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It is shown that the spherically symmetric solution previously given by Maiti is not the most gen-
eral conformally flat solution for a shear-free and rotation-free fluid with heat flux. We have
presented a more general solution for such a distribution and have considered the conditions of fit at
the boundary of a simple spherically symmetric model with heat flux across the boundary with the
exterior Vaidya metric.

I. INTRODUCTION II. SOLUTION WITH HEAT FLOW

It was shown earlier by Maiti' that if the space-time of
a shear-free, rotation-free Auid distribution with nonzero
heat Aux is conformally Aat, it can then be shown using
comoving coordinates that the curvature of the three-
space is independent of the space coordinates. In the
next step, however, Maiti incorrectly used for the three-
space the form given by Eisenhart who in fact con-
sidered the entire space and not the subspace. Thus the
metric form wrongly claimed by Maiti to be general for
the three-space was the standard form

dl = (dr +r do+r sin Odg ),R'(t)
(1 +kr2/4)2

where k =0, +1. The metric of the space-time was fur-
ther claimed to be spherically symmetric. In the present
paper we have derived the more general form of the
metric for the space-time having the properties men-
tioned above. It is not in general spherically symmetric
but only reduces to it in certain special cases.

At the end of the paper we have considered a very sim-
ple model of a sphere with heat Aux in the radial direc-
tion and have shown how one can obtain a suitable solu-
tion for the function R (t) if the system is to match with
the exterior radiating metric of Vaidya.

The energy-momentum tensor of a Auid with heat Aux
is given by

T" =(p+p)v "v, p5" +q~v—,+v "q„. (2.1)

The heat Aux vector q& is orthogonal to the velocity vec-
tor U" which in a comoving coordinate system is
v"=(g44) '

5~4. Since it is assumed that the Quid distri-
bution is shear-free, rotation-free, and conformally Aat it
can be shown following Maiti that the curvature of the
three-space is independent of the spatial coordinates and
is a function of time alone. This follows from the expres-
sion

(2.2)

where (p —
—,'8 ) is a function of time alone. The above

consideration leads us to write the metric in a chosen
coordinate system as

ds =V (x")dt U(x")(dx +dy —+dz ) . (2.3)

In the above the greek indices stand for 1,2,3,4 and the
latin indices for 1,2,3. The relevant coordinate transfor-
mation, however, does not disturb the comoving charac-
ter of the coordinate system. The special form of the
metric for the three-space obtained in (2.3) follows from
Eisenhart's result. Einstein's field equations from (2.1)
and (2.3) yield

Svrp=U [—2U '(U22+U33)+W '( Wz2+W33)]+X
= U [—2U '(U 33+ U „)+W '( W 33+ W ~~ )]+X
=U2[ —2U '(U„+U2~)+W '(W„+W22)]+&,

Bmp=2UQ U;; —3+(U;) +3W U —A,
(2.4)

(2.5)
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UW;. =2 WU; (i Wj ),
Smq'=2U ( UW ');,

where 8 =UVand

X=3+(U, ) —2UW ' g U, W,

(2.6)

(2.7)

yields the metric in this special case to the form
2

ds = 1+ a (t) dt
1+k(t)r /4

2

(dr +r dQ )
[1+k(t)r /4]

In (3.2) we have written

(3.2)

+(2UU —3U —2U W 'UW) W A . (2.8)

The cosmological parameter A is also included for gen-
erality. The subscript indicates the derivative with
respect to the relevant space coordinates and the overdot
stands for the time derivative.

Using a result of Banerjee and Som for a conformally
Hat space-time one can write

W=UV= A(t)(x +y +z )+A, (t)x+A2(t)y

+ A3(t)z+ A&(t), (2.9)

where A, A1, A2, A3, A4 are arbitrary functions of time.
This form of the metric when used in (2.6) yields

R (t)=, K(t) = R ~(t),K(t) R*
4B ' 6

k ~4a(t)=—
4

B4
8

(3.3)

This form of metric was given by Modak, which reduces
to that of Maiti in a more special case of k =const that is
k=0. In another special case when a(t)=0, kXO the
metric (3.2) represents Bergman's solution. It may be
noted, however, that in the metric (3.2) when both
a (t) =0 and k =0 the heat fiux vanishes and the metric
reduces to the well-known Robertson-Walker form.

and

U12 (2.10) IV. BOUNDARY CONDITIONS AND A SIMPLE MODEL
WITH RADIAL HEAT FLUX

U, 11,22 33 (2.11)

The relations (2.10) and (2.11) immediately on integration
yield the explicit form of U as

It was shown earlier (Santos ) that at the boundary of a
Quid sphere with heat Aux in the radial direction, the con-
dition of fit for the interior with the exterior Vaidya
metric demands

U=8(t)(x +y +z )+B,(t)x+82(t)y p —(q„q")'~'=0 . (4.1)

+B,(t)z +8,(t), (2.12)

where B, B„B2,B3, B4 are arbitrary functions of time.
The Ricci scalar R* of the three-space orthogonal to

v" is given by (Ellis )

R*=2(Sap+A —0 /3) (2.13)

which in view of the field equations can in the present
case be written as

R *=24884 —6(8 f +8 +8 ) (2.14)

The Ricci scalar is clearly a function of time alone as is
expected. The above solutions (2.9) and (2.12) represent a
Auid distribution, which is shear-free, rotation-free, con-
formally Aat, and has constant spatial curvature. It is
thus contradicting the conclusion of Maiti that the only
such solution must be spherically symmetric.

A very simple model of a Quid sphere with radial heat
Aux is given by

2
a

I+fr
R '(t)

(dr +r d8 +r sin Odg ), (4.2)(I+fr )

ds = 1+

y 1 e(P, —v)/'2Z 1 0e 4 (4.3)

which in view of the field equations can be expressed in
the form

where a and g are both constants. If, however, a is zero,
the heat Aux vanishes and the space-time is that of
Robertson and Walker.

The conditions of fit at the boundary given in (4.1) is
equivalent to

III. SPECIAL CASES

X=x +C&/2, y=y +C2/2, and z=z+C3/2 (3.1)

with C1, C2, C3 being constants. Another simple trans-
formation from x,y, z to the spherical coordinates r, 0,$

A;/A =8, /8 =C; (i =1,2, 3), where C; are constants.
It is now possible to reduce the metric (2.9) and (2.12)
into a spherically symmetric metric by a suitable time
transformation and the following transformations of the
space coordinates:

a +Z 3Z

R

2z' 2zz'

a +z r(a +z)
4z'

z 2R R2 2R z'—
a+z R R2

zz'

a+z =0, (4.4)

where a is a constant and z = 1+fr, g being a constant
quantity written for k/4. The condition (4.4) when con-
sidered at the boundary r = ro in fact yields a solution for
R (t) as a function of time. R (t) can be obtained from
the differential equation
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a /3—(2RR+R )+yR =0, (4.5)

R =at+b . (4.6)

where a, /3, and y are constants. The solution of
R =R (t) obtained from (4.5) determines completely the
metric (4.2). A very simple solution obtained by assum-
ing R =0, which leads to

Here a and b are constants. The constant a can, howev-
er, be expressed in terms of a, /3, y.
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