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Effective charges in QCD: Where has all the ambiguity gone'?
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The method of e6'ective charges has been proposed by Grunberg as a natural solution to the prob-
lem of renormalization-scheme dependence of finite-order perturbation-theory results. In this paper
I shall argue that this solution relies in a crucial way on certain rather ad hoc assumptions. Some
statements contained in his paper are furthermore commented upon and the peculiarities of the
renormalization-scheme ambiguity for perturbation expansions which are divergent when con-
sidered in a fixed renormalization scheme briefly mentioned.

Perturbation expansions in QCD are burdened with
two problems. First, because of the unavoidable trunca-
tion of these expansions, we face the ambiguity connected
with the renormalization-scheme (RS) dependence of the
resulting finite-order approximants. Second, since in any
fixed RS the perturbation expansions most likely diverge
(for a recent discussion of this problem see Ref. 1), we
cannot use these finite-order approximants to construct
the "full" results of perturbation theory directly order by
order. Information from outside perturbation theory is
necessary to give the full sums good mathematical mean-
ing.

While most recent papers related to these problems
have paid attention to the phenomenologically important
first question, there have been attempts to address the
second one as well. Although I consider the problem of
constructing physically well-motivated and mathemati-
cally satisfactorily defined full summations of perturba-
tion expansions to be of primary importance even for the
solution of the first problem, I return in this Comment to
the paper of Grunberg, where the method based on the
concept of "effective charge" is suggested as the best and
most natural solution to the mentioned finite-order ambi-
guity.

As all such attempts (for a closely related one see Ref.
4) this approach also sufFers, however, from certain more
or less arbitrary assumptions which must be adopted in
order to arrive at unique results. This in itself is not prin-
cipally wrong, as all other remedies such as those of Refs.
4-7 also contain some element of arbitrariness. As
stressed some time ago by Politzer, we have to put in a
lot of guesswork if we want to get unique results. Gen-
eral criteria such as the principle of mimimal sensitivity
(PMS), or that of Ref. 3 can help in detail, where intui-
tion is of no help, but most of the problem must be
"solved" by some ansatz based on previous experience or
physical insight. For the PMS criterion the merits and
shortcomings have been discussed by a number of au-
thors. ' As Ref. 3 contains no such critical discussion
the impression might arise that there is nothing arbitrary
in the method of effective charges and consequently that
this method is better than the others. The purpose of this
paper is to demonstrate that this is not the case and that
the RS ambiguity reappears even there, in somewhat dis-

where p is the arbitrary renormalization point. Equation
(1) is a special case ( A =0, B =d =1) of the general ex-
pression (2.1) in Ref. 3. The renormalized charge (cou-
pling constant) a, depends, in addition to p, also on the
choice of the so-called renormalization convention (RC)
and obeys the equation (p—:a, /4' =g /16' )

dp
p(/ ) = p—i/ ' pe'—pi/

"— —
d lnp

(2)

The first two coefficients p„p2 are fixed once the number
nI of quark favors is given, but all higher-order
coefficients P;, i ~3, are free and define just the men-
tioned renormalization convention RC= I/3, I. Fixing the
RC thus requires fixing all these p;, i ~3 but leaving p
still free, while fixing the RS means that beside them also
the value of p was specified. Employing now p and p; to
define the RS we work in, (1) should actually read

tr(Q) =a, (p, P, )[1+a, (Q/p)a, (p, P, )

+o2(Q/p Pi)a (p P )+ . ) (3)

as the internal consistency of the perturbation theory
determines the dependence of the coefFicients o; on p and
P,. through relations

mo, =(P, /2)ln(p/A) —p, ,

rr cr2=sr cr, +rrtr, P2/(4P, )+p2 Pil(16P, ), —

etc. , where all the p s are RS invariants introduced in
Ref. 5 and A is the only free dimensionful parameter of
the theory. In addition to setting the scale it also
specifies [Eq. (2.7) in Ref. 3] which of the solutions to (2)
we have in mind. To make my following arguments as
simple as possible let me for technical reasons further-

guised form.
Let me recall, in the notation of Ref. 3, that we are in-

terested (within the framework of massless QCD) in the
perturbation expansion of a given physical quantity o.(Q),
depending for the sake of simplicity on a single external
momentum Q. In the fixed RS this expansion takes the
for m

o.(Q)=a, (l+o,a, +tr2a, + ), a, =a, (p), (1)
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more assume P2=0. This would be the situation in the
imaginary world with a noninteger number

nf =306/38='8. 3 of quark Aavors where, however, the
asymptotic freedom would still hold as P, =552/114) 0.

In the notation of Ref. 5 different RS's correspond to
different p and /3; for the same, fixed A, but as p enters a,
always in the ratio p/A it is alternatively possible to fix p
once and for all the considerations (by setting it equal to,
say, the external momentum Q) and let A change instead.
In this notation"' different RS's correspond to different
A and so RS =

t A, P; I.
Although the full renormalization group of Stuckel-

berg and Petermann' expresses the invariance with
respect to the variation of all the parameters p, /3;, some
part of it may in practice be more relevant to our prob-
lem than the other. Nevertheless, any result we may ar-
rive at must be a special case of (3). For instance, there is
a claim in Ref. 12, repeated at the beginning of Ref 3,
that in fact only the freedom connected with the change
of the scale, i.e., either of p or A, is relevant to the prob-
lem of RS dependence of finite-order approximants to (3).
According to Ref. 12 one should not consider expres-
sions such as (3), but should formally reexpand them in
powers of 1/L, where L (Q/A) —=/l, ln(Q /A ) is an obvi-
ous RC invariant. After doing so we get

Y,(c) 'Yz(c)
o(Q)= —1+ + + ~ ~ ~

L L
(6)

where both the expansion parameter 1/L and the
coefficients y;(c) depend on a single dimensionless pa-
rameter c, describing the rescaling of A: A(c)—=exp( —cP, /2)A(0). From (4) we then get

1 1 1 b

L(b) L L L
(8)

y, (c)=o,(p=Q)+cP,

and similarly for higher-order parameters y;, i ) 1. Thus
if (6) is taken as the result of perturbation theory, the RS
ambiguity reduces to the- freedom in the choice of c and
all the complications connected with coefficients P;, i 3
seem to disappear. When (6) is so simple, why bother
with more complicated expressions such as (3)?

The catch is, of course, that the solution of the finite-
order RS ambiguities does not reside in expressing physi-
cal quantities in terms of explicit RC invariants (and then
somehow fixing A as well) but in the proof that this can
be done reasonably unambiguously. As a matter of fact
(6) can (in our simplified world with /32=0) be obtained
from (3) simply by adopting the 't Hooft renormalization
convention RC= I/3; =O, i )3I (Ref. 14), where a, =1/L
identically and so (3) reduces directly to (6).

But instead of 1/L why not reexpand in another "man-
ifest" RC invariant such as 1/L'=—1/L +1/L ? Both
1/L' and 1/L depend quite smoothly on the ratio Q/A,
and the fact that the latter when expressed in terms of
elementary functions looks slightly more complicated is
certainly no serious argument against it. But if 1/L is
acceptable, then so is, obviously,

for any b. If, however, we now calculate the derivative of
the quantity p(Q/A) =1/[4mL (b)] with respect to lnQ
and recall that

d
1

4~L (Q/A)
d lnQ

14'
2

we easily find

dp(Q/A, b)
d lnQ

+(16mP, b. )p (Q/A, b)+ . (10)

Thus the freedom in the choice of b in the definition (8) of
the expansion parameter is in fact equivalent to the free-
dom in the choice of /33= —16ir /3, b in (2). The ambigui-
ty related to /3& thus reappears in somewhat disguised
form, but it does so inevitably. The same holds for other
higher-order parameters /3;, i )3, as well. The arbitrari-
ness of /33 in (2) expresses in other words the fact that we
have no reason to prefer b =0 in (8) to any b&0.

Starting with (6) Grunberg then goes on the claim that
"The solution to the RS problem proposed in (8) takes
the care in the simplest possible way of this remaining
difficulty" ' that is of the choice of c in (6). The bulk of
Ref. 3 represents then a detailed elaboration of the above
statement, supplemented with a number of applications.

However, as will become clear in a moment the results
of Ref. 3 are in fact not of the form (6) and thus cannot
directly serve to fix the value of c therein. It is unclear
why the expression (6) had been mentioned at all, as it
has only remote relation to the method expounded in
Ref. 3. That one boils down to a particular choice of the
RS= IA, P, I, namely, such a choice in which the associ-
ated coupling a„called the "effective charge" appropri-
ate to the physical quantity o (Q), is equal to o (Q) itself:

I/3;, /p; I
=olp /p I, (12)

o(Q)=a, (Q/A, /3;)=a .

The coefficients /l, , i) 3, which are process and RC
dependent, are uniquely fixed by this requirement as is
the value of the "effective" A. Knowing the coefficient
o.

&
this A can easily be related to A in any fixed RS, say

the modified minimal subtraction scheme (MS). To find
A, P; we solve the equations o,.(Q/A, /3, ) =0 for all j & 1.
To second order we get 2p, =/3, 1n(Q/A) which then
determines A in terms of p„ to third order /l3=16p2/3, is
fixed, etc. As the invariants p; are in general nonzero, we
immediately see why the results of this method are not of
the form (6), which corresponds to P,. =0 for all i )3.

Now the only reason mentioned in Ref. 3 for the above
choice of A, /3; is that it leads to the "simplest" possible
form of (3). This, however, is certainly a very vague and
subjective criterion, similar in essence to the choice b =0
in (8) (in this and only in this aspect is there some com-
mon point in Refs. 12 and 13). True, there are in Ref. 3
considerations leading its author to formulate his cri-
terion for the "well-behaved" RC =

I P, , i ) 3 I (I shall re-
turn to it later),
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but they do not prevent us from defining another
"effective charge" a,' by means of the relation

o(Q) =a,'(1+a,')

or generally

o(Q)=a,"(1+ra,") .

(13)

(14)

The freedom connected with r is roughly equivalent to
the choice of the renormalization point p or equivalently
A in (2). Although the P function associated with a," as
defined in (14) (denoted P ) depends on r and does not, for
large r satisfy the condition (12), there still remains, even
if we accept the criterion (12), the problem of specifying
which of the (loosely defined) "small" values of r to
choose. The choice advocated in Ref. 3, namely, r =0,
has no physical justification apart from its alleged "sim-
plicity. " The situation is analogous to that of choosing p
in (3). We know that in order to avoid large coefficients
we have to set p=aQ with lr of the order of unity, but ex-
actly which ~ to choose is just the essence of the RS am-
biguity. Of course, should we consider Eq. (2) (for all r)
exactly to all orders the resu1ting 0,," would, upon substi-
tuting into (14), yield results independent of r and equal
to those of Ref. 3. If, however, (2) is truncated, the re-
sults will inevitably depend on the value of r, which we
repeat is basically equivalent to the arbitrariness of p (or
equivalently A) in (3). And thus again, as in the discus-
sion related to Eq. (6), the original freedom in the choice
of the RS= tA, P;I has been traded for something else,
this time the arbitrariness in the definition of the
"effective charge" [we could obviously add to the right-
hand side of (14) also the terms that would simulate the
effects of still higher-order parameters P;, i ~ 3].

Let me now return to the criterion (12) of "well-
behaved" RC. Denoting P2/P, = io we have, due to (12),

P;/Pi=(P;/P;, )(P;,/P; z) (P2/Pi) =io' ', (15)

and so if (12) should hold for all i) 3 the associated P
function must in fact be convergent, behaving roughly
like the geometric series. This might be a reasonable re-
striction of the allowed RC, but it rules out such com-
monly used RC's such as the MS, where the coefBcients
Pk are expected to grow factorially like k. Moreover, it
also excludes the "efFective" P fun'ction P of Ref. 3 itself,
as it will inevitably diverge, too. If we assume a practical
viewpoint and consider (12), as well as all other expan-

ps/$2=167. 73=27(p2/p, ) . (17)

So at least for the quantity (16) the "effective" P function
P itself is not "well behaved" according to (12) not only
for asymptotic orders but even for the lowest nonuniver-
sal one. It may be a coincidence and other quantities
may be better behaved but (17) is a warning that the
divergence of perturbation expansions may be of more
than academic interest [for (16) the third-order correction
represents about 12% of the leading term and is, in
the MS RS, about two and a half times bigger than the
second-order one].

The method of Ref. 3 might be appropriate, though not
unique, for convergent series, but for divergent ones en-
countered in QCD there are several problems. Besides
the one connected with the behavior of lowest orders
there is a fundamental question of the limiting value of
finite-order approximants defined by means of (11). The
algorithm suggested in Ref. 3 can of course be applied at
any order but, as has been shown in Ref. 17, the resulting
finite-order effective charge" approximants do, for the
case where the associated "effective" P function P of Ref.
3 is, as expected, divergent, vanish as the number of
terms into account in (2) goes to infinity. In order to
avoid this unwelcome fact the author of Ref. 3 must ei-
ther specify at which order his procedure is to be ter-
minated (because at that order we are supposed to be
closest to the full sum) or his procedure must otherwise
be modified.

sions, to only a finite (and low) order (hoping that the fac-
torial growth of the coefficients Pk will make itself felt
only at sufficiently higher orders to allow sensible phe-
nomenology to be based on the first few explicitly known
orders), then the MS RC passes, to the known order, the
test as/3s/Pz=7. 92, while Pz/P, =6. 16 (for nf =4). Until
very recently no such test could be done for the
"effective" RC of Ref. 3 as it requires a full three-loop
calculation of some physical quantity. However, in Ref.
16 a fu11 three-loop calculation of the familiar ratio

o.(e+e —+hadrons)
(16)

o (e+e ~@+)M )

has been first reported. The results show that in the MS
RS the third-order correction to (16) is very large. In
terms of RS invariants the authors of Ref. 16 found (for

nf =4) p2=64. 36, which implies
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