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Some exact solutions of (2+ 1)-dimensional Yang-Mills equations
with the Chem-Simons term
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Two Ansatze for the gauge field potential are given so that the (2+1)-dimensional Yang-Mills
equations with the Chem-Simons term can be solved in terms of the modified Bessel functions and
the elliptic function respectively.

I. INTRODUCTION . +YM 7~Fa Fpv (lb)

Recently there has been some interest in (2+ 1)-
dimensional gauge field theories, not merely because they
can be regarded as a high-temperature limit of the four-
dimensional theories or because a topological mass term
can be introduced without violating the principle of local
gauge invariance, ' but also because they may be relevant
in elucidating the high-T, superconductivity physics.
Classical solutions play a preliminary and important role
in our understanding of the quantized theories and the
purpose of this paper is to present some exact solutions of
the (2+ 1)-dimensional SU(2) Yang-Mills (YM) equations
with a Chem-Simons term. We note that numerical solu-
tions have been obtained before in Euclidean as well as
Minkowski spacetime with the Euclidean one being
complex. However our analytical solutions are different
from these numerical solutions although our Euclidean
solutions are also complex as expected, since the
coefficient g of the Chem-Simons term becomes imagi-
nary in the Euclidean version. In the presence of a Higgs
field, vortex solutions were also found in Ref. 5 but none
of them are exact and analytical.

As in the (3+1)-dimensional case, to obtain analytical
solutions of the YM equations, the choice of Ansatz is of
utmost importance. With the right choice of Ansatz, the
reduced YM equations become simple and solvable. We
shall present two Ansatze here. The first Ansatz yields
solutions in both Minkowski and Euclidean spacetimes.
The reduced equations are linear although the nonlinear
terms [A„,A „]and [A„,F" ] are in general nonvanish-
ing. An interesting feature of this class of solutions is
that the action vanishes in the Euclidean case. The
second Ansatz applies only in the Euclidean spacetime.
The reduced equation is nonlinear with Jacobi's elliptic
functions as solutions.

II. THE SOLUTIONS

The YM action with the Chem-Simons term is

S = f d x(ZYM+Xcs)

—g&pva( g A a A a + 1 &abc A a A b A c
)CS p v a 3 p v a (lc)

where, for convenience, we set the gauge field coupling
constant g=1 and the metric is g„„=(—++). The
energy-momentum tensor is given by

~pv=FpaFv gp/YM

while the angular momentum is

J= fd xe"x, 00

(2)

(3)

With the action given by expression (1), the equation of
motion is

Fapv+&abcA bFcpv+ g&vaPFa 0p P aP (4)

In Euclidean spacetime, the coefficient g is replaced byi(-
We now introduce the first Ansatz in Minkowski space-

time:

and

it&.+AIp s0i=o—
$2B' Bit'2+ gB fi =—0,
B"+(BIp)'+Q, B =0,
0'i'+ 4 Ip PiB' P0'2+—6Ip) =—o

$2$,B g(B'+B Ip) =0, —

(7a)

(7b)

(7c)

(7d)

A„'(x)=P'[5„$i(x)—P "$2(x)]+53/„$&(x), (5)

where lb's are assumed to depend on p=(x, +x2 )' only
and P

' and P" denote unit vectors,

P '= e"x 'Ip =e"p ', t = 1,2,
A A

with P ~ being similarly defined. Clearly P =P =0.
Substituting the above Ansatz into Eq. (4), the reduced
equations are
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B =g3 ——
p

(7fl

pi+ $2 lp Ar i
=0,

+PI /p g(fr+$2/p)=0 .

(8a)

(gb)

Solutions of Eqs. (8) are the modified Bessel functions and
in order for the gauge field to vanish fast enough at large
distances we choose IC (p) and write the potential as

Here prime denotes dift'erentiation with respect to the
variable p. Equations (7) simplify tremendously if we set
8 =0 so that the reduced equations become

J=~d /g= —(Qd)/(2$) . (19)

In passing we note that from the asymptotic behavior
(16), our solutions are not vortexlike.

The Ansatz (5) can also be used for Euclidean field
equation with p=1,2, 3. The reduced equations are the
same as Eqs. (7) with slight modification. Again simple
solution can be found and the gauge potential is given by

A ' =p '(5„KO i/—„K,)+53/„ (20)'".p.
which is inevitably being complex because of the Chern-
Simons term. The action vanishes identically since

A „'=p '(5„KO—p„K,)d +53p„—' "p (9)
&vM= &cs—=(kd)'«o K i )

—.
where d is a constant. Note that Eqs. (8) yield

(10)

and the total energy is just

H =(gd) f d x (K, +Ko)/2 . (12)

The electric and magnetic field strengths are, respective-
ly, given by

E =F0; =/de'p;K, (z), (13)

B' = ,' e'JF,' = —
g d—P'Ko (z),

with z =gp. Near the origin the fields behave as

(14)

indicating the massive nature of the field configuration.
We now proceed to compute some useful quantities from
solution (9). The action becomes simple,

5 =(gd)' f d'x (K i
—Ko ),

The field strengths, non-Abelian charge Q„and the an-
gular momentum I are, respectively, as given by Eqs.
(13), (14), (18), and (19) with appropriate modification by
the imaginary number i.

The Ansatz (5) leads to reduced equations which can be
linearized and hence solvable. By hard work we find it is
possible to devise another Ansatz which renders the YM
equation (4) to become a single nonlinear solvable re-
duced equation. The new AnsaIz can be written as

A„'=(a'A,+y'A2)o. „+(a'A3+y'A4)y„+P'P„A5,

where the A's are functions of the variable u =P„x"and
a, P, y are three mutually perpendicular unit vectors.
Substituting expression (22) into the Euclidean YM field
equation we find five coupled nonlinear equations.
Equating A, with A4 and A2 with ( —A3), the reduced
equations are consistent when A~= ig/2 —By fur.ther
setting A3=f A, A4=eA, we finally obtain

E =d4'p;—
P

B'=/de'ln(z/2),
while, at large distances,

E =ding'p;(ir/2z)' e

B,'= —dg j (~/2z)'"e—

(15b)

(16a)

(16b)

A "—g~ A /4 (e +f ) A =0,— (23)

where e and f are constant. Clearly the solutions of Eq
(23) are Jacobi's elliptic functions E (u, k) (Ref. 6),

(E') +aE + ,'bE =c, — (24)

and the constants a, b, c depend on the parameter k. The
action can be calculated and is infinite:

For the Ansatz (5) with $3=1/p, the time component of
Eq. (4) reduces to

e + f d xI2[c+(e +f )E ]+/ E I . (25)

giEa gB a (17)

If we regard (B' on the right-hand side (RHS) of Eq. (17)
as charge density then the total non-Abelian charge car-
ried by our solution is

Q'=g f d x B'= f d x O'E

A gauge-invariant characterization of this charge can be
written as

Q =gf d~x B'P'= 2~d . —

The angular momentum as defined by Eq. (3) can be com-
puted:

To simplify our calculations we now consider a special
case of the Ansatz (22) and the solution is

E (x2, k) =dn(x2 ), (27)

where dn(x2) is the basic Jacobi elliptic function and
c =0. The action (25) becomes integrable with respect to
the variable x2..

A „'= [e (5;5„'+535')+f(5;5„—535„')]E(x2, k)

i ( g'/2)5~5„. —

By replacing the constants e and f by ie and if, respec-
tively, and setting /=2, k = 1, one has
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S= ,'-fdx, dx, . (28)

The energy H can be evaluated and is finite per unit x
&

length:

H= fd'xe„=,
' f-dx, . (29)

One can also compute the total non-Abelian charge

Q'=g f d x B'=(rrgl2)(e53+ fo;)fdx, (30)

which is again finite per unit x
&

length. However in con-
trast with Eq. (18), Q' is now not equal to the integral of
d'E since, for the Ansatz (26), e' 'A, F" %. 0 The .angu-
lar momentum for solution (27) vanishes since the elliptic
function E depends on xz only and 6I3; =0.

III. COMMENTS

We end with some remarks.
(i) That an Ansatz can reduce the nonlinear YM equa-

tions with the Chem-Simons term to linear equations is
not surprising since, for the self-dual instanton solution,
the reduced equation is also linear.

(ii) Jacobi s elliptic functions have previously been used
to construct time-dependent periodic solutions for the
four-dimensional YM equations.

(iii) The solution (26) is entirely imaginary when the
constants e and f both become imaginary. An imaginary
gauge field potential has also been discussed in Ref. 4.

(iv) Our solutions are not completely "sourceless" since
they have singularities.
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