two-dimensional density distribution
0 p(x y) fol P can be obtained from pp(x, y, z) in a similar
way. Obviously, the density functions o.z and o.z can be
expressed in terms of the variables (b, Op, OT ). For exam-
ple, in the case in which T is a homogeneous sphere of ra-
dius R, we have

sin Op
o T(b, Op, OT)= 3

R
2srR sin (Op+Or )

1/2

(B5)

The function F(b, Op, OT) in Eqs. (13), (15), and (18) is
the product of J(b, Op, OT ), oT(b, Op, O. T ), and

cr p( b Op OT ). That is

F(b, Op, OT ) =J(b, Op, OT )o p(b, Op, OT )a T(b, Op, OT ),
(B6)

where o p(b, Op OT) is defined in a similar way as
cr T(b, Op, OT) given in Eq. (B5).
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