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Computations of energy levels and wave functions of ground and excited states
by the steepest-descent method
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The steepest-descent method is used for the computation of energies and wave functions of
ground and excited states of some simple quantum-mechanical systems. The accuracy of numerical
results gives hope that the method can be used also in nonperturbative quantum-field-theory calcu-
lations. By calculating the evolution of the wave function along the steepest-descent path we are us-

ing the finite-element method.

I. INTRODUCTION

Some fundamental problems of particle physics, such
as understanding the structure of the ground state of
quantum chromodynamics and the structure of hadrons,
require nonperturbative solutions for ground and excited
states of field-theoretical systems. Completely satisfacto-
ry methods are not yet available, although some promis-
ing discrete schemes and variational strategies have re-
cently been developed. These include among others the
finite-element scheme studied in a series of papers by
Bender, Milton, Sharp, and Strong, ' t expansion by Horn
and Weinstein, and various versions of the Lanczos'
variational tridiagonalization procedure. '

In this paper we shall study in some detail possibilities
offered by the steepest-descent method (SDM), which is
the version of the variational method for calculation of
ground and excited states of quantum systems. The cal-
culations within the SDM are based on two equations.
The former describes the motion of the state vector

~ P)
in Hilbert space in the direction opposite to the gradient
(steepest descent) of the expectation value (PIH~f) of
the Hamiltonian of the system. This version is suitable
for the determination of the energy and state vector of
the ground state of the system. The latter equation is
somewhat more complicated and it describes the motion
of the state vector in Hilbert space in the direction oppo-
site to the gradient (steepest descent) of the dispersion of
the energy (P~(H —H) ~P) with H=(f~H~f). The
method converges to stationary states of the system, in-
cluding excited ones.

In this paper we shall use the SDM to calculate energy
levels and wave functions of some simple quantum-
mechanical systems. In this way we intend to investigate
the e%ciency of the method and obtain the feeling of its
applicability to more complicated systems. In practical
applications of the SDM one has to describe the wave
function of the system by a finite set of parameters. We
have chosen to use the finite-element method which de-
scribes the wave function by the set of values on a grid of
points and provides relatively accurate solutions for the
evolution of the wave function in the direction opposite
to the gradient in Hilbert space. Our choice of the finite-

element method (FEM) has been motivated mainly by
successful applications of this method in discrete schemes
developed by Bender et aI. ' It is, however, worth men-
tioning that the character of equations to be solved by us-

ing the FEM is rather dift'erent in the two cases. In the
scheme by Bender et al. ' one has to solve Heisenberg' s
equations for the time evolution of operators. These usu-
ally lead to coupled operator diA'erence equations. The
equations to be solved in the SDM are partial
di8erer. tial-integral equations with nonlinearities in their
integral part and the FEM is thus used in rather non-
standard situation.

We shall study here only one-dimensional systems for
which the SDM gives very accurate results for both the
ground and excited states. The results obtained indicate
that the SDM has two characteristic features.

(i) It permits one to calculate energies and state vectors
of excited states with roughly the same accuracy as in the
case of the ground state.

(ii) The results for the ground state are to a large extent
independent of the initial (trial) wave function in contrast
to most of variational procedures in which the choice of
the form of the trial wave function is a necessary prere-
quisite for obtaining accurate results. In what concerns
computations of wave functions and energy levels of ex-
cited states, some preliminary rough information about
the wave function is necessary since the expression
(g~(H H) ~t)'j) has m—inima at all stationary states and
the SDM leads the wave function to the closest
minimum. We assume that these features will be
preserved also in the case of higher-dimensional systems,
but to substantiate this conjecture requires detailed stud-
ies and analyses of such systems.

The paper is organized as follows. In Secs. II and III
we describe basic features of the steepest-descent and
finite-element methods. The merging of these two
methods is discussed in Sec. IV. Results of our numerical
studies are described in Sec. V. Conc'uding comments
are presented in Sec. VI and some technicalities are de-
ferred to Appendices.

II. STEEPEST-DESCENT METHOD

Consider a system characterized by its Hamiltonian H
and choose a trial wave function jg;„) for its ground
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In order to improve the wave function in the fastest way
possible, the wave function has to move in Hilbert space
in the direction opposite to the gradient of E(~P) ). In-
troducing an evolution parameter w we thus obtain

(3)

It is shown in Ref. 5 that this equation preserves the nor-
malization of the wave function and thus for a normal-
ized trial wave function g(r=0)) =~/;„) we obtain a
simplified equation

= —[H —
& qlHly&]ly(r) & . (4)ar

This equation leads asymptotically to the ground-state
wave function

~ gs„„„d)provided that

& 1(,„~y,„.„„,&+0 . (5)

The SDM equation for the evolution of the initial trial
wave function to one of the excited state is based on the
fact that the dispersion of the energy

has a minimum in any of the stationary states of the sys-
tem. The evolution equation for motion of ~g(r) ) to one
of the stationary states is then given by making
B~g(r))/Br equal to the opposite of the gradient of
D (

~ 1( ) ). The resulting equation preserves the normaliza-
tion of the wave function and making use of this fact we
obtain'

+2& qlHlq&') ly(r) & . (7)

This equation is the starting point for our computation of
energies and wave functions of excited states. As already
pointed out Eq. (7) leads ~f;„) to the "nearest" excited
state. The resulting stationary state therefore depends on
~g;„). In determining the energy and wave function of a
particular excited state we have to be able to choose the
initial wave function which is sufficiently close (in Hilbert
space) to the wave function of the given stationary state.
In quantum-mechanical problems this is frequently possi-
ble on the basis of known parity, number of zeros, etc.

III. FINITE-ELEMENT METHOD

state. The steepest-descent method for improving
~ P;„)

is based on the fact that the expectation value

E(iq))= '~
(ply)

attains its minimum in the ground state. The gradient of
E (

~ g ) ) in Hilbert space is

The basic idea is quite simple. Suppose we have to find
the solution f =f (x, t) of the partial differential equation

F(x, t, B,f, B,f,B„„f,. . . )=0 (8)

in region Q, with specified boundary conditions. The re-
gion 0 is divided into a finite number of elements (subre-
gions). In each of the elements the solution f (x, t) is ap-
proximated by a polynomial in variables x, t, the degree
of the polynomial depending on the problem studied.
Coefticients of the polynomial in each of the elements are
determined from conditions of two types: (i) The
differential Eq. (8) is required to be satisfied at some
points within the element; (ii) the continuity of the solu-
tion and of its derivatives is required in lattice points at
the border of the element.

The total number of conditions is selected in such a
way that conditions (i) and (ii) together with specified ini-
tial and boundary conditions determine completely the
solution of the differential Eq. (8). The implementation of
this general scheme to the solution of SDM equations will
be described in the next section.

IV. MERGING OF THE STEEPEST-DESCENT
AND FINITE-ELEMENT METHODS

We shall study here only simple quantum-mechanical
systems with one degree of freedom. The wave function
~g) is thus a function of the coordinate x: P(x) = (x~g).
In addition, wave functions in the SDM equations depend
on the evolution parameter ~, to be called "time" in what
follows. Our wave functions thus depend on two parame-
ters g=g(x, r).

The evolution Eqs. (4) and (7) can be rewritten as

= —(H E)/, —
BE

(9)

= —[(H E) D]f,— —
ar

(10)

The trial wave function g(x, 0) = go is supposed to be nor-
malized to one:

f dx iP,(x)i'=1 . (12)

As the first step in using the FEM for solving Eqs. (9)
and (10) we introduce a rectangular finite-element discret-
ization with the time step s and the spatial step h (see Fig.
1). In the time direction we shall use linear finite ele-
ments

where E =E(r)= fdx /*HE; D =D(r) = fdx P*(H
E) P are the—energy expectation value and its disper-

sion in the state P(x, r). We are looking for solutions of
Eqs. (9) and (10) for r~ 0 and in particular for the limit-
ing case r~ ~ which corresponds to a ground state [Eq.
(9)] or to one of the stationary states [Eq. (10)] of the sys-
tem. For the harmonic oscillator and other systems
where —~ & x & (x) the boundary condition is

lim 'P(x, r)= lim 4(x, r)=0 .

The finite-element method (FEM) is an efficient numer-
ical scheme for solving partial di6'erential equations. (x, r) =P„( )+x[P„+, (x)—P„(x)]— (13)
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FIG. 1. Finite-element discretization. L, is the spatial size of
the region, M being the number of space elements; m numbers
the space position of the element while n numbers the time
coordinate of an element. An element is identified by indices of
its left-hand corner (n, m). Inside some of the elements we have
indicated the corresponding symbol (n, m).

In this way the function P„(x) is associated with the
element (n, m). The function P„+i (x) is associated
with the (n + 1,m) element and Eq. (13) guarantees that
tP„(x,s)=g„+i {x,O). In this way the parametriza-
tion in Eq. (13) takes care of the continuity in the time
variable.

In solving numerically Eq. (9) for the ground state of
the system we parametrize the wave function in a given
(n, m) element by a quadratic dependence on x. Taking
into account Eq. (13) we then have

FIG. 2. Determination of coeScients a„,b„,c„ the (n, m)
element. The dotted region indicates parts in which the func-
tion %(x) is already known; two conditions are due to the con-
tinuity of the function and its derivative in the point A and the
remaining condition comes from the dift'erential equation being
valid in the point 8.

practically impossible to determine these coefticients and
make the transition P„~P„+i. It is necessary to replace
Eq. (9) by the approximative one, the solution of which
leads to the linear equations for coeScients. For this
purpose we shall expand the solution of Eq. (9) for small
~. The result is

f(x, r ) =Po(x ) + r(EO H) Po( x )—
2

+—[(Eo H) —2D—o]$0(x)+O(r ) . (15)

Here, Eo= Jdx P*Hg and Do= jdx P*(H E) P are-
the mean values of energy and its dispersion in the initial
state P(x, O) =$0(x). Using this expansion we obtain im-
mediately

2

+ (a„—a„) z +(b„b„)——

+Cpm C~m (14)

This form contains three free coefficients: a„,b„c„,since the coe%cients a„,b„, and c„have al-
ready been determined at the (n —1)st "time" step. The
coefficients a„,b„, and c„are determined by three
conditions: (i) the continuity of the function in the grid
point (n + 1,m); (ii) the continuity of the derivative of the
function in the same point; and {iii) the requirement that
Eq. (9) is valid in the center of the (n, m) element. The
situation is shown in Fig. 2.

Our computational scheme works in the following way.
We construct the sequence of states $0, P, , . . . , P„,. . .
(we have omitted here the spatial indices of the element)
which correspond to the finite-element solutions of Eq.
(9) in time levels O,s, . . . , ns, . . . . In this sequence each
state improves the previous one. The detailed description
of how the transition P„—+P„+, was made is given in Ap-
pendix A.

The nonlinear and integral characters of Eq. (9) will
reappear in condition (iii). It implies the nonlinear alge-
braic equation, in which all 3M coe%cients a„,b„c„,m =1,2, . . . , M are coupled. In this situation it is

E(r)= Jdx P*(x,r)PP(x, r)=Eo 2rDo+O(r—) . (16)

Substitution into Eq. (9) leads to the linear equations for
coefficients because E(r) is expressed only by the initial
state Po(x). It is important to emphasize that this stra-
tegy is successful because our computational scheme ac-
cumulates almost no errors. Each transition P„~P„+,
can be understood as the new problem of solution of Eq.
(9) with the initial condition g(x, O) =P„(x). This is how
our scheme works. This approach and its modification is
discussed in more detail in Appendix B.

In Eq. (10) for the excited states, the situation is quite
analogous. This equation contains the operator H
which involves the fourth derivative with respect to the
spatial variable. That is why we have used the biquadrat-
ic spatial elements. The five coeKcients of this approxi-
mation are determined by five conditions: (i)—(iv) the con-
tinuity of the function up to its third derivative in the
grid point (n + l, m) and (v) the requirement that Eq. (10)
be satisfied in the center of the (n, m) element. It can be
seen that the nonlinear character of Eq. (10) is even more
peculiar than in the case of Eq. (9). The corresponding
time expansion for the solution of Eq. (10), which we
have used to express the mean values has the form

it(x, r)=go(x)+r[D0 (H Eo) ]+O(r ) . — —
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TABLE I. Ground-state energy of the particle in the infinite potential well [Eq. (9)]. M, X are the
numbers of spatial elements and the time steps, respectively; s is the size of the time step. The size of
the spatial region was L=1. Exact value: E=4.934802.

0.01
5

0.1 0.01
20
0.1

0
10
20
30
40
50
60
70

10.221
5.267
4.950
4.936
4.935

25.000
4.935

25.000
4.972
4.971

260.12
5.9009
4.9606
4.9360
4.9348

260.12
4.9515
4.9367
4.9353
4.9351
4.9349

260.12
179.94
104.05
77.20
49.52
19.47
4.9358
4.9354

To conclude this section we shall give an argument
which has led us to the requirement that the SDM equa-
tions (9) and (10) should be valid in the center of the ele-
ment. Except for reasons of symmetry this choice was
motivated as follows: Eqs. (9) and (10) are "correct" for
the motion to the stationary state only if the initial state
is normalized. The steepest-descent evolution then
guarantees that the norm will be conserved: i.e.,

f de =0

of

(19)

In terms of the discrete scheme which we are using the
correctness of Eqs. (9) and (10), and the consistency by
performing time steps is expressed by

f dx P„=f dx P„+,= 1 . (20)

Requiring that the equation is satisfied in points with
time coordinate ~=us, O~o. ~1, we have, according to
Eqs. (14) and (19),

(1 2a) f—dx P„P„+,+a f dx y'„—(1 a)f d—x (5'„+,

(21)

It can be seen that by putting +=0.5 we automatically
satisfy condition (20). But even in this case the norm is
not conserved exactly. In fact, Eq. (21) is only approxi-
mate because the SDM equation is not satisfied at all
points with ~=as. It is only satisfied at a finite number
of them. That is why one would substitute the integrals
in Eq. (21) by the integral sums. In both cases however
Eq. (21) implies that the choice a =0.5 is the optimal one.
This result is very similar to that obtained by Bender
et al. ' in their finite-element scheme.

4(x) V. SOME SIMPLE SYSTEMS

I(
l

I

I

A. Particle in an infinite square well

The Hamiltonian of the system is

d
2m dx

(22)

0 N

I

[

l

xl

FICs. 3. Ground state of the particle in the infinite potential
well. The dashed curve is the initial state with corresponding
energy E=260.12. The solid curve is the ground state, obtained
after 15 time steps and its energy is E=4.9364 (exact value:
E=4.9348).

with explicit condition that g(x)—:0 for —ac (x ~0 and
L ~x & ~. This is a very appropriate problem for the
method developed here because the size of the spatial re-
gion (L) is given a priori

We have solved Eq. (9) for the ground state. The rate

4.961 0.506 0.514

TABLE II. Ground state of the harmonic oscillator [Eq. (9)].
Dependence of the energy (E) on the size of the spatial region
(L) shows that the eAective size of this region is about L=5.
Exact value: E=0.5.

10
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TABLE III. Ground state of the harmonic oscillator [Eq. (9)]. M is the number of spatial elements.
N is the number of time steps of size s=0.5. The size of the spatial region was L=6. Exact value:
E=0.5.

10 15 20

5

10
20

3.580
9.3110

44.5417

0.907
0.6701
0.5030

0.508
0.5007
0.5004

0.505
0.5007
0.5004

0.505

of convergence in various situations is shown in Table I.
The results were obtained with A /m = 1, L= 1. It can be
seen that by using only five spatial elements we have at-
tained the accuracy 10 after a few "time steps" and by
using 20 elements the accuracy becomes 10 . One can
also notice that the region for a suitable choice of the
time steps (s) is very large. This is closely connected with
the fact that the steepest-descent equation is required to
be valid in the center of the element. In this case the
FEM is very accurate and it allows us to take such large
time steps. It makes the method very fIexible because one
can always choose the interval L and the size of time and
spatial steps s, h, which is optimal from the numerical
point of view.

The values in Fig. 3 show that our computation of the
ground state is rather independent of the choice of the
wave function of the initial state. The dashed curve cor-
responds to the initial state with energy E=260.127, the
spatial structure of which is very diferent from the true
wave function. After 15 time steps we have obtained the
ground state with energy E=4.936 (solid line) attaining
the accuracy of 10

B. Harmonic oscillator

Our Hamiltonian will be

lt(x, O) = 2
I

mn
sin

L 2
x+ (24)

which is the nth excited state of the Hamiltonian (22)
with (A' /m) = l. For n =2 (first excites state) it is plotted
in Fig. 4 together with the resulting excited-state wave
function, obtained after 25 time steps.

Solving this system we have found some cases in which
the transition P„~P„+&was numerically ill conditioned.
This has lead to the divergence in time evolution. In
such cases one simply changes the values of h, s, L. From
this point of view it is useful that the time steps s can be
changed within a large interval of values.

lations lead to the values shown in Table II, depending on
L. It can be seen that the effective size for the ground-
state wave function is about L =5. Our calculations were
done with L=6. The choice of even larger regions for
calculations does not significantly improve the accuracy
of the results. The results are given in Table III showing
the time evolution of energy of the state, as it approaches
the ground state.

The results of excited-state calculations are shown in
Table IV. To calculate the nth state we have used an ini-
tial state of the form

1/2

1 dH = —— + —,'x
dx

(23)
C. Anharmonic oscillator

The Hamiltonian that describes this system is

To perform our calculation the spatial interval must be
chosen to be finite and sufficiently large. Noting that H is
symmetric with respect to x ~—x we have chosen the
finite region symmetric with respect to the origin. The
optimal size L for this region can be found simply by trial
and error. For instance, preliminary ground-state calcu-

2

H(A, )= —— + —,'x +Ax1 d
dx

(25)

where A, is a parameter. For large A, (25) is a typical non-
perturbative problem. Using the SDM leads to a situa-
tion which is analogous to previous cases.

TABLE IV. Ground- and excited-state energies of the harmonic oscillator [Eq. (10)]. M, N are the
numbers of spatial elements and time steps, respectively, L being the size of the spatial region. D is the
value of variance in the resulting states. E is the energy of the state and E ' its exact value.

NS
L
M
N

1

7
14
15

2
8

14
25

3
8

16
20

4
8

16
15

5

9
16
25

D
E

0.88 X 10
0.5001
0.5000

0.30X 10
1.5001
1.5000

0.13 X 10
2.5036
2.5000

0.59 X 10
3.5103
3.5000

0.11
4.5320
4.5000
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TABLE V. Ground state of the anharmonic oscillator [Eq. (9)j. For a given value of parameter k the
energy of the ground state (E) is shown and compared with the value given in the literature (E ') . L is
the size of the spatial region and N is the number of time steps. The number of spatial elements was
equal to L=8.

L
N

E
I

0.1

3.0
10

0.5592
0.5591

0.2
3.0
5

0.6026
0.6024

0.4
3.0

10

0.6689
0.6687

1

2.5
5

0.8039
0.8037

10
2.0

10

1.5057
1.5049

100
1.5

35

3.1434
3.1313

1000
1.0

25

6.7201
6.6942

The ground-state calculations were done in a bit
modified way. Hamiltonian (25) is invariant with respect
to the transformation x —+ —x again, which implies that
the ground-state wave function is symmetrical. In such a
situation it is. possible to perform the calculation within
the region —L ~x ~0 with finite-element boundary con-
ditions

monic oscillator (X=O). The numerical results are given
in Table VI.

D. Ground state of the hydrogen atom

We have used the radial Schrodinger equation for the
hydrogen atom with 1=0 and determined the ground
state of the system. The radial equation can be written in
the form

(O, s)= =0 (26)
x=h, ~=s

and to make the symmetric continuation to the region
O~x ~L. The original scheme is then fully applicable.
In this way it is possible to get a more accurate approxi-
mation at a given total number of spatial elements. The
results are shown in Table V.

To determine the excited states of the system we have
used the initial wave functions of the form

2 4
(29)

and p & 0. The numerical results are given in Table VII.

d I'+P —p =/3P, (2&)
dp

where P =P(p), P=/3(E). We have solved Eq. (5) with
the Hamiltonian

2'
t/k(x, a) = 1

Hk(&2ax)exp( —ax )
2

&2"k! VI. CONCLUSIONS

with the value of a determined by minimizing the mean
value of energy. H&(x) is the kth degree Hermitian poly-
nomial, k =1,2, . . . . For a=0.5 functions (27) are the
excited-state wave functions of the corresponding har-

We have used the steepest-descent method to compute
the energies of the ground and excited states of simple
quantum-mechanical systems. The calculations are per-
formed using the finite-element method for solving the

TABLE VI. Ground and excited states of the anharmonic oscillator [Eq. !10}].For a given value of
the parameter A, the energy of the stationary state (E) is shown and compared with the value given in
the literature (E ')'. D is the value of the variance in the resulting state.

0.1 0.4 1.0 10 100 1000

1 D

I

0.99x 10-'
0.5592
0.5591

0.89 x 10-'
0.6688
0.6687

0.16X 10
0.8039
0.8037

0.67 x 10-'
1.5050
1.5049

0.58 x 10-'
3.1319
3.13131

0.75
6.6998
6.6942

2 D

1

0.18 X 10
1.7724
1.7694

0.17x 10-'
2.2194
2.2169

0.19x 10-'
2.7382
2.7378

0.64 X 10
5.3229
5.3216

1.07
11.1977
11.1873

0.61
23.9781
28.9722

3 D

I

0.23 X 10
3.1405
3.1386

0.22x10-'
4.1070
4.1028

0.61 X 10
5.1818
5.1792

0.28
10.3500
10.3471

3.13
21.940
21.906

0.70
47.020
47.017

4 D
E

I

0.72 X 10
4.6339
4.6288

0.61x 10- '

6.2253
6.2155

0.50x 10
7.9482
7.9424

1.74
16.150
16.090

6.45
34.09
34.1825

2.58
73.45
73.4191
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in solving the quantum-mechanical problems. We hope
that it can be used also in quantum field theory.
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APPENDIX: A

FIG. 4. The first excited state of the harmonic oscillator.
The dashed line is the initial state (sinusoid) with corresponding
energy E=2.569. The solid line is the first excited state ob-
tained after 25 time steps and its energy is E= 1.501 (exact value
E= 1.500). P„,(O, S) =P„M(h, S) (A 1)

We shall describe here how the transition P„~P„+i
was realized in practice. We shall discuss Eq. (9).

Having three conditions (i)—(iii) on each element we
would obtain the consistent system of 3M equations
determining the coefficients a„,b, , c„I =1,2, . . . , M. However, it can be seen that for the
first element conditions (i) and (iii) are absent. They are
substituted by two boundary conditions (11). Suppose
that the size I. of the spatial region (see Fig. 1) is large
enough, the discrete version of these conditions is

or

steepest-descent equations. The method gives very accu-
rate results for both ground and excited states. We want
to emphasize two specific properties of the scheme: its
applicability to the excited-state calculations and the
weak dependence on the choice of the trial wave func-
tion. From the computational point of view the scheme
is simple and the numerical results are easy to obtain.

Because the norm of the wave function is preserved
during the time evolution the method allows us to choose
the time steps from the wide range of values. The
method is based on solving the steepest-descent
differential equations with specified initial and boundary
conditions. The cases in which the boundary conditions
need to be specified on both sides of the relevant region
present no problem for the method, whereas such prob-
lems are known to be solvable only with considerable
difficulty by standard methods.

Of course, the method can fail in some special cases.
However, in such a situation one simply changes the size
of the spatial region and the sizes of the time and spatial
steps. The freedom to make these changes is rather large,
so that the problem of divergences can be avoided
effectively in practical cases.

To conclude, the steepest-descent method combined
with the finite-element method is applicable and efficient

TABLE VII. Ground state of the hydrogen atom. I. is the
size of the spatial region and M is the number of spatial ele-
ments. Exact value: /3=1.0.

cn1=0,

an~+ bn~+cn~ —0 .

(A2)

(A3)

1 — 2
bnm nm + n lb nm

—1 1 — —2
Cnm nm ~ n1 nm

(A4)

In this way, each coefficient is specified by its two "com-
ponents, " a„—:(a „',a „),. . . . Using conditions
(i)—(iii) we can then calculate successively these "com-
ponents" up to the Mth element. The boundary condi-
tion (A3) then gives

an1=— (A5)

By repetitive substitutions into Eq. (A4) we will finally
determine the coefficients.

As for Eq. (10), the strategy is quite analogous to the
previous case. To have a consistent system of equations
we have to complete the boundary conditions (Al) by
those for the first derivative

After linearizing of Eq. (9) (see Sec. IV and Appendix B)
all conditions are represented by the linear equations.

It can be seen that we have only two conditions (iii)
and (A2) associated with the first element. This means
that one of the coefficients an „bn„cn, remains free. If we
choose an1, then it is appropriate to introduce the param-
etrization

—1 1 — —2
nm nm ~ an la nm

10
14

10

1.0040
1.0052

15

1.0038
0.9965

1.0031
0.9996

1.0026
0.9998

Bx —p

WM
x=I, ~=s

(A6)

In this case we will have two free coefficients, associated
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with the first element. That is why it is necessary to do
the double linear parametrization.

APPENDIX 8
%'e shall describe here briefly the strategy which leads

to the linearization of steepest-descent Eqs. (9) and (10).
The simplest approximation of Eq. (9) is the one with

value E(r)=EO which corresponds to the first term in
the expansion (16); i.e. , the equation is

(81)

i'(x, ~) =$0(x)+r(EO H)PO(x—)
2

+—(Eo H) $0(x—)+O(r ) . (82)

with Eo = fdx POHPo. It means that making the transi-
tion P„—+P +, we use this equation with
Eo= fdx P„H(t„. Maybe, this approximation seems to
be too rough but our results presented above for the
ground state were obtained just in this simple way. At
the same time the convergence is very good. Making the
time expansion of the solution of Eq. (81) we can see the
reason for that. The expansion is

B% = —(H Eo)qt-
a7.

(83)

with F. o= —,'( fp„IIttp„+ fp'+, Hp', )

As for Eq. (10) the situation is quite analogous. We
have used the expansion (14) with linear term to express
E(&),D(r) through the initial state $0(x). The scheme
described above works very well also.

It differs from the expansion (15) of Eq. (9) only in the
quadratic term. In addition, the difference of the
coeKcients at this term is proportional to Dp. Thus,
when the state vector moves towards the ground state,
Eq. (81) becomes an increasingly better approximation to
Eq. (9), because in this limit Do~0. Taking into account
the linear term in Eq. (16), we shall obtain the approxi-
mative equation, the solution of which divers only in cu-
bic term from the expansion (15) of Eq. (9).

Making use of the expansions (15) and (82) one can
show in a straightforward way that the same improve-
ment can be reached by making the transition P„~P„+i

as follows.
In the first step Eq. (Bl) is used to make the prelimi-

nary transition t))„~P'„+i. In the second step the real
transition P„~P„+,is done by using the equation
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