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Covariant functional diffusion equation for Polyakov's bosonic string
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I write a covariant functional diffusion equation for Polyakov's bosonic string with the string's
world-sheet area playing the role of proper time.

The attempt to formulate a covariant quantum theory
of strings in terms of the line functional has as a basic ob-
ject the string transition amplitude. ' The main idea in
this framework is to consider the string world-sheet area
playing the role of a proper time. The string propagator,
thus, should satisfy a kind of functional difTusion equa-
tion in the area space variable.

In this paper we analyze the associated functional
diftusion equation in Polyakov's quantum bosonic string
theory by taking into account in an explicit way the
theory's conformal anomaly.

The transition amplitude for an initial (Euclidean)
string state

I(x„'"(o ),e'"(tr )), 0& o. & 1I

propagating to a final string

I(x„'"'(o.),e'"'(o )), 0& o & 1]

in Polyakov's theory is given by

G [c "',e'"]= fdlt[g. b]dlJ[4„]exp[ I„(g—, 0„,~', ~)1

where the covariant string action with a cosmological
term p and a "quark-mass" parameter A, is the Brink —Di
Vecchia —Howe action

I (g, , g„,p, A, )= ,' f do dg(Vg—g't), P"d P"+p )+k f ds . (&)

The string surface parameter domain is taken to be the rectangle D = [(o,g), 0 o 1,0 g& TI. The covariant
functional measures dp[g, b]dp[p ] are defined over all cylindrical (random) surfaces without holes and handles with
the string configurations as nontrivial boundaries: i.e., P„(o,0)=x „'"(o ); P„(o,T)=X„'"'(o ).

In order to write an area functional diffusion equation for the string propagator, Eq. (1), we rewrite it in a form where
the string's world-sheet area plays a role as a string proper time:

G [O'"', C'"]=exp Ao f—ds —
A, of ds f dA e " "G[C'"',O'", A],

where 6 [O'"', O'", A ] is the fixed-area string propagator

G[C'", O'"', A]= f dP[g, b]dP[$„]5 800 g 0, 3 exp Io g b, ,p =0
D

(4)

The 5-function constraint in Eq. (4) ensures that only the random surfaces with fixed area A contribute.
Let us evaluate the area partial derivative of the area-fixed string propagator: namely,

G[C O'" A]= f dp[g, b]dp[p„]5 f do'dg g(o' g) A
a—

with 5 (x) being the first derivative of the 5 distribution.
At this point we consider the identity

—5' f do dP g(o g) —A = lim
1 5

D g-o+ 2&g g 5goo
(o,g)5 f do. dg&g(o, g) —A

D
(6)

which can be easily verified by using the Fourier integral representation for the 6 functional and the relationship
5+g =

2 +g g 5goo.
By substituting Eq. (6) into Eq. (5) we obtain the result

out inG[C'"', O'", 3]= lim f dp[g, b] (o, g)F (p„,g.b ),1 6

g g goo
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where 5/5goo(o, g) acts on the measure d p[g, b ] and on the string-field term

F(P„,g,b ) = f dp[P„]exp[ I—o(0» gab p

The 5/5goo(o, g) functional derivative of the term F(g,g,b ) is subtle since the covariant functional measure dp[P ]
depends in a nontrivial way on the metric g,b(o, g) as a consequence of its definition as the functional volume element
associated with the covariant functional metric

1154',ll'= f {

Its evaluation proceeds in the following way. The goo(o, g) functional derivative of the Brink —Di Vecchia —Howe ac-
tion without the boundary term is trivially given by the (0,0) component of the stress-energy tensor:

5
Io(g,b, g»p, =0)=(Bog"Bog —2goog' —r), P ddt"){o,~) . {10)

In the conformal gauge g,&=ei'5, b Eq. (10) takes the simple form below at the boundary limit $~0+ with
vr„'"(o )=lim + Bog (cr, g) being the string canonical momentum and x„""(o)=lim + B&P„(o,g):

,' [vr'„"(—o)' x. ~"—(o )'] . (1 1)

Let us evaluate the 5/5g~(o, g) functional derivative of the functional measure dp[p„] in the conformal gauge where
the results are given by local expressions.

The Frechet derivative of the functional measure is (by its definition) given by the relationship

e ' '~' (dp[P„;e~5,„])=lim (dp—[P„;e~+ 5,b] dp[—g„,e~5,b])
6 1

5p o, e 0+&

with 5h =e5(o.—o )5(g—g).
Since we have, as a straightforward consequence of the theory's covariance [see Eq. (9)],

d+[y e +sh5 ] d [ sh/
y P5

and the effect of the functional measure d p[P"] under a conformal rescaling can be exactly evaluated,

(12)

(13)

dp[P~, e~+ "5,b]=dp[$", e~5,b]exp f —,'(B,p)(8, 5h)+p (e)e~5h +AD(e) f ei'5hD
(14)

we thus have the result

(15)

det [hg, b+5goo(o, g)]
—,dI [0„g.b]=

e ~' '&' dpfP", ei'5, b]=— [R(p(o, g))+go(e)+Ao(e))dp[P", ei'5, b],6 D

5p( o, g) 24m'

where R (p(cr, g) ) =e ~'e &~b p(o, g) is the scalar of curvature associated with the intrinsic metric e ~5,& and

po(e), ko(e) are infinite constants which depend on the regularization scheme used to evaluate the functional deter-
minants of two-dimensional Beltrami-Laplace operators in Polyakov s e6'ective action.

It is instructive to remark that one can implement the above calculation without choosing the conformal gauge since
the measure functional derivative may be alternatively defined by the ratio

and we have the general covariant result

lndet(bg, b)= f do

deaf

der'dg'(&g R)(o., g)b, '(o —o', g
—g')(&g R)(o.', g'),

48~ D D &aI
(17)

where h~ '(o —cr', g
—g') denotes the Green's function of the Laplace Beltrami operator b, =(1/v'g )5, (g'"c}i, ) in the

presence of the intrinsic metric Ig, b I.
However, it is important to note that only in the conformal gauge do our calculations take a local form as a function-

al of the intrinsic metric tensor. This is the technical reason that we use the conformal gauge at the end of our calcula-
tions.

Finally the goo(o, g) derivative of d p[g, b ] in the conformal gauge is easily evaluated: '

e ~' '~' dp[g, &
=e~5,b]= — [R(p(o. , g))+po(e)+Ao(e)]dp[g, „=e~5,„],6 26
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since we have explicitly

dttt[g, b=e~5, b]=D [p]exp — J [—,'(c),p) +tM (e)et']+Ale) j ends
26

II dp(o &)
(0,()eD

By grouping together Eqs. (11), (15), (18), and introducing the covariant string commutation relation

[~",„(cr),x'(o')]= [e;„(cr)= lim exp[+p(cr, g)]I
i5(o —o')

A'e;„( o. )
'"

&
0+

(19)

which produces the Schrodinger representation irI'„(cr ) = —ih'e, „'(o )5/5x„'"(o ), we can finally write Eq. (7) as a covari-
ant diffusion equation for Polyakov's bosonic string which takes into account in a explicitly and local way the presence
of the world-sheet intrinsic metric

1 Q2
exp[p(o. , ) ]

(
—)25 ltl( —

)5 tll( —
)

—
—,
' ~x„""(o) + lim [R(p(o, g))+C„] G[C'"', C'", A]

26 —D
24m g 0+

G [Coot ltl g ]aa (20)

The above-written string wave equation is the main result of this paper.
Let us comment that at D =26, where the invariance of Polyakov's string theory under the world-sheet

diffeomorphism group is restored (otherwise it is partially broken to the quotient group of the complete diffeomorphism
group by the Weyl diffeomorphism subgroup) we can fix e;„(o.) =1 and the above area diffusion equation takes the sim-
ple form

G[Cout Cin g] t
~

in( —
)

2 G[Cout Cin g]
2 5x„'"(o.)5x„'"(cr )

(21)

A simple functional solution of Eq. (21) is

G[Cout Cin g] EAC [Cin]@[Cou—t] (22)

—ix„""(r)~' e, [C "]
2 5x„'"(cr)5x„'"(cr)

E4E[C'"] . —(23)

Here we can see that the possible values of E are exactly

where the string functional 4[C'"] satisfies the string
wave equation

the eigenvalues of the "functional Klein-Gordon" opera-
tor on the left-hand side of Eq. (23) which can be
identified with the —L0 Virasoro constraint written in
the Schrodinger representation.

Finally, similar results have been obtained in Refs. 2, 8,
and 9 for the case of the usual Nambu string at the criti-
cal dimension by using WKB and Hamilton-Jacobi tech-
niques to solve directly Eq. (23) for E =0.
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