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Quark fragmentation function in the Schwinger model
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We derive an analytic expression for the N-boson distribution function in quark string fragmenta-
tion within the Schwinger model with massless fermions [(1+1)-dimensional Abelian gauge theory]
employing the light-cone quantization.

I. INTRODUCTION

Quarks are confined inside hadrons when they have
"low" relative momentum, and hadrons are created
through the fragmentation of the strings between quarks
in the case of "high" relative energy. For example, in the
reactions e++e ~hadrons, a quark and an antiquark
are first created by a- virtual photon. Then the field be-
tween the quark pair (we call this field the "string") de-
cays into many hadrons.

There exists a vast amount of literature in which the
fragmentation process is treated, see, for example, Refs.
1 —8. These approaches are more or less phenomenologi-
cal. For instance, Field and Feynman treat fragmenta-
tion as a statistical process and derive an integral equa-
tion based on Kolmogorov's scaling hypothesis. More in
the direction of QCD, successful models have been pro-
posed by Andersson et al. and Webber.

In this paper we wish to evaluate the fragmentation
matrix e'lements within an exactly solvable model, the
(1+1)-dimensional Abelian gauge theory (massless
Schwinger model' ). Obviously, a gauge theory in 1+1
dimensions is a toy model, and its significance to the. real
world is not clear. For example, QED in 1+1 dimen-
sions confines fermions, in contrast with (3+ 1)-
dimensional QED. However, QCD in 3+1 dimensions
confines fermions and therefore the string field may possi-
bly be modeled by (1+1)-dimensional QED. Further-
more, phenomenological analyses indicate that the string
formed between a q-q pair has essentially a one-
dimensional space structure, and, therefore, a model field
theory with one space and one time dimension may
reproduce some significant features of the fragmentation
physics.

The Schwinger model has often been studied and re-
cently solved numerically for bound-state problems. "
We are only aware of the interesting paper by Casher,
Kogut, and Susskind' who treat the fragmentation pro-
cess within this model. In fact, by comparing the classi-
cal field with the second-quantized expression, they infer
the momentum-space number density ( az az ) = 1/co&,
which corresponds to one-particle distribution dx/x. We
give a mathematical proof for their result and, at the
same time, obtain a closed expression for the N-body dis-
tribution function. Our proof is in the context of the
light-cone quantization of the Schwinger model. In this

scheme, a closed analytical expression can be obtained for
the boson operator in terms of the fermion creation and
annihilation operators. Here, bosons play the role of the
hadrons in the QCD-fragmentation process. The matrix
element of the fermion-antifermion (f-f ) fragmentation
into N-boson states is calculated exactly.

We organize this paper in the following way. In the
next section we briefly explain the Schwinger model and
the light-cone quantization procedure. Then the matrix
element for the fragmentation is derived in Sec. III. The
last section summarizes the results.

II. THE SCHWINGER MODEL

The Schwinger model is an Abelian gauge theory in
1+ 1 dimensions and has been extensively and repeatedly
discussed in many diFerent contexts. ' ' It is a super-
renormalizable gauge theory and, most importantly, can
be solved analytically for massless fermions.

The Lagrangian density is written as

X =g(iy„d" gy A—")g ,'F„,F"—— (2.1)

(2.3)

where the fermion current is defined as

Jp=gA'p4 .

We follow the notation used in Eller, Pauli, and Brod-
sky" and define the light-cone coordinates x +—=x +x'.
The energy-momentum tensor is written as

(2.4)

where g" is the metric tensor. The momentum P" can
be written as

P"=—' dx T+" .
2 (2.5)

Here we shall call P+ the light-cone momentum and P
the light-cone Hamiltonian. If we define the projection
operator A' ', which only acts on spinor indices, as

where F„=B„A —8 A„. The fermion described by the
spinor tf is coupled to the vector potential A„via the
charge g. The mass of the fermion has been set to zero.
The Dirac and Maxwell equations become

(2.2)

604 1989 The Arn. erican Physical Society



QUARK FRAGMENTATION FUNCTION IN THE SCHWINGER MODEL 605

1g(+ ) —1

2 1
(2.6)

then we may write /+=A'+'g. The quantities P+ and
P take the form

P+= f dx yt+ia+q+,

P =2g f dx (Q+Q+) + 2 (/+it'+) .
(i&+ )'

(2.7a)

(2.7b)

(b ing+d't in/)+ ~2L 0 n n
n=1

(2.8)

where g =vrx /L and u denotes the spinor with
u+u =1. The operator b„(d„)annihilates a fermion (an
antifermion) with the light-cone momentum
k+ =2mn/L. We have set do =0 as discussed in Ref. 11.
The creation and annihilation operators obey the usual
anticommutation relations:

I b„,bt j
=

I d„,dt j =5„ (2.9)

Now we introduce the boson creation operators a t

(n ~1):

Note that the above momenta can be expressed in terms
of the field i'+ alone if we choose the light-cone gauge
condition A + =0.

To quantize the fields we employ the light-cone quanti-
zation scheme' ' because of its simplicity. We do not
care to discuss the equivalence of this scheme with
equal-time quantization.

We follow Eller, Pauli, and Brodsky" and quantize the
field 1(i+ in a box of length L:

This state then evolves into a final state ~%f & which con-
tains X bosons with light-cone momenta n i, . . . , nz,

~q &=a' . a' ~0& .=
n~ n&

(3.2)

The light-cone time development of ~%'; & ~ ~%'f & is
governed by an operator U(H) which depends on the
light-cone Hamiltonian. The fragmentation matrix ele-
ment is then

w„=&If~U(H)lq'; & . (3.3)

Since the ~%f & is an eigenstate of H [Eq. (2.12)] (namely,
free boson states become eigenstates of the light-cone
Hamiltonian, which is a particular feature of the
Schwinger model with massless fermions), the operator
U(H) reduces to a c number Uo. Therefore, we obtain

W =U, &0~ „„d"b' ~0& . (3.4)

This matrix element can be evaluated by using the fol-
lowing recursion formula:

dM bM ] (~M, —M dM bM

sector. The terms with finite charge diverge. Thus, QED
in 1+1 dimensions confines fermions, a well-known fact.
A f fp-air (a "string") which is moving apart creates bo-
sons. This process is treated in this section.

We start with an initial state ~%; &, which contains a f-
f pair with light-cone momenta M+ and M (in umts of
2m /L ), respectively,

(3.1)

a n

n —1 OO QO

b d„+gb„+ b —gd„+ d
m=0 m=0 m =1

(2.10)

+dM, .bM ) . — (3.5)

For massless fermions we may choose M =0 and then
the antifermion dM carries the momentum M+
=(L/2')v s. In this case, Eq. (3.5) reduces to

The a„and at satisfy the Bose commutation relation if
they operate on physical states which do not contain an
infinite number of fermions and/or antifermions:

[a. dMbo]= —(&.,M—+&M .bo) . -
n

(3.6)

[a„,a']~+&=5„~q & . (2.1 1)

The expression for the operator a„ in Eq. (2.10) has been
constructed in order to diagonalize the light-cone Hamil-
tonian. In fact, the light-cone Hamiltonian 0 defined as
H =(2m/L)P can be expressed in terms of the boson
operators as S (M, O) B(M)- (3.7a)

Although Eq. (3.6) is easily derived using the explicit
expression for the a„, this equation contains important
physics and is the central step in our derivation. If we
denote the "string" dMho by S(M, O) and if we introduce
the symbol B (n) for the boson related to a„, Eq. (3.6) can
be written symbolically:

g2 oo

H = g —a[a„
&

n
(2.12)

S(M, O) B(n)+S(—M. —n, O) . (3.7b)
for the charge zero sector where g/i m =iM is the mass of
the boson. This is all we need in order to evaluate the
fermion fragmentation matrix element.

III. FRAGMENTATION OF THE FIELDS
BETWEEN FERMION-ANTIFKRMION PAIRS

In the previous section we have given the light-cone
Hamiltonian for the Schwinger model in the charge zero

The string either decays into one boson which carries the
whole momentum M of the string, or it decays into a bo-
son with momentum n and a string with the momentum
M —n remains. In the latter case, the boson is
"chopped" oft one end of the string. The two processes
Eqs. (3.7a) and (3.7b) can be related to the different com-
ponents of the wave function equation (2.10) of the bo-
sons, Eq. (3.7a) to the component d„b in a„and the
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process equation (3.7b) to the "particle-hole"-type admix-
tures d„+ d

The probability amplitudes for the two processes, Eqs.
(3.7), are equal and take the value ( —1)/&n. This value
is interesting, since the amplitude olily depends on the
quantum number of the created boson and not at all on
the properties of the string, such as its energy. For the
same reason, the amplitude is also independent of the his-
tory of the fragmentation sequence. These properties
enter as assumptions into the approaches of Field and
Feynman and of Andersson et a/. for QCD string frag-
mentation. The iteration of the commutator Eq. (3.6) or
the iteration of the symbolic equation (3.7) corresponds
to an "outside-inside cascade. " One finally obtains

for the fragmentation matrix element.
The partial decay uridth for the f fs-tate (or "string")

with total energy &s into N bosons with light-cone mo-
menta n&, . . . , nN is proportional to the square of the
matrix element times the 5 functions for energy and
momentum conservation:

I Q ( +S y 1l ] y y Pl+ )

N N
v's —g p,

+ 5 v s —g p;
t.

i=1 i=1

(3.9)

If one introduces the Feynman variable for the boson,

( )8N= Uo
nN

(3.8)

ni

M+
(3.10)

and uses p;+ p; =p, one obtains the partial decay width

2m.
i Uo(s) i dx,

+N
(3.11)

This is the final result of our derivation. A boson with x,.
is created in the fragmentation process with a probability
1/x, . In the rapidity variable y;, the distribution of the
bosons is uniform since dy; =dx;/x;. The N-boson distri-
bution equation (3.11) shows no correlations except those
introduced by energy and momentum conservation. This
follows as the light-cone Hamiltonian H contains no in-
teractions among the bosons. This property is intrinsic
to the massless Schwinger model. The strength
2n

~ Uo~ /s of the width I x is independent of N, a fact
which is important for the calculation of the multiplicity
distributions.

The contents of Eq. (3.11) may be summarized by say-
ing that a (1+1)-dimensional massless QED string decays
into all open channels with probabilities governed solely
by "longitudinal phase space. " This holds for the rapidi-
ty and the multiplicity distributions of the created bo-
sons.

IV. SUMMARY

The results derived mathematically in this paper within
the Schwinger model with massless fermions are known

and often quoted. The references usually go back to the
paper by Casher, Kogut, and Susskind where the result
for the one-body distribution function is obtained. The
explicit form, Eq. (3.11), for N-boson decay is stated in
the paper by Field and Feynman who use it as a basis for
a phenomenological treatment of QCD-string fragmenta-
tion. It forms the basis for many "longitudinal phase-
space" phenomenologies, which have demonstrated suc-
cess. However, as already stated in the Introduction, the
Schwinger model is a toy world, albeit a beautiful and ex-
actly solvable one.
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