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Dissipation of quantum fields from particle creation
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%e discuss the nature and origin of the dissipation of quantum fields due to the back reaction of
particle creation. We derive the efFective action of a scalar gP theory in the closed-time-path-
integral formalism. From the real and causal equation of motion for the background field we
deduce a dissipative function for this process and for the cosmological anisotropy damping problem
studied earlier. This model illustrates that the appearance of dissipative behavior from the back re-
action of particle creation in quantum fields is a general feature. It also suggests that the role of
gravity in the display of dissipative behavior in semiclassical processes is not unique.

In this paper we ask the question: Is there dissipation
associated with particle creation and its back-reaction
effects depicted in quantum field theory, specifically in
the effective-action formalism? A well-known example is
Euler and Heisenberg's 1936 semiclassical calculation
and Schwinger's 1951 field-theoretical calculation of elec-
tron pair creation in a strong electromagnetic field. Our
interest in problems of this nature stemmed from earlier
work in the back-reaction effect of particle creation in
cosmological spacetimes, especially the so-called "anisot-
ropy dissipation" problem. Despite our ability to do
full-scale calculations and produce the by now well-
known results, the nature of "dissipation" in its most
foundational and elemental statistical-mechanical sense
remains elusive. This prompted one of us to begin ques-
tioning the notion of entropy defined for quantum
fields, ' and the entropy generated in particle production
processes. ' The recent work of Hu, Kandrup, Sorkin,
and others ' provided much insight into the role played
by correlation and coherence' in the statistical nature of
dynamical quantum fields. However, because the pro-
cesses studied by these authors are modeled by time-
dependent coupled harmonic-oscillator systems and par-
ticle production is mimicked by the process of parametric
amplification, only entropy change from changes in the
correlations due to interactions or from the changes in the
phase relation of the states (coherence) of the system as it
evolves are considered. The problem of "dissipation" of
a field due to the back reaction of created particles re-
quires instead a full quantum-field-theoretical descrip-
tion. In Ref. 11 we have studied in detail the problem of
back reaction of particle creation for free conformal fields
in an anisotropic (Bianchi type-I) universe by way of the
closed-time-path-integral formalism. ' We were able to
deduce a real, causal equation of motion for the back™
ground field and from it identify the source of dissipation.
In this paper we choose to analyze one of the simplest
model fields theories, the gP theory, under the simplest
conditions —i.e., static, flat-space background. Putting
aside the effect of dynamics and curvature enables us to
focus only on the field-theoretical and statistical proper-

ties of quantum processes. We want to see if there is
similar dissipative behavior in this back-reaction process
and what are the basic assumptions entering into the
analysis which leads to such behavior.

The criteria we use to determine whether a system
shows dissipative behavior are based on first principles in
statistical mechanics. ' ' They involve (a) the separation
of a part whose behavior we are interested in, which we
call the system, and the rest, which we call the bath or the
environment, and their coupling (in the language of
subsystems —the relevant and irrelevant parts); (b) the
choice of boundary conditions (e.g., the in-out vacuum
persistence amplitude or the in-in vacuum expectation
value) which includes the stipulation of the phase relation
of the initial states (such as pure, random, or thermal
states); and (c) a way to average out some degrees of free-
dom of the bath, known as coarse graining. All three
steps need be stipulated for one to see dissipative behav-
ior in the system. These points can be illustrated by a
simple example, that of coupled harmonic oscillators. '

Referring to a single oscillator as the system and the rest
as the bath, by introducing certain averaging measure
(coarse graining) in the bath variables and choosing some
specific initial condition, one can see the dissipative be-
havior arising from the otherwise time-reversal-invariant
dynamics of a classical system. Equivalently, one can use
an effective action to describe these results, following the
same set of procedures as notably demonstrated recently
by Caldeira and Leggett based on earlier work of Feyn-
man and Vernon. '" Dissipation in interacting quantum
field theory was also discussed in a recent paper of ours. '

There we presented the field-theoretical version of
the Bogoliubov-Born-Green-Kirkwood- Yvon (BBGKY)
hierarchy and used these criteria to show how dissipative
effects appear when this series is truncated and certain
averaging conditions on the higher-order correlation
functions are introduced.

Here we shall use these basic criteria to show that the
back reaction of particle creation exhibits dissipative be-
havior even in the simplest setting. In a background-field
splitting one separates the quantum field into a back-
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ground field which is our system, and a fluctuation field
which acts as the bath. In setting up the problem one
gives the appropriate boundary conditions (in-out or in-
in), e.g. , by choosing the appropriate propagators which
contain the causal information of the system. Then in
calculating the effective action one implicitly introduces a
coarse-graining procedure when the quantum Auctua-
tions are integrated out. ' We shall illustrate how these
steps are taken in a typical field-theoretical calculation.
This analysis serves to clarify the origin of dissipation in
these field-theoretical processes. We find that both the
anisotropy-damping problem and the P theory embody
the same dissipative mechanism. In so doing we ascribe
the dissipation in the cosmological anisotropy-damping
problem to the same set of basic assumptions and mea-
sures introduced in a much broader context than that as-
sociated with gravitational fields. In fact, we see that the
role of gravity in these semiclassical processes is not more
than providing the dynamics of the background field and
the energy for particle creation. '

In this calculation we shall derive the effective action
in the closed-time-path-integral formalism. ' The energy
density associated with particle production is measured
by the expectation value of the energy-momentum tensor
with respect to the same "in" vacuum. The advantage is
that the equation of motion for the background field is
real and causal. When written in the frequency represen-

I

tation the equation of motion for the system has the form
of a damped oscillator system or an LCR circuit. One
can thus easily identify the respective dissipative and
reactive components. So, as a by-product we also derive
the dissipative function (or the related spectral density)
for the gP theory which has a structure similar to that of
the cosmological anisotropy-damping process studied be-
fore.

The classical action of a scalar field with g(t interac-
tion is

S[C)]=fd"x[—,'(M&) —
—,'m N —

—,)gN —J@], (l)

where J is an external source. In a background-field
decomposition N=P+y we may view the background
field P as our system and the Auctuation field y as our
bath variables. The closed-time-path effective action is
obtained after integrating out the Auctuating field

I [P+,P ]=—i lnf Dy+Dy exp[i(S[P++y+]
—S[P +y ])],

(2)

where the + superscripts on P and y denote the positive
and negative time branches. To order g, only one-loop
graphs contribute which contain only linear Auctuations
around P+ and P

r[y+, y-]=S[y+]—S[y-]—i ln fDy+Dy exp —f d x [[(By+) —m (y+) ]—[(By )
—m (P ) ]]

X l ——f d x g[P+(y+) —
P (y ) ]—,' f d x d —x'g [P+(y+) P(y ) ](x—)

X[/+(y+) —P (y ) ](x') . (3)

Since the measure is Gaussian, we may use the Wick theorem to get

+(ig'/8) f d x d x'([P+(y+)' P(y )']( x)[—P+( y+)' P(y )'](x—'))„„„„„g
The Feynman rules are

(y+(x)y+(x')) =i f [d p/(2~)"]e'~' ' '/(p —m +ie)=(0~ T[y(x)y(x')]~)0),

(y+(x)y (x')) = i f [d "p/(2—m)"]e'~'" '2~i5(p m)8(p )=(—O~y(x')y(x)~0) .

The part which contributes to the linearized equations for P is then I

l,„, [(t+,P ]= ,' f d x—P—+(x)(CI+m )P+(x)

~ 2 j71

'P+( ) P+( ') P (P(X X )

(2~)" (2~)" (& ' —m '+ i e)[(p —k)' —m '+ i e]

gn 0 "k
(x ) f p eip(x —x') f [2~i g(i(. 2 m 2)g(i 0)](2' )" (2~)"

(5b)

X[2vri6((p —k) —m )0((p —k) )] . (6)

It is easy to see that the second k integral vanishes if p (0, and that p —k )0 for p )0 if the arguments of both 6
functions are to vanish. For p )0, the second integral is given by twice the imaginary part of the first. ' The first in-
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tegral is evaluated by introducing a Feynman integration parameter x, rotating k to Euclidean space, developing in
powers of a=n —4, and choosing the cut along the negative real axis to ensure positivity in the argument of the loga-
rithm. We get the one-loop effective action to order g:

dx x +m x

f d x d x'P+(x) f e'~'" " 'f dx P+(x') ln i~—8(p x(l —x) —m )
4(4~) (2')' 4~p

—2P (x')[ 2i—~8(p x(1—x) —m )]9(p ) . (7)

The equation of motion is found by taking the variation with respect to P+(x) and identifying P+ and P (see Ref.
11). In terms of the Fourier function P(p) = fd x e 't'"P(x) we get

p2 —m2 — f dx —,'ln + ,'i~0—(p x(1—x) —m )sgn(p ) P(p)= —J(p) .
(4~)' 4'

P(p) = —J(p) .

With the above choice of the branch for the argument of a complex number, we can write (co =p )

co' —lkl' —m' —,dx ln2 z g' ' Im ' —[(~—ie)' —Ikl']x (I —x) I
'"

(47r )' &4vrp

We see that the equation for P(p) has an imaginary term
given by

1/2
g l&

sgn(co) 1—4m

(4~) 2 p
0(p —4m ) . (10)

This corresponds to a viscous force term F, =yP in the
equation of motion for a damped harmonic oscillator, or
the resistance term in a I CR circuit which signifies the
appearance of dissipation. In fact, if we write the imagi-
nary term as y(p)coP(p), the dissipative function y is
given by

y'(p) =[7rg /(4~ )][P(p)IIcoI ]8(p —4m ), (11)

where P(p) = [1—(4m /p )]'~ .
Dissipation arises because by looking at the expecta-

tion value of the field we are only considering one-
particle states. (The expectation value of the field is relat-
ed through the reduction formula to the amplitude for
the source to emit one particle. ) But the source can emit
also pairs, triplets, etc., whose energy are not accounted
for if only the background-field evolution is observed.
This is related to the explanation of dissipation arising
from truncating the higher-order correlation functions

I

given in Ref. 15. We can show that the energy dissipated
in the background field as represented by this complex
term is exactly equal to the energy of the coherent pairs
emitted by the source.

The total energy dissipated over the whole history is
@=—f dt F,P, where F, is the dissipative force. In
Fourier representation 8= f dco cog*(co)1mb, '(co)P(co),
where 6 is the propagator in Eq. (9). Using the optical
theorem one can show that

@=
2 f dco(2co) g I

A ( I~a)A(co)P(co)l~, (12)

where 3 (1—+a) is the transition amplitude from a one-
particle state to any pair state a. The integrand gives the
total probability for the creation of a particle pair with
energy 2', which is the only mode up to order g .

Another way to see the dissipative effect of particle
creation is to examine the impulsive response of the sys-
tem to see if the background field will damp away in time.
Thus, we introduce a 6-function source into the equation
of motion (9) and consider the behavior of any spatial
Fourier component of the field pk(t) (system being spa-
tially homogeneous):

g' f ~ [(co—ie)' —Ikl']x (1—x)
CO CO I (4~)' Ul

Pk(co) = —1, (13)

where cok = lkl +m . The short-time behavior of pk(t) is
determined by the large-co behavior of pk(co). For large
co (co —lkl &)4m ), the inverse propagator (9) acquires
an imaginary part iy —[g /2(4') ]sgn(co). We may ap-
proximate Eq. (9) as'

I [~k (~ 1'/2cok ) ]'—~k I o—k(~)—

which leads immediately to

ft /2COk
Pk(t)-(sincokt/cok )e

valid for t (((4cok/g2). We see that pk(t) is indeed
damped, at least for short times. At late times, the tran-
sient contribution dies out entirely, and pk(t) becomes a
simple oscillation with frequency cok (we are neglecting
the difference between the minimally substracted mass
m and the physical mass). In this regime
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Pk ( t )-B '( sincoi, t /co i, ), (16)

where B = 1+C (g /m ) and C is a positive constant.
B ' is the residue of the propagator at the pole p —m,
being related to the dissipative function through the
dispersion relation for the propagator. B ) 1 implies that
the system is damped, and vice versa.

Using the same line of reasoning, one can also deduce
the dissipative function for the cosmological anisotropy
damping problem. Earlier, we derived an in-in effective
action and a real, causal equation of motion for the rate
of change Ir;~. =/3,'~ (with respect to conformal times) of
anisotropy P; in the metric [Eq. (3.24) of Ref. 11]. In the
frequency domain, if we write the imaginary term
F, (co);~ =iy(co)a;J(co), we can identify the dissipative
function y(co) to be

y(co) =[~/60(4m ) ]ico~ (17)

Since the conformal scalar field is massless there is no
threshold and thus this term is nonzero for all frequen-
cies. We can show that the total anisotropy energy dissi-
pated using the expression for damped harmonic oscilla-
tors

E =I dt +,,)(t)lr,', = J (dco/2')(colr, *) )(ycolr'J)

is indeed equal to the total energy of the particle pairs
created [Eq. (3.29) of Ref. 11]. This provides a clear
physical meaning of dissipation of anisotropy by particle
creation.

In this paper, through a simple model problem, we
have demonstrated the following points.

(1) The existence of dissipation to the background field
due to particle creation. The back reaction of particles
created tends to diminish the source where they are
created; this form of Lenz-law' ' ' behavior noticed in
cosmological back-reaction problems thus acquires a
more general field-theoretical explanation.

(2) A theoretical explanation of the nature of dissipa-
tion in these processes in terms of basic statistical-
mechanical premises. Their physical meaning is clarified
by relating the amount of particle creation to the energy
dissipation. As a concrete result the dissipative functions
of both the gP model field theory and the anisotropy-
damping problem are derived.

(3) The dissipative nature of back-reaction problems in
field theory is not special to gravitational fields. This ex-
ample helps to correctly identify the role of gravity in the
class of semiclassical theories. '

Further discussion on the theoretical implication of
these and related issues can be found in Ref. 20. Applica-
tion of this method to a derivation of the viscosity func-
tion associated with particle creation in the reheating
epoch of the new inAationary cosmology is being carried
out by Stylianopoulos. '
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