
PHYSICAL REVIEW 0 VOLUME 40, NUMBER 2 15 JULY 1989

Can the electrovt eak vacuum be unstable' ?
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The electroweak vacuum need not be absolutely stable. For certain top-quark and Higgs-boson
masses in the minimal standard model, our vacuum is instead metastable with a lifetime exceeding
the present age of the Universe. It has been suggested that a metastable vacuum is generally ruled
out because high-energy cosmic-ray collisions would have long ago induced its decay. I argue that
the reasoning for this conclusion is erroneous. As a consequence, upper bounds on the top-quark
mass derived from stability arguments are relaxed. Also presented is an analytic method for accu-
rately approximating the lifetime of the vacuum from the effective potential without solving for the
O(4) bounce solution numerically.

I. INTRODUCTION

In Weinberg-Salam theory, the weak gauge group is
broken by a Higgs sector whose renormalizable potential
is of the form

v(y) = ——'p lp +—'A,y

This potential receives radiative corrections and the vac-
uum expectation of P is determined by the effective po-
tential which includes these corrections. One-loop
corrections from bosons, such as the Higgs boson, give
contributions of the form A, P 1ng times numerical fac-
tors. These corrections dominate the usual XP at large

One-loop corrections from fermions give contribu-
tions of the form —

g~P in/ where the minus sign is due
to Fermi statistics. If the Yukawa couplings are large
enough, the fermion contributions will dominate over the
bosonic ones at large P with the result that our vacuum is
only metastable. ' The effective potential in such a case is
depicted schematically in Fig. 1. Generally, however, the
scale 8 at which the potential becomes unstable is very
much larger than the scale A of the false vacuum.

Flores and Sher have noted that our vacuum need not
be absolutely stable; a metastable vacuum is acceptable if
its lifetime exceeds that of the Universe. It is also neces-
sary that the Universe can be trapped in the false vacuum
in the first place, and they argue that this is plausible. In
particular, the case at hand is different from the case of
the Linde-Weinberg bound. Below the Linde-Weinberg
bound, there is a metastable vacuum at zero temperature
which disappears at high temperature. For the cases ex-
amined in this paper, however, the metastable vacuum
does not destabilize at high temperature.

The vacuum decays by quantum tunneling to form
bubbles of the unstable phase which then expand classi-
cally to absorb all of the metastable phase. There are two
types of forces acting on a bubble: the potential-energy
advantage of the interior over the false vacuum, and its
surface tension. The potential energy favors expansion of
the bubble and grows with the volume; the surface ten-
sion favors contraction and grows with the surface area

(or as the radius if the bubble has thick walls). Thus,
small bubbles are dominated by surface tension and col-
lapse. Large bubbles are dominated by the potential en-
ergy and expand. The quantum tunneling must create a
bubble large enough that the bubble will continue to ex-
pand.

In general, the larger the top-quark mass or smaller the
Higgs-boson mass, the more unstable the potential and
the shorter the lifetime of our vacuum. Flores and Sher
translated the constraint on the lifetime into a constraint
on the top-quark and Higgs-boson masses. ' Figure 2
shows my results for these constraints. Below the lower
solid curve, the vacuum is absolutely stable. Between the
two solid curves it is metastable with a lifetime exceeding
the age of the Universe. These curves apply only to the
minimal standard model with a single Higgs doublet that
is valid up to A = 10' GeV. The upper curve is also
shown for different choices of the cutoff scale A, whereas
the dependence of the lower solid curve on cutoff scale
has been examined in Ref. 5. The lifetime has been com-
puted at zero temperature. The curve corresponding to
the lifetime constraint is significantly different from that
of Ref. 2, perhaps due to the use of more modern results
for the effective potential.

(b)

FIG. 1. The effective potential (a) when our vacuum is abso-
lutely stable and (b) when fermion masses are large enough that
it is not.

40 613 1989 The American Physical Society



PETER B. ARNOLD 40

200 I I I I

~

~ f I Q
j

T t f I j ~ I I

180

160 hhhhhhhhh

140
C40

E 120

100

F1G. 3. Qualitative drawings of two configurations with
equal energy density. The line 3 is the metastable vacuum; the
line 8 is where the potential turns over and becomes unstable.

80
0 50 100

m(Higgs boson) [GeV]
150 200

FIG. 2. Below the lower solid curve, our vacuum is absolute-

ly stable. Between the solid curves it is unstable but with a life-
time greater than the age of the Universe. Both solid curves
correspond to a cutoA of A=10' GeV. The dashed lines show
how the upper curve varies as A is taken to be 10', 10, and 10
GeV.

There is an energy barrier which separates the metasta-
ble vacuum from the region of instability. So far, I have
discussed decay by quantum tunneling through that bar-
rier. The lifetime can be long because quantum tunneling
is an exponentially damped process parametrized by

amplitude —exp[ —(bE)(b t)]—exp( —Sz ), (1.2)

where At is the time that energy conservation is violated
and AE is how much it is violated by. The product is
equivalent to the Euclidean action Sz (Ref. 6). There is
another way to make the transition, however. If one
could concentrate enough energy to go over the barrier
classically, then there need be no exponential damping.
In particular, Sher and Zaglauer have argued that high-
energy cosmic rays induce vacuum decay and that, except
for a very thin sliver of parameter space, the possibility of
a metastable vacuum is ruled out. One may then obtain
stricter bounds on the top-quark and Higgs-boson masses
in the single-Higgs-boson model. ' The thesis of this pa-
per is the refutation of this conclusion. I shall now
synopsize their argument.

The object is to make a bubble of some radius R that is

large enough to grow and absorb the metastable vacuum.
In the process, the system must pass over the energy den-
sity barrier e= V „ofthe potential. To make a bubble
of size R classically then takes energy E—eR, but to get
the proper energy density, e, is not sufBcient. For in-

stance, Fig. 3 shows qualitatively two configurations with
equal energy density. One is smoothly varying, has a
large amplitude, and probes the region where the poten-
tial is unstable. The other has all of its energy in high
frequencies and, as a result, does not achieve a large am-
plitude and does not know about the instability. To make
the bubble, the energy therefore needs to be in frequen-
cies k of order 1/R. The typical number of quanta in

such a classical configuration will be of order RE since
each quanta carries energy E~ -k —1/R. (I am assuming
k )mH here. ) If RE ))1, one must address the problem
of how likely it is for a cosmic-ray collision to create a
large number of Higgs particles in a small region of
space. However, Sher and Zaglauer argue that RE is less
than one. Therefore, producing even a single Higgs bo-
son of the right momentum seems likely to induce a tran-
sition. To come to this conclusion, they take for R the
size of the "critical" bubble preferred when the false vac-
uum decays by quantum tunneling. Their small value of
RE is a consequence of the fact that this R is very small
compared to the weak scale and almost always much
smaller than the scale V,', fixed by the energy barrier.
Finally, I should note that the rough nature of these ap-
proximations is mitigated by the fact that the space-time
volume of the past light cone of our Universe is order e
in units of the weak scale. Since even a single bubble
would have destroyed the false vacuum, only a gross esti-
mate of the order of magnitude of the bubble creation
rate is needed.

I shall argue that the bubble preferred for decay by
quantum tunneling involves passing through config-
urations with energy density much greater than e= V „,
resulting in RE »1. Alternatively, if one passes over the
barrier through configurations with energy density
e= V,„, I shall argue that R must be much larger than
the value preferred by quantum tunneling and again
RE »1. The problem arises because of a confusion of
the term "critical" bubble and because of a great
difference between minimum-energy and minimum-action
paths for crossing the barrier.

In the next section I briefly review the renormal-
ization-group-improved effective potential for the Higgs
boson. I then elaborate on a simple approximation to the
potential which will highlight the qualitative arguments
and about which much can be said analytically. The con-
clusions are then checked against various quantities de-
rived numerically with the full potential. In Sec. III, I
brieAy consider alternative mechanisms for cosmic rays
to induce vacuum decay. Without attempting a serious
analysis, I indicate that the rate for producing many
Higgs quanta to make a bubble is likely exponentially
small. Since there is no longer a strong argument that
the electroweak vacuum must be absolutely stable, I reex-
amine the constraints on top-quark and Higgs-boson
masses in Sec. IV. There is a good analytic approxima-
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tion to the tunneling rate in terms of the effective poten-
tial, and it agrees with my numerical work.

II. MINIMUM ENERGY VERSUS MINIMUM ACTIGN

The one-loop effective potential may be improved using
the renormalization group, and this procedure has been
carried out in detail in the case of the Weinberg-Salam
model. The effective potential has the form

V(P)„=—
—,'p'(t)G'(t)P'+-, '&(t)G'(t)(t',

where p and A, run logarithmically with P through

d p ( t) ldt =p (t)/3 .(g (t), A(t) ),
d&(t)ldt =Pi(g(t), &(t)),

t =in($/cr ),

(2.1)

(2.2)

A. —«.P» theory

I shall now focus on a simple toy model that approxi-
mates the true effective potential. For large P, the poten-
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and t7 is the weak scale cJ=247 GeV. G(t) is defined in
terms of the anomalous dimension y of P by

r

G(t)=exp —I y(t')dt' (2.3)
0

Explicit formulas may be found in Ref. 9.
At large P, the potential is dominated by the quartic

term in Eq. (2.1). The instability appears if A,(t) runs to
negative values as shown in Fig. 4. It is interesting that
the potential described by Eq. (2.1) always turns upward
again, leaving a new vacuum at very large P. This new
scale is exponentially larger than the weak scale, and in
many cases it lies beyond the Planck scale and hence
beyond any scale where the Higgs model might apply.
The eventual stabilization of the potential is not, howev-
er, essential to the matter at hand.

tial can be approximated by the quartic term. The
coefficient A, (t)G (t) is slowly varying, so I shall approxi-
mate it to be a constant. As I am interested in unstable
potentials, the constant is negative. The model is

V(P) = —
—,'tr(t

S = d'x-,' ' —
-„'

4

(2.4)

(2.5)

y~2 y4~ 3 (2.6)

where I have ignored factors of 2 and approximated the
gradients by assuming the bubble has thick walls rather
than thin ones. Bubbles are thick walled when the sepa-
ration of the true- and false-vacuum energies is large
compared to the potential barrier between them or, in the
extreme case, when the potential is unbounded below.

For small R or Po, the first term of Eq. (2.6) dominates,
creating an energy barrier to the creation of bubbles.
This is the surface tension term, but notice that it grows
as R in the thick-wall case rather than as the surface
area. The dependence of bubble energy on R and Po is
sketched in Fig. 5. Notice that there is a ridge of "criti-
cal" configurations. Bubbles started on one side of this
ridge will collapse back to the false vacuum; bubbles
started on the other side will grow, destabilizing the false
vacuum. The decay of the false vacuum occurs by quan-
turn tunneling under the ridge.

All of the parameters of this system follow from the
classical scale invariance of Eq. (2.5). By rewriting

This model has been considered by Lee and Weinberg. '

I shall study it purely semiclassically, ignoring, in partic-
ular, any radiative corrections to the potentia1.

At first sight, this system may look completely unstable
because there is no energy barrier in V(P) to trap the sys-
tem at /=0. The false vacuum /=0 is, nonetheless,
stable against local perturbations. The stability arises
from the surface energy required to make a bubble. More
specifically, consider the creation of an initially static
bubble of size R and amplitude Po. Its energy is

E = J d x [—,'(V(t ) —
—,'ting ]

2
(t'o-R
R

—trio
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FICi. 4. A. (dashed line) and kG E,
'solid line) as a function of

t =1n(glo. l for mH =50 GeV and m, =125 GeV.
FIG. 5. The qualitative dependence of bubble energy on size

and amplitude for V($1= —tr$4/4.
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For large P, the new term can be ignored and the ridge of
critical bubbles is again given by Eq. (2.8). Large bubbles
with small amplitude, however, no longer expand because
the potential energy inside is positive rather than nega-
tive. This cuts off the vanishing of the static energy bar-
rier at large R, and Fig. 6 is replaced by Fig. 8. There is
now a well-defined minimum-energy barrier with size and
energy fixed by the scale rn:

R (E;„)—,F. —
m. K

(2.18)

Note that there is a static, unstable solution to the classi-
cal equations of motion that corresponds to sitting on the
minimum-energy barrier. Making a radial ansatz, this
solution may be found numerically by solving

2, dV
r d

(2.19)

Sn
R (S;„)—+0, SE —+

3K
(2.20)

Similarly, the number of quanta needed to pass over
the barrier classically is still bounded below by 1/~.
For R ((1/I, the situation is the same as before. For
R ))1/m, the barrier energy is order R m "/~ and the
energy per quanta roughly m, giving order R m /
a.))1/Ir quanta.

In the effective potential for the Weinberg-Salam
theory, the radius preferred for tunneling is eventually
cut off because the unstable potential eventually turns
around to stabilize at a new, deeper vacuum. The radius
and action can be approximated very easily. Using Eq.
(2.16), the tunneling probability is maximized when the
eft'ective Ir is maximized. So, from Eq. (2.1),

This is the O(3) bounce solution.
By increasing the energy, the new term also increases

the tunneling action. Tunneling is no longer indifferent
to scale. Since the new term becomes negligible for large
P, tunneling prefers small-R, large-P configurations over
large-R ones, and so

Sm
S~=, l~,tr=max[ —A(t)G (t)])0 .

3~eff
(2.21)

10~
0 & 0

o
G

The validity of this approximation can be seen by a sim-
ple variational argument. Consider the configuration of
Eq. (2.15) but cut it off' with an exponential once P drops
a decade or so from its central value. ~ is roughly con-
stant over this range and the action is still given by Eq.
(2.16) to good approximation. This action provides an
upper bound to the minimum tunneling action. Alterna-
tively, consider the exact minimum-action solution for
the real problem. Until P drops a decade or so, the equa-
tions of motion are well approximated by the
theory and so the solution must be close to Eq. (2.15).
The contribution to the action from this region shows
that Eq. (2.16) must, to good approximation, also be a
lower bound to the minimum tunneling action. For the
applications of interest here, Eq. (2.21) is good to within
1%.

The minimum-energy and minimum-action paths for
crossing the barrier have manifested at two very different
scales. The minimum-energy path is determined by the
scale at which the potential first becomes unstable, the
minimum-action path at the exponentially larger scale
where —A(t)G (t) reaches its maximum. The energy of4.

the former times the radius of the latter is very small but
does not give the number of quanta required to cross the
barrier classically. Instead, the number of quanta is of
order 1/~, tr and is large. To verify this numerically, I
have plotted RE in Fig. 9 for the configuration corre-
sponding to the minimum-energy barrier. The parame-
ters correspond to the upper solid curve of Fig. 2; the
number of quanta increases for lower values of I,. R has
been taken as the radius where the solution reaches half
of its central value. I also consider another characteristic
path for crossing the barrier: the minimum-action solu-

10
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I I I I

200

FICx. 8. The qualitative dependence of bubble energy on size
and g for V(P)=m2$'/2 Irg /4. —

FIG. 9. The values of RE along the upper solid curve of Fig.
2. The points are computed numerically for the minimum-
energy solution. The dashed curve is for the time slice of the

~ ~

minimum-action solution as it crosses the static-energy barrier.
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tion. In this case, RE is taken for the time slice where
the solution crosses the barrier, i.e., where the static ener-

gy is maximum, and I have plotted an analytic result de-
rived from the —x.P approximation:

ZE =
—,', S (2.22)

The reader might worry that the estimate of the num-
ber of quanta as RE could leave out important factors
such as 1/(2m) which would bring the number down
dramatically. In the perturbative regime, a. more precise
definition of the average number of quanta in a classical
state would be

(2.23)

As an example, reconsider the —I~/ model. Taking
cok =k, one finds with the above definitions that

Xq —
—,0 SF —

—,AE (2.24)

There are no large numerical factors. As to the exact
number, however, one should keep in mind that the num-
ber of quanta is only a rough concept outside of perturba-
tion theory.

Based on the numerical and analytic work, I conclude
that critical bubbles contain at least —100 quanta for a
suSciently long-lived vacuum. The production of a sin-
gle quanta in a high-energy collision will not induce vacu-
um decay.

pansion is controlled by (a /vr)ln(E/m). For a top-
quark mass of 200 GeV and a rare collision between two
10' -GeV cosmic rays, (a /vr)ln(E/m) is roughly 1.
Thus, the formula for I' has started to break down.

Regardless of the production probabilities, it is difticult
to produce critical bubbles with soft Higgs radiation.
The radiated Higgs bosons are produced with a uniform
distribution in 1np& between lnm and lnE. The difhculty
arises because the median transverse momentum is many
orders of magnitude smaller than the longitudinal
momentum. If the radiated Higgs bosons form a
coherent classical configuration, its transverse size Rz
will be much larger than its 1ongitudinal size RL. In the
—Irg" model, one can estimate that using such pancake
configurations increases the number of quanta needed to
cross the barrier by a factor of (Rr/RI ), i.e., by many
orders of magnitude. Moreover, even such a pancake
configuration would require the Fourier modes to be
peaked around a particular pz- —1/Rr. The radiated
Higgs bosons are instead distributed across many orders
of magnitude. Requiring otherwise will eliminate the log-
arithmic enhancement.

The above arguments are not, of course, a formal proof
that critical bubbles cannot be formed by high-energy
cosmic rays, though I hope my arguments make the con-
tention plausible. In any case, in the absence of a con-
vincing argument that cosmic rays do induce vacuum de-
cay, one should not assume that our vacuum must be ab-
solutely stable.

III. PRODIJCING MANY HIGGS BOSONS

P=, in(Z/m)
1 ~y

4~
(3.1)

in leading order. E is the c.rn. energy of the collision.
This result is still exponentially small, even from the sta-
tistical factor 1/iV! alone. Of course, I have considered
only one diagram for making Higgs bosons; the radiated
Higgs bosons are free to split into top-quark pairs which
themselves radiate Higgs bosons which split into top-
quark pairs and so forth. The sum of such "fan" dia-
grams still gives a statistical suppression factor similar to
1/&. I should note, however, that the perturbative ex-

Since the formation of critical bubbles requires a large
number of quanta, it is worth considering whether a
high-energy collision could produce a large number of
Higgs bosons inside the relevant volume. This is not a
question I shall address in depth, but I have a few obser-
vations. Remember that the Higgs bosons must all be
produced inside a small volume. Therefore, it is not
enough to produce 100 Higgs bosons in the course of a
shower of primary and secondary collisions; they must all
be produced in a single collision. At first sight, the prob-
ability of producing a large number X of Higgs bosons
would seem proportional to 0., and hence exponentially
small. One can do slightly better if the Higgs bosons are
soft. As an example, the probability for radiating X con-
secutive Higgs bosons from a single fermion line is ap-
proximately

N

IV. COMPUTING THE DECAY RATE

S~ -404 . (4.1)

Sometimes, K,z does not reach its minimum at a sensible
scale. In such cases, I apply Eq. (2.21) with P restricted
to lie between the vacuum expectation values (VEV) o
and the Planck scale at 10' GeV. For parameters where
the tunneling scale is below the Planck scale, I solved for
the O(4) bounce solution numerically and checked that
the tunneling action agrees with the approximation to
within 1%.

It is possible to do slightly better than Eq. (4.1). As
discussed earlier, the scale P relevant to tunneling is ex-
ponentially larger than the weak scale, and it is often
pegged at the cutoA' scale of 10' GeV. On dimensional
grounds, the bubble nucleation rate is approximately

dI
dV

=$0exp( —Sz ),
yielding

(4.2)

Since the possibility that we live in a metastable vacu-
um remains open, limits on top-quark and Higgs-boson
masses should be taken from the upper curve of Fig. 2-
rather than the lower. The curve is determined by the
condition that the bubble nucleation rate per unit
volume, times the space-time volume of our past light
cone, is order one. The space-time volume of the past
light cone is e in units of the weak scale, which deter-
mines the curve to first approximation by
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S~ —41n(go/o ) =404 . (4.3)

Figure 2 was obtained using this improvement, which
lowers the allowed top-quark masses by about 5 GeV.

I emphasize that these bounds apply only to a Higgs
sector with a single Higgs doublet. As the Higgs sector
may only be an eA'ective description of nature, not valid
up to the Planck scale, I indicate how the curve changes
for diA'erent choices of the cutoA' scale. The top-quark
mass in this graph is measured at the scale 2m, . A recent
two-loop calculation of the lower solid curve of Fig. 2,
where the vacuum changes from stable to metastable, has
been carried out in Ref. 5. I have not attempted such a
careful calculation here.

I shall conclude this section with a brief discussion of
the numerical issues involved in solving for the O(n)
bounce solution in this situation. The equation to solve is

Because of the large discrepancy of scale between Po
and o., the integration is done with an adaptive stepsize.
For the O(4) solution, one must also be careful how the
action is computed. I integrate to the value of r at which
a numerical solution either undershoots or overshoots as
described above. The solutions which overshoot ap-
proach the correct action rather quickly. The solutions
which undershoot, however, approach the correct action
very slowly: a difference of $0 by 1% from the bounce
solution can raise the computed action by a factor of 10.
This results from the fact that solutions which un-
dershoot fall much slower with r in the region
o ((P ((Po than do those which overshoot.

Finally, let me emphasize that the analytic approxima-
tion Eq. (2.21) is the best check of the algorithm. Anoth-
er useful check is the virial theorem of Ref. 11.

n —1~, dV
r dP

The solution must satisfy the boundary conditions

(4.4)
V. CONCLUSION

(4.5)

n 1 P'+t) V(go) as r +0, —
r

(4.6)

where t) Vis short for d V/dP. The solution is

P(r),=Po+ B V(go)
211

and is valid for

(4.7)

(4.8)

The general technique is to try different guesses Po) o for
P(0) and integrate the equations until either P crosses 0.
or P stops decreasing. The dividing line between these
two behaviors, when P comes to rest at cr, is the desired
solution. One subtlety in solving the equation numerical-
ly is that the friction term is singular at r=0. This singu-
larity may be avoided by solving analytically in the limit
that r is very small. If r is small, then P is not far from Qo
and V(P) may be approximated by a linear potential
around V(go):

I have argued that critical bubbles contain many quan-
ta and so the decay of the false vacuum cannot be in-
duced by a cosmic-ray collision that produces a single
Higgs boson. Unless a strong argument is put forward
that a single high-energy collision could generate the
—100 or more Higgs quanta needed, one should not as-
sume that our electroweak vacuum must be absolutely
stable. This relaxes the upper. bound on the top-quark
mass.

As a consequence, I note an important loophole in the
conclusion of Lindner, Sher, and Zaglauer concerning
the minimal standard model. Assuming vacuum stabili-
ty, they conclude that a future limit of m, ) 110 GeV set
at the Fermilab Tevatron would imply that the Higgs bo-
son could not be discovered at the Cornell Electron
Storage Ring, the SLAC Linear Collider (SLC), or CERN
LEP I. This conclusion, however, follows only if one
demands that the vacuum be absolutely stable.
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