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We investigate numerically the mass spectrum, string tension, deconfinement temperature, and

lattice P function for pure SU(2) lattice gauge theory. Our data cover medium-sized volumes.

Finite-size-scaling concepts are emphasized.

I. INTRODUCTION

Finite-size scaling' is a well-known concept in statisti-
cal mechanics and has also been formulated for quantum
field theories. One aim of our studies ' is to demon-
strate its usefulness for numerical investigations of lattice
gauge theories. This paper gives a detailed presentation
of the concepts underlying our investigation and our
complete SU(2) Monte Carlo (MC) data. Compared to
Refs. 4 and 5, the statistics have been extended consider-
ably. Our data cover medium-sized volumes. This allows
comparisons with recent analytical results. Paper II
of this series collects exploratory SU(3) MC results.

We find that finite-size (Fisher) scaling turns also out to
be a powerful tool for analyzing the MC data. Just by
plotting results in a variable

one gains a lot of information. Here L, is a length that
characterizes the finite size of the system and g is a corre-
lation length. In principle, any inverse mass qualifies as a
correlation length in order to define a z variable. In what
follows, if not noted otherwise, we mean by correlation
length the inverse-mass gap g=m ', defined as the light-
est mass state in the spectrum by the large distance fallofF
of a two-point function. The spin parity of this lightest
state may change when lattice size and coupling constant
are varied.

A (unfortunate) tendency in lattice gauge theory is to
replace first principles by heuristic, "phenomenological"
pictures. This ignores the original goal of lattice-gauge-
theory simulations: namely, to replace heuristic QCD
approaches by calculations from first principles. Under-
standing non-Abelian gauge theories (QCD without
quarks) is a relevant step in this direction. In its lattice
framework non-Abelian gauge theory constitutes a chal-
lenging problem of four-dimensional statistical mechan-
ics. It is a regularization of Yang-Mills theory, defined
by the Euchdean action

S = ,' Jd~x—Tr(F„F„),
F„,=d„A,—t) A„+ig [A„,A, ], (1.2)

where the gauge fields A„are Hermitian N XX matrices
that belong to the SU(N) Lie algebra. The final aim is to
remove the regularization and to obtain reliable results
for the infinite-volume continuum theory.

Two problems emerge for results from finite lattices:
namely, scaling violations and finite-lattice-size effects.
(Definitions are given in the next section. ) These two
problems overlap. Using finite-size-scaling theory they
may be disentangled. The situation is i11ustrated in Fig.
1. With 1/g (lattice spacing a= 1) the ordinate represents
a measure for the inverse ultraviolet cutoff, and the
abscissa gives with z =L/g a measure for the physical
size of the system. In this paper the term Uolume is used
with respect to the physical (and not the lattice) size. In
principle we may reach the infinite-volume continuum
limit along any line that approaches I/(~0 for z~ ec.
But our approach is to control scaling violations first, in
the limit

1 . I.
cutoff ——+0 with z =—=const . (1.3)

m ( Oc ) —m (z) =m (z)coexp
32'

+higher orders in z,
z~ ~ cp+0

For arbitrary massive field theories this equation can be

The result of this finite volume co-ntinuum limit is Yang-
MiHs theory in a continuous torus. The advantage is that
this limit can be accurately controlled in many cases of
interest. Repeating (1.3) for larger and larger z values,
one approaches the infinite-volume continuum limit. In
case of the glueball spectrum, the finite-volume correc-
tions are quantitatively controlled by Liischer's' equa-
tion
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pure gauge configurations exist on the torus. They are
called "torons. "' A finite subset of the toron manifold,
the so-called singular or "quantum-mechanically" stable
torons, are of fundamental importance.

In his pioneering work Luscher pointed out that
small volumes allow to compute the energy levels pertur-
batively using a low-energy effective Hamiltonian for the
SU(X) Yang-Mills theory (1.2). In subsequent papers the
SU(2) (Ref. 21) and SU(3) (Ref. 22) glueball spectrum was
investigated for Luscher s one-loop effective Hamiltoni-
an. Rayleigh-Ritz variational calculations turned out to
be an effective method. Luscher and Miinster chose
harmonic-oscillator-type trial wave functions
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FECx. 1. Cutoff range where MC data are taken. 1/$~0 is a

measure for the ultraviolet cutoff and L/g~ ~ for the finite

size of the volume. No error bars are given as we are merely in-

terested in a qualitative overview. Our data from L,L L„
L, & L «L, lattices are not included in this figure.

q=(q„qz, q3) with q; HZ~, (1.5)

where the index i corresponds to the spacelike directions
of the torus. Classical minima of the action that are not

proven to all orders of perturbation theory (co is related
to the three-meson coupling constant) and it is also con-
jectured to hold for non-Abelian gauge theories. Like the
Callan-Symanzik equation it is a structural equation that
is supposed to be valid beyond perturbation theory.
Typically, our numerical results are reliable in the range
up to (and somewhat beyond) z =5. Clearly,
exp[ —(i/3/2)5]=0. 013 is already a small number. Un-
fortunately, it is a priori not known how large z has to be
for Eq. (1.4) to hold. But let us remark that small- and
medium-sized volumes in the sense of our paper are not
identical with small- and medium-sized lattices. The lim-
it (1.3) requires infinite lattices, whatever the value of z is;
fortunately our data show that for small z the limit
1/$~0 is already well approached on rather small lat-
tices. Figure 1 compares the range where our data are
taken with other investigations. " ' The variable z is
plotted on a log scale, as the (asymptotic) large-z correc-
tions are exponentially small, whereas the ultraviolet
corrections are of order 1/g. We note that the trend of
most investigations (with notable recent exceptions' ) is
to go to rather large volumes without keeping 1/g small,
whereas we (and Ref. 11) achieve smaller 1/g values at
the price of staying at smaller volumes.

Yang-Mills theory in a finite continuous torus was first
investigated by 't Hooft. ' Results for the lattice theory
can be found in Refs. 17—19. He noticed that, for each of
the "spacelike" directions, the Hamiltonian commutes
with a group of global Z& transformations related to the
center of the SU(N) gauge group. These transformations
are called "central conjugations. " Operators that trans-
form nontrivially under the Z& transformations carry
't Hooft electric flux. The quantum numbers of electric
flux are

which are rapidly decaying in the constant gauge poten-
tials ck [k=1,2,3 are space indices, a=1,2,3 are SU(2)-
color indices, and g is a polynomial in the ck]. This
choice was motivated by the fact that the eigenfunctions
of the lowest-order effective Hamiltonian Ho are analytic
and rapidly decaying. For the variational calculation the
oscillator frequency co can be optimized. Clearly, all such
trial wave functions are concentrated on one of the toron
vacuum sectors and, in this way, their boundary condi-
tions reflect the perturbative nature of the approach. In
particular, the 't Hooft electric flux stays zero to all or-
ders of the perturbative expansion.

The first attempt to include nonperturbative physics
into Luscher s small-volume expansion was made in the
semiclassical approximation by van Baal and Koller.
They named "tunneling transition" a rapid increase of
the 't,Hooft electric flux due to tunneling between the X
toron sectors. Semiclassical methods turned out to be
sufficiently accurate to indicate the approximate location
of the tunneling transition (consistent with independent
numerical work"' ' ) to be at z =1, and this is where the
perturbative approach ' breaks down. However, in a
very interesting recent contribution Koller and van
Baal ' found out that nonperturbative physics can be ob-
tained from Liischer's effective Hamiltonian by imposing
appropriate nonperturbative boundary conditions to the
Rayleigh-Ritz trial wave functions. In Ref. 7 this is
named the "adiabatic approximation. " Although the sys-
tematics of corrections to the calculation by Koller and
van Baal is not understood, our MC results give evidence
that their approach is valid up to z =5. A detailed com-
parison of numerical and analytical results is carried out
in this paper. The range up to z= 1 (this means before
the tunneling transition) will be called small volume and
the range between z = 1 and z =5 (this means after the
tunneling transition) defines the intermediate Uolume

Large volumes are in the range above z =5. The reason
for the further division between intermediate and large
volumes (which may not be sharp) is that various re-
sults ' ' ' [note that the m(T2+ ) result of Ref. 7 is
corrected Ref. 25] support the opinion that substantial
changes in physics still take place in the volume range
around (or even above) z =5.

Let us conclude the Introduction with a short outline
of the paper. Section II summarizes the basic concepts
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II. SU(W) LATTICE GAUGE THEORY
AND MONTE CARLO SIMULATIONS

We assume that the reader is familiar with lattice
gauge theories. Reviews are presented elsewhere (see, for
instance, Ref. 27). The aim of this section is to keep our
paper self-contained and to emphasize aspects that are
relevant for (our) numerical investigations.

For SU(N) lattice gauge theory (without quarks) one
has to calculate expectation values ( ) of gauge-invariant
operators with respect to the partition function

Z = f g d U(l)exp( —PS), (2.1a)

where in our investigation

S =—g Re Tr[1 —U(p)] ~

=1
N

(2.1b)

and our notation. Subsection II A discusses the transfer
matrix and correlation functions, IIB the string tension
definitions of Wilson, Polyakov, and 't Hooft, IIC our
trial operators and the mass spectrum, IID finite-size
scaling and finite-size problems, IIE the deconfinement
phase transition, II F the the lattice P function, and II G
Monte Carlo data and error estimates. Section III
presents our numerical results. Subsection III A
discusses the raw data, III B the string tension and lattice
p function, III C the glueball masses and large volume ex-
trapolations, IIID addresses the question: glueballs or
Aux states? Section III E considers deconfinement, tun-
neling, and string formation. Summary and conclusions
are given in Sec. IV.

—a +Pl (g) m (g a) =0
aa ' ag

11 34
with Po= and P, =

16m 16m

2

The renormalization-group equation is easily integrated
and predicts quantitatively how the continuum limit is
approached: namely,

m =const AL [I +Fl (g )],
where the lattice scale AL is defined by

AL =AL(g)

(2.4a)

1 ]=a '(pog ) exp —,a=-
2pog' 2po

(2.4b)

If a value go exists such that I =const AL holds for
g go within some required numerical precision (e.g. ,
10%) we call this behavior asymptotic scaling There .are
order-g corrections to asymptotic scaling. The function
FL (g ) measures the deviations from asymptotic scahng
and is related to the OL (g ) corrections of the lattice p
function. Its perturbative expansion is

holds for any mass I expressed in physical units, and
defines the lattice (subscript L) p function pt (g). A well-
known two-loop calculation gives the two universal ex-
pansion coefficients of the P function:

pl (g)= pog—' p,g—'+O~(g')

is the standard Wilson action. The product in Eq.
(2.1a) is over all links I of a four-dimensional hypercubic
lattice with lattice spacing a and U(l) &SU(N). For each
plaquette p, U(p) is the ordered product of the four link
matrices surrounding the plaquette and d U is the SU(N)
Hurwitz measure. p is related to the coupling constant
by

2X
(2.1c)

In this paper we restrict our discussion to lattices with
periodic boundary conditions. Periodic boundary condi-
tions avoid spurious ultraviolet effects, which would be
introduced by sharp boundaries. Our lattices have size

LL L, withL, L~L, . (2.2)

If L, ))L we use the notation "L,L ~ lattices. " In par-
ticular we are interested in the cases

L, (L =L, (2.3b)

Let us now consider (2.3a) and assume that we have car-
ried out the limit L~~. Then the renormalization-
group equation

L, =L «L,
(often called L ~ geometry in what follows)

(2.3a)

m&

m2
=const, 2+ 0 (a lna ) . (2.5)

If I&/m2=const&2 is true within the requested numeri-
cal precision we call this scaling {'in general). The
approach to scaling is supposed to be faster than to
asymptotic scaling because of Eq. (2.4b)
a-AL 'exp[ —I/(2Pog )] for g ~0

Let us consider the geometry (2.3b). In the limit
L ~~, one encounters the deconfining phase transi-
tion ' at g, =g, (L, ). In the deconfined phase the glo-
bal Z& symmetry under the center of the gauge group is
broken, whereas in the confinement regime this symmetry
is preserved. This defines the deconfining temperature
T, =T, (g, )=l/L, (g, ). The deconfining temperature is a
physical quantity with the dimension of a mass, it is ex-
pected to behave like the other physical masses

T, =constTAL(g, )[1+FL(g, )] . (2.4c)

Fl (g )=e,g +e2g +
Here e] is determined by the nonuniversal three-loop
term in pI (g ), etc. Furthermore, Fl has exponentially
small nonperturbative contributions, i.e., contributions of
order a lna. The nonperturbative contributions may
vary for different masses.

According to Symanzik the perturbative corrections
to asymptotic scaling are expected to drop out for mass
ratios and one finds
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We try to carry out the limit (1.3) to match on analyti-
cal calculations which exist for small and intermediate
volumes. The analytic calculations use dimensional regu-
larization and the natural scale is AMs, where MS denotes
the minimal subtraction scheme. The well-known (see,
for instance, Refs. 21 and 33) relationship

AMs=7. 5 Al (2.6)

establishes the connection with lattice calculations. In
the actually used approximations, finite lattice in case of
MC investigations and one-loop computation in case of
the adiabatic approximation, we have higher-order
corrections. So far no attempt has been made to calcu-
late these corrections systematically and the comparison
on the A-scale level cannot be expected to be very accu-
rate. For mass ratios the situation should be better, as
corrections to lattice results are supposed to come from
scaling (not asymptotic scaling) violations only. The situ-
ation for the adiabatic approximation is different and per-
turbative corrections are possible for mass ratios. Never-
theless we think that mass ratios are better behaved than
results in A units.

A. Transfer matrix and correlation functions

We consider the general geometry (2.2). Let

'T= 'T(L„L) (2.7)

In the infinite-volume continuum limit relativistic invari-
ance implies m~; ~ =[m~;0~+p ]'~ . In the Hilbert space
sector which is obtained by applying Aux zero, gauge-
invariant operators 8„ to the vacuum ~n ) =8„~0), the
states of non-Abelian gauge theories are called glue-
balls

Consider the expectation value of a gauge-invariant
operator 8 that is local in time. On a lattice with finite
L, we have

Z =Z(L„L,L, ) =Tr('7 ') = g e

=1+0(e ' ') (2.9a)

be the transfer matrix in L, direction. Obviously, the
transfer matrix does not depend on the I, extension of
the lattice. For the Wilson action (2.1b) the transfer ma-
trix is well known to be positive definite. We define
eigenstates and eigenvalues by means of

'T~n ) =k„~n ) with A,„=e ", A,„+,&A,„, n ~0 .

(2.8)

The vacuum state is denoted by ~0) and we adopt the
normalization A,o

= 1 (equivalently m o
=0). As a conse-

quence of the Perron-Frobenius theorem, the vacuum is
unique for finite systems. Furthermore, the eigenstates
are chosen to be orthonormal ( n

~
k ) =5„k.

With m„we label not only masses but also momentum.
This may be expressed by the correspondence (for n ~ 1)

2+k, 2mk.
n=(i, p), i ~1, pi=, p~= (j=2,3) .

aIld

&8&=Z 'g (n~8~n &e (2.9b)

holds. Clearly, L, ' plays the role of a temperature. It is
analog to 't Hooft's' temperature definition for a con-
tinuous L L„L((L, volume. As there is no preferred
time direction in Euclidean space, we are now at a possi-
ble point of confusion. In the context of the analytical
work (Refs. 16, 20, 7, and others) our L, direction is
chosen as time direction [obtained from our notation by
the cyclic permutation (t,x,y, z)~(x,y, z, t)) Th. is makes
the definition of "electric" Aux natural, its components
are spacelike and obtained from correlations of Polyakov
loops in time direction. However, a problem arises when
the thus defined "spacelike" volume is rather small in ap-
propriate physical units. In numerical studies of finite-
temperature effects and, in particular, of the deconfining
phase transition the smallest lattice extension is
identified with the time direction (L,L lattices with

L, &L) and related to the physical temperature. As part
of our investigations are devoted to a study of the
deconfining phase transition, we decided to stay as close
as possible to the latter notation and to extend it to the
case of L L, (L & L, ) lattices by identifying one of the
three L directions with the time, hence our notation of
L,L, ~ lattices. In the limit I —+~ we get the standard
geometry of numerical deconfinement investigations.
Physically, this choice of the time direction is related to
interpreting Polyakov loop correlation functions as
quark-antiquark potential (see next section), then the
time direction is the one in which the loop closes. For
practical purposes our generalization makes sense, we
shall see in Sec. II E that a finite-size scaling comparison
of systems as small in L as 4X4 64 vs 4 X 6 64 already al-
lows to study relevant finite-temperature effects. To dis-
tinguish between the two temperature definitions we
define

Tb=L, ' (2.10)

& & = «1elo&, Z =1 (2.12)

holds, where ~0) = ~0)~L I ~
is the vacuum of the L,L

"spacelike" box [for simplicity we shall suppress the sub-
script (L„L)] L, & ~ imp. lies finite box-temperature
corrections which we discuss next.

To calculate the mass spectrum numerically, the stan-
dard method is to analyze correlation functions of
gauge-invariant, Hermitian operators. Let us define

and call Tb (lattice) box temperature, because it has the
interpretation of the temperature of the L,L box. (The
name for this temperature is of course rather arbitrary,
here we stay consistent with our first investigations. )

The box temperature has to be distinguished from the
physical temperature T defined by

T, =L, '. (2.11)

For I,~ ~ and L„I fixed, the system approaches zero
box temperature. This means
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—mt —m(L —t
ch (t, )=e '+e (2.13)

Connected correlation functions for the operator 6 are
defined by

C&(t, ) = ( 6(0)6(t, ) ),
= (6(0)6(t, ) ) —(6(0) ) (6(t, ) ), (2.14a)

Cg(t, )

Cg(t, —1)

ch (, )(t, )

ch (, )(t, —1)
(2.14b)

defines m (t, ), the effective mass at distance t, . The equa-
tion

6(0)~n ) = pc,"~i ), c;" real, c„'=c," (2.15)

where t, =0, 1,2, . . . , L, —1 is the separation in the z
direction. The dependence on t„,t, t, (x,y, t direction) is
chosen to be identical for 6(0) and 6(t, ) and therefore
suppressed. Positivity of the transfer matrix implies
C@(t, ) )0. The implicit equation

—mt
shown to have two effects: (i) e ' becomes ch ( t, ); (ii)
new contributions (2.18a)—(2.18c) appear which may
cause a spurious decrease of effective masses for large t, .
Although these contributions are exponentially small like—mlL
e ' ' they do show up in our MC data. Presumably
this happens due to a large number of contributing terms.

B. String tension of Wilson, Polyakov, and 't Hooft

V(R)=)rR +co+c,R '+O(R ), (2.20)

where ~ is the string tension and the coefficient c1 de-
scribes the Coulomb correction. String theory predicts
the coefficient of the R ' correction to be

In this subsection we introduce confinement concepts
of Wilson, Polyakov, ' 't Hooft, ' and their associated
string tensions. A thorough treatment has been given in
the article by Borgs and Seiler.

For large distance R the continuum potential V(R) be-
tween two infinitely heavy quarks (qq ) is of the form

implies that correlation functions are given by

(6(0)6(t, )) =Z 'Tr(GV' 'GV' ' ')

=Z ' g (n~6'T 'G~n )e

=Z 'gg(c, ") e ''e " ' ' . (2.16)
n i

The connected part is

(6(0)6(t, )),=ao+ g a;ch (t, )
i)1

C1=
12

(2.21)

Vi„(R)=V(R)+ V() .

On the lattice, rectangular R X T Wilson loops lV(T, R)
allow to define a lattice potential Vi„(R ) which describes
the total energy of two infinitely heavy quarks separated
by a distance R. For T sufficiently large we have

W(T, R) = (%'(T,R) ) -exp[ —TV(„(R)] .

The relation between the continuum potential V(R) and
the lattice potential is

with

+ g b;"ch( )(t, )
i )n, n~1

(2.17) Here Vo is the lattice-spacing-dependent self-energy of
the infinitely heavy quark. The Wilson string tension ~~
is defined as

2

a =Z 'g(c")'e " ' — Z 'gc„"e )r)), =)r g, = lim lim lim —V)„(R),
g ~ oo T~ oo L~ oo R

(2.22)

and

)0

a, =Z '(co), i =1,2, . . . ,

bn —Z i(cn)2e
—m L

1 i

(2.18a)

(2.18b)

(2.18c)

We show in Appendix A that ao)0. For operators
with

c„"=( ~Gn~n ) =0 for n =0, 1,2, . . . , (2.19)

we have a o
=0. Otherwise a o will only approach

0=(co) —(co) in the limit L,~ ~. The last term in Eq.
(2.17) can also contribute positive constant terms, if there
exist states with mi =m„and nonzero b,". In addition, as
we have no analytical control over the mass differences
(m; —m„) in these b;" terms, the lowest mass which ap-
pears in a correlation function is likely not a mass but a
mass difference. The finite-box temperature is thus

(Ao)P(t, ))
—LV (t) —LV (L —t)=const X(e ' '" ' +e ' '" ' '

) (2.23)

where a L, =L =L, lattice is assumed. Finite-size effects
for the Wilson string tension are somewhat subtle to in-
vestigate, because not only the size of the lattice but also
the sizes of the loops are involved.

Polyakov ' loops P are Wilson lines which are closed
(in L, or L direction) by the periodic boundary condi-
tions. They allow a variant definition of the string ten-
sion. Let us assume the L,L L, geometry (2.2) and close
the Polyakov loop in Lt direction. The expectation value
of the Polyakov loop is an order parameter with respect
to the Z& central conjugations. In the infinite-volume
limit, this expectation value is related to the free energy
F of a single static, infinitely heavy quark
(P) -exp( L,F ). Correlati—ons of Polyakov loops
therefore give the free energy of a static quark-antiquark
potential Vi„(t, ) by means of
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Here P is in the conjugate representation [P=P for
SU(2)] and the (t„t„t ) dependence is as in Eq. (2.14a).
The PolyakoU string tension Kp is defined by

1 p
Kp =Kp (L„L) = lim lim —V», ( t, )

—+oo L —+ooz Z

(2.24)

For brevity we often denote ~p just by ~ in the forthcom-
ing. Measuring correlations between zero-momentum
Polyakov loops is an efticient way to extract ~ directly,
see Sec. II C.

't Hooft's' way of looking at the confinement problem
consists of studying the free energy of an electric (or mag-
netic) Aux tube impressed by "twisted" boundary condi-
tions on a periodic continuous box. Mack and Petkova'
introduced the equivalent concept of free energy of "vor-
tices" in a "vortex container. " Their vortices are the
Auxons of 't Hooft. "Twist" on the lattice was extensive-
ly studied by Ref. 18. Assume we introduce a twist in L,
direction and let E&(L„L,L, ) be the difference in free en-

ergy as compared with the untwisted configuration. The
't Hooft string tension is defined by

KH —KH(L„L)= lim E, (L„L,L, )
1

H H t~ L 1 t» z (2.25)

This means confinement in the sense of 't Hooft implies
confinement in the sense of Polyakov and Wilson. Within
the validity of the strong-coupling expansion Munster
has shown that ~~=limL limL ~H holds and this

equality is conjectured to survive all the way to the con-

[In some papers the name 't Hooft string tension is used
for the Polyakov string tension on I. ~ lattices. This is
natural when our L, direction is identified with the time
and one gets then E, =E,(L„L~,L, ); see our discussion
in front of Eq. (2.10).] Rigorously it has only been
proven that

Kg + lim lim xp(L„L) and xp(L„L) & vH(L„L)
L, ~oo L. —+oot

(2.26a)

tinuum limit (i.e., for all P). As Polyakov loops project
onto the electric Aux one sector, equality

~p(L„L)=~H(L„L) (2.26b)

is true to the extent that the Polyakov loops couple to the
ground state in the Aux one sector. In the forthcoming
we always assume (2.26b) and calculate energies of Aux

states from correlations between Polyakov loops. In
what follows we will call string tension the flux tube ener-

gy divided by its length

E) =L,v, (2.27)

E, =L,~, and E, =L~, (2.28)

to distinguish energies from loops closed in L, or L direc-
tion, respectively.

At finite box-temperature Aux states may contaminate
vacuum results. This becomes relevant on lattices
where the 't Hooft electric Aux is the smallest eigenvalue
(above the vacuum) of the Euclidean Hamiltonian. For
SU(N) and an L L, lattice the leading contamination is
[see Eqs. (2.9) for deAnitions]

although "string formation" is expected to take place
only for large volumes. In case of the symmetric L L,
geometry the name electric Aux (1.5) applies to all three
"space" directions. For SU(2) the energy E& is associated
with q=(1,0,0), (0,1,0), or (0,0, 1). Energies correspond-
ing to higher units of electric flux can be obtained from
correlations of appropriate products of Polyakov loops
(see next section). For SU(2) the energy E2 is associated
with two units of electric Aux q=(1,1,0), (1,0, 1), or (0,1,1)
and energy E3 corresponds to three units of electric flux
q= (1,1,1).

In case of an asymmetric lattice L, (L &L, it can be
appropriate to consider L L, as the spacelike box (corre-
lations are still measured in L, direction). In this situa-
tion we define for one unit of Aux

z& 6& —&01@10&=3(&—1)[&E~IOIE& &e
' '+&E210IE~ &e

' ']+(&—1)&E3I@IE3&e

+3(X—1) &2E, ioi2E, &e
' '+ (2.29)

C. Trial operators and spectrum

Numerical investigations try to infer on the mass spec-
trum from correlation functions of trial operators. The
central problem is to find good trial operators. The fol-
lowing two properties are needed: (i) The trial operator
should have a large projection on the wave function of
the investigated state; (ii) the trial operator should give a
clear signal that allows to follow correlations up to large
distances.

The states are classified according to the irreducible
representations of the three-dimensional cubic group, '

denoted by A, , E, T2, T„and A2. The representations

of the one-plaquette operator were given by Kogut, Sin-
clair, and Susskind, and in Ref. 43 the irreducible repre-
sentations of the cubic group were systematically con-
structed for all Wilson loops with a perimeter ~ 8. Older
MC investigations of the glueball spectrum mainly relied
on such Wilson loops, for a review see Ref. 44. In the
sense made precise in Ref. 43, the listed irreducible repre-
sentations of the cubic group correspond, respectively, to
spins 0, 2, 2, 1, and 3 in the continuum limit. With
present-day simulation methods it seems rather hopeless
to investigate states other than lowest-lying states above
the vacuum.

The trial operators of this paper are Polyakov loops in
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—t, (Wilson loops), P~ rc .

Equation (2.30) means that for Wilson loops the signal
disappears rapidly at large P. For P~O the plaquette
operator only couples to the lowest glueball state,
whereas Polyakov loops fade away. In MC simulations
adjoint Polyakov loops were first measured to investigate
the adjoint string tension.

Let 8; be a Polyakov loop, closed in direction i,
(i = t, x,y ) of the L,L box. Zero-momentum operators
are defined by summing over the transverse directions

8,(t, )= g 8,(t., t„t, ), etc.

In the symmetric case (L, =L) the following combina-
tions project on the one-dimensional A,+ and the two-
dimensional E+ representations

and

6„(t,) =6'(t, )+8"(t,)+8)'(t, ),
1

6E+(i)(t, ) =6'(t, ) —6"(t,),
(2.31a)

(2.31b)

6g + (2)( t& ) =8 ( tr ) +8 ( tr ) 28 ( t& ) (2.31c)

These, combinations are of practical importance for glue-
bafls. For Polyakov loops in the fundamental representa-
tion, electric Aux conservation implies that the correla-
tion function of two loops in difFerent directions is zero.
There is no point introducing A &+ and E+ representa-
tions, we rather consider the single correlation function

C~(t, )= g (P, (0)P, (t, )),
which gives the statistically most accurate results. As
first emphasized in Ref. 47, through the projection
effective energies E, (t, ), defined by (2.14b), are no longer
spoiled by contributions from states with nonzero mo-
menta and E,(t, ) converges rapidly with t, . Fo'r SU(3)
Ding has directly compared E& results from fits of the
potential Vi„(t, ) versus those from direct zero-

the fundamental as well as in the adjoint and higher rep-
resentations. Most simulations were done in the L
geometry. As discussed, correlations in the fundamental
representation gives rise to the Polyakov —'t Hooft string
tension. A numerical investigation was first carried out
by Farisi, Petronzio, and Rapuano.

In the adjoint representation Polyakov loops A couple
to glueballs. The momentum zero loops are good trial
operators for the A &+ and the E+ state in medium-sized
volumes. At large P the signal is improved by several or-
ders of magnitude as compared to the signal from corre-
lations between Wilson-loop trial operators. We conjec-
ture that this fact is related to the different short-distance
(spin-wave) behavior of (zero-momentum) Polyakov and
Wilson loops: namely,

-t, ' (adjoint Polyakov loops)

(2.30)

momentum correlations. As expected consistency is
found and the latter approach improves the accuracy by
a factor of approximately 4 (16 in computer time).

Our trial operators for two units of electric fiux (energy
Z2) are

P, (t, )=P, (t, )P„(t,) with i' Wk,

and for three units of electric fiux (energy E3 ) it is

P'(t, )=P,(t, )P,(t, )P,(t, ) .

(2.32a)

(2.32b)

with V=AS', WCSU(2), A, real (2.33)

is easily proven using equations from Ref. 39. Here U is
an SU(2) matrix at link l, V is the "force" at the same
link, and D (U) (J =0, 1/2, 2, 3/2, . . . ) is the (2J+1)-
dimensional, irreducible SU(2) representation. The I„are
modified Bessel functions and we like to remark that Eqs.
(9.8.1)—(9.8.3) and (9.6.26) of Ref. 50 allow to write a fast
vectorized code. Obviously Eq. (2.33) allows to integrate
out expectation values of independent SU(2) link matrices
in arbitrary representations. If Polyakov loop correla-
tions at distance t, )2 are considered, all matrices of the
two loops are independent. The trial operators for higher
units of electric fiux (2.32) are, of course, never indepen-
dent.

As higher representations are obtained with almost no
extra effort, we also calculated correlations between
Polyakov loops in the J =

—,
' and J=2 representations.

For the —', representation we found as expected the same
masses as for J=

—,'. Similarly, the J=2 masses were con-
sistent with those for J=1. As in both cases the statisti-
cal noise is larger and the projection on the lowest state is
smaller for the higher (as compared to the lower) repre-
sentations, we shall not present these results in detail.
When we used the icosahedral subgroup, we replaced
fd U in (2.33) by the explicit sum over all 128 group ele-
ments. In that way the calculation of higher representa-
tions is very tedious (and J) 1 representations were not
calculated). Additional trial operators were used to cal-
culate masses of glueball states in the T2+, T, , and T2
representations of the cubic group, but the results
remained inconclusive, see Sec. III C.

D. Finite-size sca1ing and finite-size problems

Quite generally Fisher's scaling variable is defined by
Eq. (1.1). However, for analyzing numerical data, it is
convenient to associate with each calculated mass m its

Definitions of Ez and E3 are given after Eq. (2.27).
For measurements of Polyakov loops we used the

Dobrushin-Lanford-Ruelle (DLR) improvement
scheme. ' At intermediate and small P values this
suppression of statistical noise turned out to be crucial.
The improvement is achieved by integrating appropriate
link variables with the Hurwitz measure. The SU(2) mas-
ter formula

Id U D J( U)ePTr( Uv )/2

D; (8')
PTr(UV )/2
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own scaling variable z =mL. The reason is that
different masses will be addicted by rather different statist-
ical and systematical errors. For instance for an analysis
of asymptotic scaling, z will allow to analyze each mass
within its own accuracy. For mass ratios one may use the
z of the less noisy mass. Our generic notation for z
will be z.

Let us list the z definitions used in our papers. Follow-
ing the notation of Ref. 24 we introduce

zo=m(A i++ )L and z2=m(E++)L .

In case of the string tension we use

z, =&aL,
and at one occasion also the alternative variable

(2.34)

(2.35a)

zE =EiL =vL (2.35b)

Our next two z variables are appropriate for discussing
the deconfining phase transition. The conventional dis-
cussion uses L,L lattices (L~ ~ ) and we define

zr=T, L (L =L, } . (2.36a)

As in previous work, ' we consider in this paper T, sig-
nals on L L,L, lattices (L, »L, L~ ao ). We distin-
guish this from the conventional case by introducing

zr =zr2 = 'r, L (L «L, ) . (2.36b)

+higher orders in z, z ~ oo (2.37)

where the constant c i2 can be positive or negative.
Whereas the finite-volume corrections for glueballs are

exponentially small, the infinite-volume approach of the
string tension is much slower. Possibly large power-law
corrections are involved:

ir( ~ }—ir(z, ) = ir( ~ )
zk z

(2.38a)

Involving string theory ' the conjecture for the con-
stant is

C K (2.38b)

We conclude this subsection with a comment on large
lattices versus large volumes. G utbrod calculated the
SU(2) Wilson string tension on a large 24 lattice at
p= 2.7 and finds 0.005 & x & 0.011. In addition, he ob-
tains as strict upper bound «0.0145+0.00 1 . In Ref. 4
K —0. 164+0.005 [&~=(188+33)AL ] was reported for

Fisher's scaling limit (1.3) is defined by z= const, L ~ ao .
In this limit we obtain for each z value the physics of a
finite continuous box.

In the limit of large volumes the finite-volume correc-
tions are for glueballs given by Eq. (1.4). In the present
investigation we are primarily concerned with mass ra-
tios. Let R (z) =m, (z)/mz(z) and z =z or z, Eq.

I 2'

(1.4) yields
v'3

R (z) =R ( ao )+c,2exp — z

the Polyakov string tension from a 6 64 lattice at p= 2.7.
Comparing this result with his upper bound Gutbrod
concluded that a 6 64 lattice is "most likely too small to
measure ~ reliably. " However, the hope is not that a
6 64 lattice approximates infinite-volume physics we11,
but that it gives a good approximation for the physics of
a continuum box with z, =L&~. Figure 2 of Ref. 4 pro-
vided some evidence for this, because a 4 64 lattice with
p= 2.55 gives within the statistical accuracy results iden-
tical with the 6 64 lattice at p= 2.7. For our 6 64 lattice
we have z„(L L, =6 64, P= 2. 7 ) =0.768+0.012. How
does it now compare with Ref. 54? The value sc =0.0 1 1

(+ir=49Az ) is consistent with Ref. 54 and gives z
(L L, =24 24, P=2.7)=2.5. Obviously the z values are
quite different. It is now amazing to note that within its
(bad) accuracy the large lattice result agrees with values
from much smaller lattices, namely, with values from a
12 24 lattice at p=2.50 and from a 6 16 lattice at
P=2.25 (in the range 47.5AL to 55.8AL for &i~), see
Table III a (below) in Sec. III B. The seemingly very
large lattice 24 finds itself not close to z = ~, but at a
moderate z value in the neighborhood of data points from
rather different lattices.

E. Deconfinement phase transition

We shall denote the critical (infinite-volume)
deconfinement temperature by T, . Simulations on finite
systems are faced with two problems.

(i) Find signals for the finite system that are indicators
for the phase transition. %'e will use the symbol T,' for
such signals. The index i is to label different signals and
will be suppressed, if the signal used is obvious from the
context.

(ii) Carry out the extrapolation to the infinite-volume
limit L

Any quantity that gives well-defined numbers on finite
systems and approaches T, in the infinite-volume limit is
a valid definition of a signal (in our sense). It is important
not to confuse the signals for the deconfining phase tran-
sition with the phase transition itself. There are no phase
transitions on finite lattices In agreement . with standard
use of language in physics, we will freely speak about
deconfinement temperature when we mean a signal for
the deconfinement temperature on a finite system.
Hence, this deconfinement temperature will depend on
lattice size and shape. For instance the standard signal
from Polyakov loop expectation values considered on
(nonstandard) L,L L, lattices moves to p = oo for
L,~~ and L,L fixed. ' In contrast, signals con-
structed from eigenvalues of the (L,-direction) transfer
matrix 7 (2.7) are L, independent and one has to investi-
gate their L dependence. Of particular interest are eigen-
values in nonzero electric charge sectors, because they
are directly sensitive to the Z& central symmetry If the
main aim is to estimate T, numencally, one crucial
point is of course to optimize the approach to T, . How-
ever, to understand the physics of the system better, it
may also be interesting to investigate signals that do not
approach T, rapidly.
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In this paper we focus on tunneling between toron sec-
tors as a signal for the deconfining phase transition. We
consider L,L oo lattices. Let /3, =/3, (L, ) correspond to
the critical (deconfining) coupling, defined in the limit
L~m. The finite-size behavior of the energy (2.28)
E, =E,(zT) of one unit of 't Hooft electric fiux is given by

—c (P)z
E, =E,( ao )[1+0(e )],

c (P) )0, zT~ ~ for P&P, , (2.39a)

P (L,O) -LI'~ for L ~ 0D (2.40c)

holds. We are free to choose for P the correlation length
itself and get g(L, O)-L for (L~~), this means
E, —1/L.

Equations (2.39a)—(2.39c) imply that /3=P, becomes in
the limit zT ~~ a fixed point of the curves
f, (/3) =zTE(/3;zT). This is a suitable way to estimate P,T
from MC data for E(P;z T). By linearization around the
fixed point one obtains the equation

E, = +0, zT~ ~ for /3=P, ,
c 1

ZT ZT

and

(2.39b)
1

L
L

(2.41)

—c (P)z
E, =O(e + ), c+(/3))0, zT~~ for /3)/3, .

(2.39c)
Here zz. is the scaling variable introduced by (2.36b).
Ising-model analogies of (2.39a)—(2.39c) are elaborated in
Ref. 52. Equations (2.39a) and (2.39c) hold quite general-
ly. They describe usual finite-size corrections for systems
with periodic boundary conditions away from the critical
point. For instance, (2.39c) can be derived within a sim-
ple domains picture for tunneling. ' In contrast, Eq.
(2.39b) requires a second-order phase transition. It is in-
structive to recall the finite-size scaling derivation of
(2.39b). We closely follow Ref. 3. I.et us keep L, con-
stant, thus converting the zT dependence to I depen-
dence, and define

Rc

gc

called "reduced temperature" in statistical mechanics.
We consider a critical observable P =P(L, t). Critical
means that on the infinite system P exhibits the behavior:
P(~, t)-t ~ (t~O), where p is the critical exponent of
P. An example of P would be the correlation length
g= g(L, t) with critical exponent v: g( &x, t) —t
Fisher's' finite-size scaling assumption is

ln

[L'm (L', /3)]ti p

[Lm (L, /3) ]p
d

for the critical exponent v.

F. The lattice P function

g(/3) =2/(P —b,P) . (2.42)

Here the definition of the argument P in b/3(P) follows
the convention of Hasenfratz to take for /3 the upper
limit of the interval within which the correlations length
doubles. For /3~ ~ the value of bP(P) follows from the
asymptotic scaling formula (2.4b) to be

At finite z the lattice, size L is of order or even smaller
than the correlation length and it becomes possible to ob-
tain numerically precise results for large values of the
coupling constant /3 that are not accessible by an infinite-
volume calculation (L))g). Our string-tension results
turn out to be precise enough to enable an investigation
of asymptotic scaling and its corrections. Similar con-
cepts were previously explored for the two-dimensional
O(3) cr model.

In Monte Carlo renormalization-group investigations
bP(P) is often defined as the change in P that increases
the correlation length by a factor of 2:

P(L, t) L
P( oo, t) g( co, t)

(L large, t small) . (2.40a) 2NP,
b/3(/3) =4N/3oln2 1+ —+0

o /3'
(2.43)

The L —+ ~ limit of the left-hand side immediately im-
plies lim „f (x)= 1. In addition, for finite L we have

We define more generally b, /3 (P) as the change in /3
which increases the correlation length by the factor A, :

P(L, O)= lim P(L, t)=finite g(/3)=i, g(P —b,P ) . (2.44)

and the equation

implies

L
g'( oo, t)

I p/v

P(L, O)=constXlim t ~f L
0 t

/3 gyi lil( 2 )

in(A, )
(2.45)

The asymptotic /3 —+ ~ behavior for hP (/3) is obtained by
substituting ink, for ln2 in (2.43). In accordance with Eq.
(2.42) we keep the notation b,P for b/3. Our string-
tension data give 6/3 results with A, typically in the range
1.2 & A, & 2. An obvious problem is how to compare b,P
results for diA'erent values of A, . We do this by transform-
ing b,P into b,/3 by means of

Hence,

for (any) constant L and t~O . (2.40b) To understand this equation let us discuss b,P in the case
of asymptotic scaling. We define 6/3„(P) by means of
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AL(/3) =A, 'AL (p —hp,",) . (2.46)

Therefore /30 would be the optimistic estimate of the /3

value from which one we may trust asymptotic scaling
predictions.

G. Monte Carlo data and error bars

This section deals mainly with the problems of estimat-
ing the statistical errors of masses which are determined
by spectroscopic analysis of (more or less) noisy correla-
tion functions.

A frequently used estimator (for standard statistics no-
tation see, for instance, Ref. 58) of the (connected) corre-
lation functions C0(t, ) (2.14a) is

N z

CMC(t, )=— g g [6,(t,ez)6;(z) —Og8 ],
i =1 z=O

(2.48)

where t, z =(t, +z) mod(L, ) and

1 if(8)WO;
0 if(6)=0.

For SU(2) the crucial observation is that for /3~2. 2 and
1.2 (A, ~ 2 the power-law factor in the definition (2.4b) of
AL gives only a small correction to Eq. (2.45). In the
defined range of /3 and A, the accuracy of this approxima-
tion is never worse than 0.4%. Consequently, when
asymptotic scaling is satisfied, the translation by means of
(2.45) works fine. However, in case of asymptotic scaling
violations, its use is problematical. Imagine for instance
that a violation of asymptotic scaling is concentrated in a
tiny /3 interval. With A, =2 it would become smeared out
in the sense that b/3(/3) would deviate a little bit from the
value of b/3„(/3) over a rather large /3 range, whereas a
smaller X value would give a larger e6'ect concentrated in
a smaller /3 range.

For fixed A, the function b,/3 (/3) is supposed to be
uniuersal This. means that as soon as (exponentially
small) nonperturbative corrections can be neglected (i.e.,
as soon as scaling holds), b, /3 (/3) should not depend on (i)
the particular mass used to define the correlation length g
in (2.44), for instance, g=+~ ', m +, mz+, .. . , and (ii)

the z value (with z =z, z„+, z +, . . . ) at which the re-
1

suits are obtained.
The definitions (2.42) and (2.44) follow the convention

of Ref. 57. Let us remark that consistency of hP (/3)
with EP„(/3) means that asymptotic scaling is true (in the
average) within the range [/3o, /3] where

(2.47)

is the estimator of the expectation value (8). It is well
known that 6 is a biased estimator uf ( 8) . For finite
statistics its value is systematically too large

Of course, 6 is a consistent estimator, i.e.,
2

lim& 6 =(8) . Consequently, for connected corre-
lation functions ((6)%0) (2.48) is also a biased estima-
tor. In contrast, the estimator

1 1 N z

CMc(t, )= g g [6,(t,z)8;(z)
i =1 z=O

—6(t,ez)6(z)] (2.50)

is unbiased. The proof is a straightforward adaption of
the well-known argument which shows that
s =g(8; —8) /(X —1) is an unbiased estimator of the
variance o (6). Unfortunately, we found out about CMC
too late after data taking.

For MC data subsequent events are correlated. Over-
looking these correlations would lead to underestimating
the statistical errors. Two standard methods to cope
with the problem are by computing the autocorrelation
matrix or by binning. Only the latter method is used in
our investigation. n (usually but not necessarily) subse-
quent data define a bin. It is convenient to choose the to-
tal number of data to be a multiple of n. This means
X =Kn, where K is the number of bins. For binned data
Eq. (2.49) becomes

s (8)= g (8—8k)K —1 k

and the corresponding error bar is

s=+s (6)=+s (8)/K

(2.52a)

(2.52b)

Obviously, the 8, in Eq. (2.52) may be any appropriate
bin average, such as, for instance, the CMC(t, ) of (2.50).
In case (for instance by varying the bin size) that
different, normalized weight factors wk (g k cok = 1) are
involved, the generalization of s (6) is

K
s =s (8)= g wk(8 —6k)K —1 k

kn z

where 8I, =— g g 6;(z) (2.51)
i =1+(k —1)n z =0

is called bin auerage (of the kth bin). Similarly Eqs. (2.48)
and (2.50) are readily generalized.

With K bins the estimator of the variance becomes

The index i corresponds to the ith measurement and X is
the number of independent measurements. A problem
comes when ( 8 )%0. One subtracts the 6 term, where

with 8= g w„6, .
k=1

(2.52c)

N z

8;(z)X I,. .
(2.49)

In cases where the variance of each 6k is known (for in-

stance, because they are results from di8'erent investiga-
tions), the combined variance is
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K
s (6)= g wks (81,),

k=1
(2.52d) sJ(ol)=(K —1) g (8—g„)',

k=1
(2.55a)

with 0 as in (2.52c).
In the following we consider bins of equal weight. To

minimize the correlations between the MC data one
should use as few bins as possible. The price paid is that
with very few bins the statistical significance of the error
bar is no longer close to that of the Gaussian normal dis-
tribution. Our compromise is to calculate (almost) all our
error bars with respect to 20 bins. For 20 normally dis-
tributed data the student ' distribution gives then the
following statistical probabilities for the (unknown) exact
results to be within the quoted multiples of the error bars:

where the subscript J stands for "jackknife" and

iWk
(2.55b)

MC(tz )
RMc(t, )=

&Mc(t. —1)
(2.56)

It is easily checked that for an unbiased estimator such as
(2.49) sz =s, whereas for a biased estimator sJ is superior
to s . The jackknife method uses then RMc(t, ) and

0.670 ( 1s ), 0.940 (2s ),
0.9926 (3s), and 0.99923 (4s) .

(2.53)

where the CMc quantities are defined in an obvious way.
As R Mc( t, ) is a consistent estimator, the bias of R Mc ( t, )
is (much) smaller than it is for

This is very close to the Gaussian values for a normal dis-
tribution

CMc(t. )
R Mc(t, )=

CMc(t 1)
(2.57)

0.683 (lo. ), 0.955(2cr),

0.9973 (3cr ), and 0.999 94 (4cr ),

CMc(t, )
(2.54)

but the probability of a spurious (very unlikely) result is
considerably enhanced. For instance, the likelihood to
find an event outside the 4s range is more than 10 times
larger with 20 events than it is for a normal distribution.

For correlation functions our reduction of each data
set to 20 bins generally provides us with a sample of 20
(almost) normally distributed data. However, the spec-
troscopic analysis of correlation functions has in addition
bias problems. To calculate effective masses by means of
Eq. (2.14b) we need estimates for ratios of correlations
functions

Hence, Eqs. (2.55) give a more reliable error estimate
than Eqs. (2,52) do. In our applications the bias of the
R Mc is typically small enough to be neglected altogether.
An estimate of the bias can be obtained by comparing the
biased mean value

K

RMc (t, )=—X RMc(t, )
k=1

(2.58)

with the least biased definition (2.54). Similarly, one
proceeds and applies the jackknife method directly to
effective masses, mass ratios, etc. An even more detailed
analysis would construct the bootstrap probability dis-
tribution for each data set. Within our applications this
seems not to be worthwhile. Previously jackknife and
bootstrap methods have been successfully applied to ha-
dronic spectrum calculations in lattice gauge theories. '

Already at this level the bias problem shows up and let us
remark that it tends to become much more severe when
(sophisticated) fit procedures are used. We now elaborate
the problem for RMc(t, ). As the subsequent correlations
functions CMc(t, —1) and CMc(t, ) are strongly correlat-
ed, standard error propagation formulas are not at all
suitable to calculate the error bar of RMc(t, ). Instead,
one better estimates the error of RMc(t, ) by binning the
ratios itself, as done for the correlation functions by
means of Eq. (2.51). However, at large t, the signal for
the correlations sooner or later disappears within the sta-
tistical noise and the consequences are disastrous as soon
as Auctuations allow R Mc =0/0. Obviously, this problem
becomes first severe for single bins and only at even
larger t, values for the entire statistics. In the latter case
the data are useless. But, typical for our investigation is
that the problem may exist for single bins, whereas the
complete statistics is almost without such bias. In such a
situation the "jackknife" method (for a review see Ref.
60) is well suited to estimate the statistical error reliably.

The jackknife method replaces Eq. (2.52a) by

III. NUMERICAL RESULTS

In this section we present our complete SU(2) results.
Table I gives an overview of the statistics that we rely on.
Measurements are done typically every ten sweeps and
the first 2000 sweeps are omitted to equilibrate the sys-
tem, but the actual number may vary for a few data sets.
The measurements were DLR improved. At intermedi-
ate and smaller P values this was crucial to gain a satis-
factory precision. For the sake of completeness we also
include data from Refs. 47, 4, 5, and 11, where the
icosahedral subgroup was used. Our new data were in
part produced with the icosahedral subgroup and in part
with the full SU(2) group. Two data sets with the full
group use a cold wall ' source. Otherwise we did not
use sources. The string-tension data of Sec. III A show
that the efficiency (signal over noise ratio) was not im-
proved by use of the source. Supplementary data, dis-
cussed in Secs. IIIC and IIIE, were taken after we
finished the main investigation in order to clarify some
physical questions of recent interest. With the exception
of Ref. 11, where a mixed fundamental-adjoint action
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TABLE I. Overview of data. We give an overview of the data which are analyzed in this paper.
They are ordered by (a) lattice sizes and (b) p values. An exception are the data from L,L~oo lattices,
ordered by (a) p values and (b) lattice sizes (as we want to infer on p, from the L dependence). The
statistics is given in kilo (=1000) sweeps. Normally a cold start and 2000 (=2k) sweeps to reach equi-
librium are done. If the p value is marked by (H) a hot start and 2000 sweeps to reach equilibrium are
done. (The number of equilibrium sweeps is larger in case of the mixed action data. ") Nearly all our
simulations used the congruential random number generator. A few exceptions, marked by (S), used
the shift-register random-number generator (see Appendix B for details).

Lattice Sweeps Lattice Sweeps

01
02

6 24
6 24

2.30
2.50

Isosahedral SU(2) subgroup (Ref. 47)
35K 03 8 24
35K 04 8 24

05 12 24

2.30
2.50
2.50

26k
35k
15k

01
02
03
04
05
06
07

2 16
2332
2332

2 60
4 16
4'24
4 32

2.25
2.40
2.55
2.75
2.25
2.40
2.55

Icosahedral SU(2)
120k
120k
130k
120k
130k
210k
120k

subgroup
08
09
10
11
12
13
14

(Ref. 4)
4 64
4 64
6 16
6 24
6 32
6 64
6 64

2.70
2.85
2.25
2.40
2.55
2.70
2.85

120k
065k
060k
120k
120k
145k
055k

01
02
03
04
05
06

4 24
4 24
4 64
6 32
8 32
8 32

2.25
2.40
2.70
2.40
2.40
2.45

Icosahedral SU(2) subgroup (new data)
1252k' 07 8 32
1202k' 08 8 32
402k' 09 8 32
402k' 10 10 32
402k 11 12 32
162k

2.55
2.70
3.00
2.40
2.55

322k
324k'
324k'
162k
244k

01 '

02

04
05
06
07
08

4 64
4 64

4 64
4 64
4 96
496

4 128

3.20
3.20

4 128
6 48
8 48
8 48
8 48
8 48

2.80
3.20
3.60
3.80
4.00

Icosahedral SU(2) subgroup, mixed action (Ref. 11)
p=pF» pg = —0.32pF
400k 03 4 64
240k
p=pF, p~ = —o.36pF
280k 09
280k 10
200k 11
200k 12
240k 13

14

3.40

4.40
3.20
3.20
3.60
4.00
4.40

240k
280k
160k
200k
200k
200k

01
02
03
04
05
06
07
08
09
10
11
12
13
14
15
16
17
18

4 64
4 24
4 24
4 32
4 64
4'16
4 16
4 16
4 24
4 32
4 32
4 64
4 64
4 64
4 64
4'64

4 128
4 128

2.30
2.40
2.40
2.70
2.70
3.00
3.00(H)
3.00
3.00
3.00
3.00
3.00
3.00
3.00(H)
3.00
3.00(S)
3.00
3.00(H)

Full SU(2)
060k
644k
240kb
488k
640k
640k
640k
640k
202k
320k
320k
158k
320k
240k
320k
256k
320k
160k

group (new
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36

data)
4 128
4 128
4 128
4 128
4 128
4 256
4 256

6 64
6 64
6 64
6 64
6 64
6 64
6 64
8 64
8 64
8 64

10 64

3.00
3.50
4.00
4.50
4.50
4.50(H)
4.50
2.40
2.40(H)
2.40(S)
2.50
2.70(S,H)
3.00(H)
3.00(S,H)
2.50
2.70
3.00(S,H)
3.00(S,H)

160k
240k
240k
248k
240k
320k
296k
120k
100k
100k
200k
078k
108k
100k
100k
100k
100k
112k
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Lattice

TABLE I. (Continued. )

Sweeps Lattice Sweeps

01 6'64 2.40
Full SU(2) group (cold wall)

160k 02 10 64 2.40 080k

01
02
03
04
05
06
07
08
09
10
11
12
13
14
15
16
17
18

4 4 64
4664
4 8 64

4 10~64
4 12264
4464
4 6 64
4864

4 10 64
4 12 64
4 16 64
4464
4 6 64
4 8 64

4 10264
4 12 64
4 16264

4 4 64

2.28
2.28
2.28
2.28
2.28
2.30
2.30
2.30
2.30
2.30
2.30
2.32
2.32
2.32
2.32
2.32
2.32
2.34

Full SU(2) group
60k
60k
60k
45k
18k
60k
60k
63k
67k
60k
58k
72k
60k
90k
45k
30k
23k
60k

(1,1 2oo

19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37

lattices)
4664
4 8 64

4 10 64
4 12 64
4 16 64

4 4 64
4 6 64
4 8 64
4464
4 6'64
4 8 64
4 4'64
4 6 64
4464
4664
4 4 64
4 6 64
4 4 64
4 6 64

2.34
2.34
2.34
2.34
2.34
2.36
2.36
2.36
2.38
2.38
2.38
2.41
2.41
2.45
2.45
2.50
2.50
2.70
2.70

060k
099k
056k
060k
038k
060k
060k
072k
060k
060k
063k
108k
060k
096k
060k
060k
060k
064k
060k

01
02
03
04
05
06

4 64
4 64
4 64
4 64
4 64
4 64

2.15
2.15
2.15
2.20
2.25
2.30

Full SU(2) group (supplementary data)
180k 07 4'64
100k 08 4'64
100k 09 4'64
145k 10 4 64
100k 11 6 64
095k 12 6'64

2.40
2.50
2.70
3.00
2.50
2.70

090k
095k
095k
100k
120k
110k

'Runs from Ref. 5 with extended statistics.
Relies on 64-bit arithmetic.

was used, all results reported in this paper rely on the
standard Wilson action (2.1b).

For the full SU(2) group our computer code is, in
essence, a simplified version of the SU(3) program pub-
lished later in Ref. 64. The calculations were done on
Florida State University's two pipe Cyber 205. On this
computer the SU(2) program runs with an update time of
approximately 6.9 ps per link (half-precision) and 9.9 ps
per link (full precision). The speed of our 6-hit Metropo-
lis program for the icosahedral group is 5.6 ps per link.
We use the CDC UPDATE facility and the computer pro-
gram is written such that a parameter change in the UP-
DATE file allows to switch from half-precision to full pre-
cision. Production runs were almost exclusively done in
half-precision.

A. Raw data

Our "raw" data are measurements of correlation func-
tions. From those we calculate effective masses (2.14b).

The large number of effective masses prohibits a complete
documentation. Instead, the purpose of this subsection is
(i) to illustrate the quality of data for typical cases, (ii) to
elaborate on box-temperature problems, and (iii) to com-
ment on various other error sources which we con-
sidered.

Table II gives effective masses and ratios for some typi-
cal cases. We call effective masses at different distances
"consistent" as long as they overlap within their error
bars. When we find consistent masses over a "relevant
distance" range, we take one of the first masses of this t,
range (and its error bar) as estimate of the asymptotic
( t, = m ) mass. Unfortunately, the relevant distance
range is a somewhat subjective concept. It is determined
by the largest t, value for which we still consider the
effective mass value to be sensible. If a t, value exists at
which the effective mass increases, as compared with
m(t, —1), then t, —1 is a natural choice for the last
relevant distance. Namely, such an increase is in con-
tradiction with general principles and hence refIects that
the inaccuracy of the data points has become larger than
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TABLE II. (a) Icosahedral subgroup, effective masses for f3=2.7, L'L, =4'64, 402000 sweeps. (b)
SU(2) full group, effective masses for @=2.7, L L, =4'64, 640000 sweeps. (c) SU(2) full group, effective
masses for 13=2.50, L L, =8 64, 100000 sweeps.

01
02
03
04
05
06
07
08
09
10

01
02
03
04
05
06
07
08
09
10
11
12

1.523(04)
0.740(05 )

0.678(o6)
0.659( 11 )

0.646( 19)
0.619(32)
0.57(06)
0.57(08)
0.57( 17)

Noise

m(E+)

1.2195(20)
0.5777(21)
0.5397(33)
0.5320( 61 )

0.528( 10)
o.s27(1s)
0.514(24)
0.48(04)
0.47(06)
0.46(09)
0.40( 12)

Noise

m(A,+)
m(E+)

(a)
1.249(04)
1.281(08 )

1.255( 11 )

1.238(21)
1.224( 36)
1.173(60)
1.11(11)
1.19(20)
1.23(43)

Noise

m(E )

0.1603(03)

0.2854(09 )

O.2987(13)
O.3O12(27)
0.303(05 )

0.302(07)
0.309( 13 )

0.333{25)
0.339(40)
0.34(07)
0.40( 12)

Noise

01
02
03
04
05
06
07
08
09
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32

0.1955(02)
0.1649(04)
0.1612(06)
0.1602(08)
0.1597(10)
0.1593(12)
0.1588( 15)
0.1S86(18 )

0.1S83(21)
0.1580(24)
0.1578(28 )

0.1575(31 )

o.1s74(3s)
0.1576(39)
0.1576(44)
0.1577(49)
0.1580(54)
0.1579(58 )

0.1575(61 )

0.1 S76(66)
0.158(08 )

0.158(08)

0.158(09)
0.159( 10)
0.159( 11)
0.159( 12)
0.160( 13)

0.160( 13 )

0.160( 14)
0.161(14)
0.161(14)
0.163( 14)

01
02
03
04
05
06
07
08

01
02
03

m(Ai+)

1.521(03 )

0.745(04)
0.686(03 )

0.673(05 )

0.689( 11)
0.739(26)
0.86(08 )

Noise

m(E+}

1.2197( 13 )

0.5814( 11 )

0.5492( 16)

(b)
m(A i+ )

m (E+)

1.247(03 )

1.281(07 )

1.249(06)
1.227(09)
1.247{21)
1.318(52)
1.55( 15)

Noise

0.1611(02)
0.2836(06)
0.2969(09 )

01
02
03
04
05
06
07
08
09
10
11
12
13
14
15
16
17
18
19

o.196s(o2)
0.1649(03 )

0.1631(04)
0.1625(05 )

0.1626(06)
0.1627(07)
0.1628(08 )

0.1630( 10)
0.1633(11)
0.1638( 13 )

0.1642( 14)
0.1646( 16)
0.1650( 19)
0.1654(22)
0.1657(25 )

0.1662(29 )

0.1664(32)
0.1664(36)
0.1665(41)
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TABLE II. (Continued. )

04
05
06
07
08
09
10
11
12

0.5482(27)
0.5528(42)
0.560(07)
0.556( 14)
0.552(Z7)
0.554(49)
0.50(09)
0.38(10)

Noise

m (E+)

0.2965(14)
0.2941(21)
0.2903(37)
0.293(08)
0.295( 15 )

0.295(27)
0.326{51)
0.43(10)

Noise

20
21
22
23
24
25
26
27
28
29
30
31
32

0.1670(46)
0.1677(52)
0.1685(58}
0.1692(64)
0.1696(70)
0.170(08 )

0.171(09)
0.171(09)
0.172( 10)
0.174( 10)
0.175(11)
0.177(11)
0.177( 12)

01
02
03
04
05
06
07
08

01
02
03
04
05
06
07
08
09

m(W,+ )

6.21(23)
1.13(23)
0.784( 11 )

0.689(30)
0.670(49)
0.846(89 }
0.83{21)

Noise

m(E+}

5.85{14)
1.29( 14)
0.705(09)
0.654( 15 )

0.646{26)
0.598(62)
0.65(13)
0.54(21)

Noise

(c)
m(W,')
m (E+)

1.06(05)
0.88(20)
1.11(02)
1.05(06)
1.04(07)
1.41(23)
1.28(45)

Noise

m(E )

0.049{02)
0.131(14)
0.222(03 )

0.235(05 }
0.236{10)
0.254(27)
0.232(45 }
0.279(99)

Noise

01
02
03
04
05
06
07
08
09
10
11
12
13
14

0.2862(05 )

0.1681(07)
0.1563(08)
0.1535( 11)
0.1526( 14)
0.1520( 18 )

0.1513{24)
0.1512{29)
0.1513{34)
0.514(40)
0.1511(47)

0.1503(58)
0.1491{73 )

0.1480(9Z)

the correction effects we would like to see. Without such
an increase of the effective mass, a spurious decrease (see
the evidence for box-temperature effects below) may as
well signal the end of the relevant region, but the issue is
of course less clear-cut and may be quite tricky. Last, we
do not consider data with error larger than 10'f/o. To give
some examples: %'e extract the asymptotic masses
m (A, )=0.659(11), m (E+)=0.532(6), v a.=0.1602(8)
from Table II(a), m(A

&
)=0.673(5), m (E+)=0.548(3),

&a.=0.1625(5) from Table II (b), and m ( 2,+ )
=0.689(30), m (E+ )=0.654(15), Ps =0.1524(14) from
Table II (c). It is notable that mass ratios are often more
stable in t, than each single mass, as the mutual correc-
tions tend to compensate.

In Fig. 2 we plot (for the lattice 8 32 and P=2.70) the
effective masses for each of 20 ordinary (2.57) bins. This
illustrates another aspect of the problem to extract
asymptotic masses. Within each bin the masses at t„

t, +1, t, +2, . . . are strongly correlated. This means that
the y of a least-squares fit to the correlation function
does not have its statistical interpretation, but is rather a
ridiculously small number. There are several standard
ways out. One is to perform a fit using the full correla-
tion matrix to compute g . Another is to make a least-
squares fit to C'Mc(t, ) for each biased improved (2.56) bin
and to compute the error bar with respect to the final re-
sults of these fits. We found it safer to take a single
effective mass (at an appropriate distance) and its error
bar as the final result. This gives a rather conservative es-
timate of the error, because one may still expect sma11 im-
provements by incorporating information from the
strongly correlated results at other distances.

Figures 3(a)—3(c) give an overview of our effective
masses for all five 8 32 lattices that we simulated using
the icosahedral subgroup. The quality of the other
effective masses, used for the asymptotic estimates of this
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paper, is in most cases better. In case of the gluebaHs
[Fig. 3(a) and 3(b)] we had to omit the lower P values, be-
cause the results are too noisy. The crosses and squares
correspond to adopting the biased (2.58) and the least
biased (2.54) estimates directly to efFective masses. The
biased result is the direct average of mass values as plot-
ted in Fig. 2. When biased and unbiased estimates are
undistinguishable, we have clear evidence that the bias is
small on the scale of our statistical errors. Only at large
distances substantial discrepancies are sometimes visible
and, as expected, the biased result is then above the less
biased one. Of course, the less biased results have to be
taken for the spectroscopic analysis.

Let us turn to our numerical data on the box-
temperature problem. Clear evidence for box-

temperature effects is presented in Figs. 4(a) and 4(b).
Both figures rely on data from 4 L, lattices at 13=3.0,
taken with the full SU(2) group. We have 15 such data
sets, see Table I (mainly taken to investigate problems
with the congruential random-number generator, see Ap-
pendix B). Figure 4 uses 14 of those data sets (the data
with the shift register random-number generator were
later taken for consistency and did not find their way into
this figure). The lower six lines in both figures corre-
spond to

L, =16, 16, 16, 24, 32, and 32 .

They show effective masses m (t) continuously decreasing
with t„whereas the upper seven lines correspond to

o.2o

0.15—

0.10—

~ I ~ ~
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v'K String Tension

I I I I I I I ~ I I I I

y.30
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FIG. 2. Effective masses &~, m +, and m + vs t, . EachE

mass is plotted for 20 different bins.

FIG. 3. (a) Effective string tensions, &~(t, ), for our 8'32 lat-
tices (icosahedral group). Biased (2.58) estimates are with
crosses, less biased (2.56) estimates are with squares. To guide
the eyes the results are connected by straight lines. From up to
down, these lines correspond to P=2.40, 2.45, 2.55, 2.70, and
3.00. (b) Effective 3

&
glueball masses, m + (t, ). From up to

down, the lines correspond to p=2.55, 2.70, and 3.00, otherwise
as (a). (c) EfFective E+ glueball masses, m +(t, ), otherwise as

E
(b).
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).0 r r r

I

I I I
)

I I L, =64, 64, 64, 64, 128, 128, and 128,
-(a)

0.8—
Glueball Mass

0.6—

Q 4—

l r I

0
r I I I I r I i I r l I

2 4 6
I

8

0.5

0.3
E Glueball Mass

0.2
0

I r r r r I r r r r I

2 6

String tension

0, 16

0.14

0.12 l r r l I I 1 r I r I I r 1 I I r r I I I

2 6 8

FICy. 4. (a) Effective 3,+ glueball masses, m +(t, ), for 4'L,
1

lattices and P=3.0 (full group). The lower branch corresponds
to six data sets with L, ~ 32, whereas the upper branch corre-
sponds to six data sets with L, ~ 64. (b) As before, for effective
E+ glueball masses m +(t, ). (c) Effective &a string tensions

E z

&rt(t, ), for 4'L, lattices and P=3.0 (full group). The upper
branch corresponds to three data sets with L, = 16, whereas the
middle branch corresponds to L, =24 and the lower (spread-
out) branch corresponds to nine data sets with L, ~ 32.

and show estimates which stabilize for t, ~ 4. Hence, our
conclusion is that (with L=4 and P=3.0) L, =32 is not
yet large enough to prevent a spurious decrease of
effective masses that is obviously due to box temperature.
This leads us to reanalyze our mass estimates from the
lattices with L, ~32. In the present case the effective
mass at t, =3 is clearly a much better asymptotic value
than the effective mass at, say, distance t, =6. By a tech-
nical problem: namely, to avoid paging our lattice in and
out of the computer memory, we used nevertheless rather
small L, values for our lattices with L&4. Keeping the
box-temperature problems in mind, we tried carefully to
avoid too large t, values for our asymptotic estimates. Of
course, where to stop is sometimes a rather tedious and
subjective decision and very large L, values would have
been more satisfactory.

We also observe box-temperature effects for the string
tension, As we are then in the electric charge one sector,
the constant ao (2.18a) is zero and box-temperature con-
tributions come only from the mass differences with
coefficients b;" (2.18c). In Fig. 4(c) the effective string-
tension estimates for L, = 16 are seen to be too high (up
to the maximum distance t, =8), whereas for L, ~ 32
values rapid convergence to lower &rt(t, ) values is found.
The observed effect is therefore opposite to the one found
for effective glueball masses. The explanation has to be
that a large number of mass differences, each (somewhat)
higher than the electric flux energy, contributes to the
correlation function. Of course, whether contributing
mass differences are smaller or larger than the electric
Aux energy may depend on lattice size and )t3 value. For
instance, at P=2.40 (6 L, lattices) we have evidence for
too small effective string tensions caused by box tempera-
ture.

We have discarded two of our high-statistics data sets
on rather large lattices: namely, the 8 32 data sets at
P=2.70 and 3.00 with 324000 sweeps each (note that
both appear, with lower statistics, in Ref. 5). The fact is
that both data sets give results in contradiction with data
sets created subsequently on 8 64 lattices [with the full
SU(2) group]. Their string-tension results in Table III (a)
are in clear contradiction (99%%uo confidence level in each
case). The difFerence is also dramatic for glueball masses,
eff'ective mass estimates m (t) with the 8 32 lattices do not
stabilize with t [see Figs. 3(b) and 3(c)], whereas the esti-
mates with the 8 64 lattices stabilize. We believe that
this is not an effect of the icosahedral approximation (see
later) but rather a box-temperature effect as in Figs. 4(a)
and 4(b). [We did not feel motivated enough to repeat a
run on a 8 32 lattice with the SU(2) group, just to check
this point. ]

To conclude this section, let us briefly discuss possible
sources of systematic errors, namely, choice of a
pseudorandom-number generator (see Appendix B),
correlations between successive MC configurations, the
icosahedral approximation (if used) and rounding errors.

In most cases our statistics are sufticiently large, such
that by dividing our complete statistics into 20 bins (see
Sec. II G) one washes out correlations between the MC



PURE LATTICE GAUGE THEORY IN INTERMEDIATE VOLUMES. I 567

TABLE III. (a) String-tension results. Asymptotic string-tension estimates for the data summarized
in Table I are collected. The numeration of data is identical with Table I. (By various reasons, some of
the data of Table I do not show up here; they will be used in other parts of the paper. ) In the case of
the mixed-action data (Ref. 111 an effective P value is given. Behind P, the number in square brackets
gives the "asymptotic" distance t, at which the string tension is extracted. Plus sign, zero, or minus

sign behind t, indicate whether &~ is argued to be a good, neutral, or not so good asymptotic estimate
(this information is only available for our new data}. (b) Combined string-tension results. String-
tension estimates from different investigations, as listed in (a), are combined whenever P value and spa-
tial lattice size coincide. New results from this paper are indicated by [ ] in the [Ref.] column. The
last column gives the combined statistics and in parentheses the number of data sets combined.

(a)
Lattice

01
02
03
04
05

Icosahedral
6 24
6'24
8 24
8'24

12 24

subgroup,
2.30 [4]
2.50 [4]
2.30 [4]
2.50 [4]
2.50 [4]

data from Ref. 47
0.310(4)
0.167(3}
0.346( 12)
0.155(3)
0.170(9)

01
02
03
04
05
06
07
08
09
10
11
12
13
14

Icosahedral
2 16
2332
2332
2 60
4 16
4'24
4 32
4 64
4'64
6 16
6 24
6 32
6 64
6 64

subgroup,
2.25 [5]
2.40 [7]
2.55 [6]
2.75 [8]
2.25 [5]
2.40 [6]
2.55 [5]
2.70 [5]
2.85 [6]
2.25 [4]
2.40 [5]
2.55 [8]
2.70 [5]
2.85 [3]

data from Ref. 4
0.349(5)
0.298(7)-
0.260(3)
0.235(6)
0.331(4)
0.228(5)
0.189(3)

0.161(2)
0.146(5)
0.374( 13 )

0.210( 3 }
0.148( 3)
0.128(2)
0.114(2)

01
02
03
04
05
06
07
08
09
10
11

4'24
4 24
4 64
6 32
8 32
8'32
8 32
8'32
8'32

10 32
12 32

Icosahedral subgroup, new data
2.25 [4, +]
2.40 [4, +]
2.70 [4,0]
2.40 [4,0]
2.40 [4, +]
2.45 [4, +]
2.55 [5, + ]
2.70 [5,+]
3.00 [5,+]
2.40 [4, +]
2.55 [5, +]

0.3339(10)
0.2308(07)
0.1602(08)
0.2124(09)
0.2293( 12)
0.1847( 16)
0.1362( 11 )

0.1097(09), Not used
0.0871(07), Not used
0.2447(29 )

0.1327( 19)

01
02
03
04
05
06
07
08
09
10
11
12
13
14

Icosahedral
4'64
4'64
4'64
4 64
4 64
4 96
4 96

4 128
4 128

6 48
8 48
8 48
8 48
8 48

subgroup, mixed-action data
2.202 [4]
2.202 [4]
2.289 [4]
2.083 [4]
2.277 [4]
2.465 [41
2.557 [5]
2.648 [5]
2.829 [5]
2.277 [4]
2.277 [4]
2.465 [5]
2.648 [5]
2.829 [5]

(Ref. 11)
0.3003(05 )

0.3010( 10)
0.2480( 10)
0.4350(20)
0.2540( 10)
0.1950( 10)
0.1780( 10)
0.1640( 10)
0.1410(10)
0.2540( 10)
0.2780( 30)
0.1430(20)
0.1070(20)
0.0920( 10 )
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TABLE III. (Continued).

01
02
03
05
16
17
18
19
20
21
23
24
25
26
27
28
29
30
32
33
34
35
36
37

Lattice

4'64
4 24
4 24
4 64
4 64

4'128
4 128
4 128
4'128
4 128
4 128
4'256
4 256

6 64
6 64
6 64
6 64
6 64
6'64
6 64
8 64
8 64
8 64

10 64

Full SU(2) group
2.30 [4, +]
2.40 [4, +]
2.40 [4, +]
2.70 [5,+]
3.00 [5,+]
3.00 [5,+]
3.00 [5,+]
3.00 [5,+]
3.50 [5, + ]
4.00 [5,+]
4.50 [6,0]
4.50 [6,+]
4.50 [6,+]
2.40 [4,0]
2.40 [4,0]
2.40 [4,0]
2.50 [5,0]
2.70 [5,0]
3.00 [5,—]
3.00 [5,0]
2.50 [5,0]
2.70 [5,—]
3.00 [5,0]
3.00 [5,0]

(a)

0.2883(21)
0.2311(08)
0.2281( 12 )

0.1626(06)
0.1278( 14)
0.1295( 10)
0.1276(08 )

0.1300(09)
0.0952( 11 )

0.0749( 11 )

0.0593( 16)
0.0575( 12)
0.0621( 13 )

0.2146(07 )

0.2155( 11 )

0.2158( 14)
0.1630(08)

0.1206(20)
0.0998( 15 )

0.1005( 13)
0.1526( 14)
0.1050(14)
0.0813( 11 )

0.0696( 11 )

64 bits

01
02

6 64
10'64

%'ith cold-wall source
2.40 [5,—]
2.40 [4, —]

0.203(6)
0.239(8)

01
02
03
04
05
06
07
08
09

Lattice

4L,
4L,
4L,
4L,
4'L,
6L,
6L,
6L,
8L,

p [Ref.]

2.25 [4,5, *]
2.40 [4,5, *]
2.70 [4,5, *]
300[ ]
4.50 [*]
2.40 [4,5, *]
2.50 [47, *]
3.00 [*]
2.50 [47,*]

(b)

0.3337( 10)
0.2304(06)
0.1615(07)
0.1288(06)
0.0596( 15 )

0.2136( 10)
0.1633(08)

0.1001(10)
0.1530( 13)

Informations

1382k(2)
2296k(4)
1162k(3)
0896k(4)
0856k(3)
0842k(5)
0235k(2)
0208k(2)
0135k(2)

data. A notable exception are our data on 4 ~ lattices at
the highest P value P=4.5, which were taken to study the
tunneling transition. In this case 300000 sweeps are not
sufficient to create 20 (almost) independent bins. For the
4 256 lattices the two string-tension estimates of Table
III (a) are incompatible (confidence level 98.7%%uo. ) A more
detailed analysis of these data sets shows that it is not
really surprising. The mean value of the Polyakov loops
tunnels (change of sign) only about every 45000 seeps
and did not yet converge to the correct value zero. In
conclusion, these two estimates obviously have too small
error bars and, combining them, a more reliable estimate
is of the order of 0.0597(20). We think that our other es-

timates do not seriously suffer from correlations between
the MC-generated events. In addition, our evidence is
that we discarded su%ciently many sweeps for equilibra-
tion. No systematic bias of the first bin is observed.

By historical reasons a sizable part of our production
was done with the icosahedral subgroup approximation
to the SU(2) group, for which a scalar computer program
is described in Ref. 62. A vectorized version of it was al-
ready used in Ref. 47 and could easily be optimized with
respect to the Cyber 205. It is generally believed that
the icosahedral approximation works well for P values
below the first-order phase transition point which one
finds at p=5.5 due to the discreteness of the icosahedral
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group. A clear-cut check of the icosahedral approxima-
tion can only be done on the 4 24 lattice at P=2.40 and
on the 4 64 lattice at P= 2.70 where we have data on ex-
actly the same lattice size with both icosahedral and
SU(2) programs. Some very small eff'ect possibly exists at
/3=2. 70. It is hard to make a definite conclusion as, even
with the unusually high statistics we have assembled, our
statistical error estimates are somewhat uncertain (see,
e.g. , our three different data sets from 4 128 lattices at
@=3.00 with the same program). However, the smallness
of the effect of the icosahedral approximation observed
on 4 lattices at both P=2.40 and 2.70 is a strong indica-
tion that the discrepancies on 8 lattices are indeed a
box-temperature effect.

Production with the full SU(2) group was done with
the half-precision version of our program. We ran the
4 24 data set at /3=2. 40 twice in half-precision and full
precision. Results are fully compatible. The use of half-
precision in the measurement part of our computer code
turned out to be more subtle. Indeed, on very long lat-
tices, at the largest P value (/3=4. 5), rounding errors
spoiled our string-tension estimates with systematic er-
rors, not negligible in comparison with statistical errors.
For this reason the string-tension estimate from the first
4 128 lattice at P=4.5 is omitted. The other runs at
/3=4. 5 were performed with a version of the computer
code using full precision arithmetics in the relevant sum-

mations. For lower P values the systematical errors on
our final estimates are smaller than the statistical errors.

B. String tension and lattice P function

The string-tension estimates are our most accurate re-
sults. In lattice units the results are presented in Table
III(a). Let us first comment on the two estimates ob-
tained with the cold-wall source method. Even for the
large 10 64 lattice the signal over noise ratio is worse
than for the corresponding (icosahedral) data set without
source. This tendency is even more drastic in case of the
smaller 6 64 lattice. In addition the source introduces
new systematic errors, as the approach to the asymptotic
(t, ~co) values is much slower than without source.
Consequently we decided to discontinue production runs
with the source method.

Some estimates of Table III (a) correspond to identical
lattices and /3 values. Omitting the source data, we com-
bine data sets whenever the L part of the lattice and the
P value agree and these estimates are collected in T'able

III (b). The given error bar is obtained by means of Eqs.
(2.52d) from the individual errors. Comparison with the
direct error, obtained by applying (2.52c) directly to the
different data sets, gives us a consistency check because
these data sets are truly independent. With the exception
of the 4 L, lattices at P=4.5 no major inconsistencies are
found. In the /3=4. 5 case the combined error is too small
because of correlations within the individual data sets
and instead the direct error is given in Table III (b).
(Normally the combined error is the better one, because
according to the student distribution it is almost Gauss-
ian. ) A slight problem was the optimal assignment of the
weight factors in using Eqs. (2.52c) and (2.52d). For runs

5 / adjoint
/ eff / + / adjoillt

1&ea

(values for P,tr are collected in Table III) for more details
see Ref. 11. Assuming that the asymptotic large z be-
havior is given by Eqs. (2.38), and holds from z = 1.5 on,
we obtain the estimate

+it„=(60+5)AL (3.1)

Curves according to the upper and the lower limits of
this estimate are indicated in the figure. The other solid
curve included in the figure is the analytical result by
Koller and van Baal. ' In spite of the uncertainties im-
plied by the translation of AMs to AL by means of Eq.
(2.6), the agreement up to z =1 is remarkably good.
Then the turnover to an increasing string tension is
missed by the analytical approach. The results of Fig. 5
are consistent with similar numerical investigations on
rather large lattices' and also with less accurate earlier

on identical lattices with identical computer codes the ob-
viously best choice is to take the weight factors propor-
tional to the assembled statistics. However, in case of
different computer codes (icosahedral or full group pro-
gram) and different L, the optimal choice is less clear.
The results of Table III (b) were obtained by comparing
three different ways. In two approaches we ignored the
possible difference in the efficiency of the computer codes.
First, we also ignored the differences in the long (L, ) lat-
tice extension, whereas in the second case we chose the
weight factors proportional to L, . Physically the first
case assumes that one lattice configuration is so strongly
correlated that no new statistical information is gained by
extending L„whereas the second case assumes that there
is essentially no such correlation and that the statistical
information will increase proportional to L, . (In the lim-
it L, ))g the second scenario will sooner or later hold. )

In our third approach we chose the weight factors pro-
portional to the inverse error bars squared. In principle
this takes care of everything, variant efficiencies of the
computer code as well as L, extension. However, in par-
ticular for small statistics data sets, this assignment can
have problems due to error bar Auctuations. For our ac-
tual data no major inconsistencies, occurred and with the
information from all three approaches the results listed in
Table III (b) popped out naturally.

To give a visual impression of our string-tension re-
sults, we plot in Fig. 5 the data of Table III (a) in units of
AL (a few points are outside the range of the figure).
Within rather small violations of asymptotic scaling, the
data from differently sized lattices (and hence from
different P values) support a universal curve. It is re-
markable that this is achieved with data from two
different actions.

The AL~,dj„„,~ scale used for the fundamental-adjoint
action is obtained using the formula for the pure Wilson
action AL scale with an effective /3, as given by the equa-

tion
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A second method of analysis uses the lattice size I. it-
self to define the scale factor and thus overcomes these
difficulties. The starting point is a plot of z vs P as given
by Fig. 8. Enlargements of sections of this figure yield
directly the bp (p) results of Table IV (b). As before the
bP(P) estimates are then obtained by means of Eq. (2.45).
Table IV (b) shows that L =2 is too small a spatial lattice

size. The remaining estimates with scale factor A, =2 are
condensed into Fig. 7(b), taking the weighted average
when two such sets of data exist for one /3 value. (Data
points 2 and 19 are also included in this average, al-
though the scale factor is only —,. ) Within their statistical
errors Figs. 7(a) and 7(b) exhibit consistent results. Note
that Fig. 7(b) still shows deviations from asymptotic scal-

TABLE IV. (a) Asymptotic scaling violations (I). Estimates of ratios R (P„/3z) from string-tension
results at various z„values. The values from the second R (P„/3z) column are used to calculate hP(P)
for Fig. 7(a); they combine different z, values when such data exist. The last column gives the scale fac-
tor as defined by Eq. (2.44). (b) Asymptotic scaling violations (II). bP (P) and EP(P) estimates that fol-
low from enlargements of Fig. 8.

(a)

01
02
03
04
05
06
07
08
09
10
11
12
13
14
15
16
17
18
19
20
21
22
23

2.25
2.25
2.25
2.25
2.25
2.25
2.30
2.30
2.30
2.30
2.30
2.40
2.40
2.40
2.40
2.45
2.45
2.50
2.50
2.55
2.70
2.85
2.85

2.30
2.30
2.40
2.40
2.45
2.50
2.40
2.40
2.45
2.50
2.55
2.45
2.50
2.50
2.55
2.50
2.55
2.55
2.55
2.70
2.85
3.00
3.00

ZK

1.50
2.25
1.50
2.25
1.50
1.50
1.50
2.25
1.50
1.50
1.50
1.50
1.00
1.50
1.50
1.50
1.50
1.00
1.50
0.80
0.68
0.68
0.60

R (P„Pp)

1.010( 12)
1.013(36)
1.069( 10)
1.073( 37)
1.114( 12)
1.147(23 )

1.063( 10)
1.060( 12)
1.107( 12)
1.140(23 )

1.198(25 )

1.042(09 )

1.080{09 )

1.072( 20)
1.127(22)
1.029(20)
1.082( 22)
1.013(22)
1.051(28)
1.020( 64)
0.903(55 )

1.063(77)
0.963(85)

R (/3, ,P, )

1.010( 12 )

1.069( 10)
1.114{12)
1.147{23 )

1.198(25 )

1.079(09 )

1.020( 64)
0.903{55)

1.018{57)

1.15

1.56
1.84
2.15

1.99

1.39

1.49
1.32

1.49

01
02
03
04
05
06
07
08
09
10
11
12
13
14
15
16
17
18
19

L, L2

04 06
06 10
04 06
04 08
06 12
04 06
08 12
04 08
06 12
02 04
04 06
04 08
02 04
04 06
04 08
02 04
04 06
04 08
06 10

2.40
2.40
2.50
2.50
2.50
2.55
2.55
2.55
2.55
2.70
2.70
2.70
2.85
2.85
2.85
3.00
3.00
3.00
3.00

(b)
Qpk( p)

0.131(05)

0.176( 16)
0.126(08 )

0.220(08 )

0.223( 15 )

0.119(18 )

0.116(05)

0.221(06)
0.205(08)
0.305(20)
0.161(16)
0.226( 16)
0.356(41 )

0.204( 19)

0.288( 19)

0.356(28 )

0.193(29)
0.306( 18 )

0.172(30)

&p(p)

0.224(09 )

0.239(22 )

0.215{14)
0.220(08 )

0.223( 15 )

0.203( 31 )

0.198(09)

0.221(06 )

0.205(08 )

0.305(20)
0.275(28 )

0.226{16)
0.356(41)
0.349( 33 )

0.288( 19)
0.356(28)
0.330( 50)
0.306( 18 )

0.233(41 )
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centrate on analyzing mass ratios in more details. To
present our results we choose the scaling variable zz be-
cause this variable turns out to be less noisy than the
otherwise equivalent choice zo [a look on Table V shows
that our m (E+ ) results are systematically better than
our m ( A,+ ) results]. Altogether our data support
universal curves which are consistent with the analytical
results. It would be interesting to have results on the

violation of scaling (in general), but our data are not pre-
cise enough to encourage such an analysis.

Figure 9 plots v a/m (E+) vs z2 and provides a de-
tailed comparison with the analytical intermediate-
volume result by Koller and van Baal. ' The consistency
between the numerical and the analytical approaches is
very impressive. However, on the precise scale of Fig. 9,
systematic discrepancies are visible as we11. Our data

TABLE V. Glueball masses and mass ratios. Asymptotic estimates for glueball masses and mass ra-
tios are given. The numeration of data is identical with Tables I and III (a) (where the lattice sizes and
the assembled statistics are also given). Behind P, the number in square brackets gives the "asymptot-
ic" distance t, at which the mass was extracted.

m(A [+ ) m {A,+ )/m(E+) &a/m {E+)

01
02
03
04
07

2.25 [4]
2.40 [4]
2.70 [4]
2.40 [4]
2.55 [4]

Icosahedral subgroup, new data
1.204{64) 1.207(42)
0.936( 15) 0.797( 12)
0.659( 10) 0.532(06)
0.889(37) 0.860(19)
0.613(20) 0.510( 11)

1.00(07)
1.17{03)
1.24(03)
1.03(06)
1.2o(os)

0.277( 10)
0.290(04)
0.301(03)

0.247(05 )

0.269(06)

01
02
03
04
05
06
07
08
09
10
11
12
13
14

2.202 [4]
2.202 [4]
2.289 [4]
2.083 [3]
2.277 [3]
2.465 [4]
2.557 [4]
2.648 [4]
2.829 [4]
2.277 [4]
2.277 [3]
2.465 [4]
2.648 [4]
2.829 [4]

Icosahedral
1.25{07)
1.25{09)
1.03(03)
1.76(12)
1.12(01)
0.80(01)
0.73{01)
0.67(o1)
0.56(01)
1.12(12)
1.00(50)
0.61(02)
D.46(01)
0.39(01)

subgroup, mixed-action data
1.20(04)
1.17(05)
0.95(02)
1.83(11)
0.95(01)
0.69(01)
0.62(01)
0.55(01)
0.47(01)
1.02{05)
1.60(40)
0.56(01)
0.39(01)
0.29(01)

(Ref. 11)
1.04(05)
1.07{09)
1.09(04)
0.96(10)
1.18(02)
1.16(03)
1.19(02)
1.21(02)
1.20(01)
1.10(13)
0.61(40)
1.08{OS )

1.20(03)
1.33{03)

0.251(08 )

0.258( 11 )

0.262(05)
0.238( 14)
0.268(02)
0.284(03 )

0.289(03 )

0.296(02)
0.302(02)
0.250( 11 )

0.176(40)
0.256{06)
0.279(02 }
0.318(05)

01
02
03
05
16
17
18
19
20
21
23
24
25
26
27
29
31
32
33
34
35
36

2.30 [3]
2.40 [4]
2.40 [4]
2.70 [4]
3.00 [4]
3.00 [4]
3.00 [4]
3.00 [4]
3.50 [4]
4.00 [5]
4.50 [5]
4.50 [5]
4.50 [5]
2.40 [4]
2.40 [4]
2.50 [4]
3.00 [4]
3.00 [4]
2.50 [4]
2.70 [4]
3.00 [5]
3.00 [5]

1.183(29}
0.872( 33}
0.902( 39)
0.673{05 )
0.530( 10)
0.561(06)
0.530(07)
0.540{07)
0.426(05 )

0.360(06)
0.337(06)
0.322(04 }
0.317(04)
0.934(46)
0.897(47)
0.697( 14)
0.399(08)
0.389(08 )

0.689(30)
0.444( 13 )

0.307(09)
0.280(09)

Full SU(2) group
1.084( 19)
0.760{10)
0.751( 16)
0.548(03)
0.412(06)
0.425(03 )

0.421(05 )

0.430(04)
0.329{03 )

0.286(03 )

0.270(04)
0.268(02)
0.266(02)
0.835(27)
0.870(24)
0.607(08 )

0.316(06)
0.317(06)
0.654( 15 )
0.387(07)
0.251(06)
0.219(06)

1.09{03)
1.15(05)
1.20(06)
1.23(09)
1.29(04)
1.32{02)
1.26(02)
1.2s(o2)
1.29(02)
1.26(03)
1.25(03)
1.20(02}
1.19(02)
1.12(08)
1.03(07)
1.15(02)
1.26(03)
1.23(04)
1.05(06)
1.15(04)
1.22(05)
1.28(06)

0.266(04)
0.304(04)
0.304(06)
0.297(02)
0.312(03)

0.306(02)
0.304(03 )

0.303(03 )

0.292(03 )

0.259(07)
0.224(07)
0.218(05 )

0.235(05 )

0.257(08 )
0.248(06)
0.270(04)
0.317(06)
0.318.(04)
0.235(05 )
0.274(05 )

0.324{09)
0.318(08)
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TABLE VI. m ( A,+ ) masse's for our largest volumes.

L L, ZO m(A,+ )/AL

01
04
11
12

2.202
2.083
2.277
2.465

Mixed-action data (Ref. 6)
4 64 5.00{28)
4'64 7.04(48)
8'48 8.00(40)
8'48 4.88( 16)

165(10)
173(12)
160(80)
156{06)

01
04
07

Standard-action data {icosahedral group)
2.25 4 24 4.82(26) 180(10)
2.40 6 32 5.33(22) 193(09)
2.55 8 32 4.90( 17) 194(07)

0&

14
15
16

2.30
2.40
2.40
2.50

Standard-action data (full group)
4 64 4.73(12)
6 64 5.60(28)
6 64 5.38(28)
8 64 5.56(09)

200(05)
203(10)
195(10)
195(04)

tend to fall slightly below the analytical curve. Finite lat-
tice spacing corrections to our data and higher-order per-
turbative (plus other not-well-understood) corrections to
the analytical expansion may account for this. Ap-
proaching the tunneling transition (coming from large
z2), three of our data points provide evidence for the ex-
pected rapid drop of &v/I (E+). The corresponding zz
value is somewhat higher than expected from the analyti-
cal calculation. Also this discrepancy is not a serious
one.

The numerical study of the tunneling transition region
is difficult. We had to make a major computational effort
in order to reach the transition region on a 4 L, lattice.
The transition region is located around P=4.5 and criti-
cal slowing down is observed to the extent that 200000
iterations are not enough on a 4 256 lattice (see Sec.
III A). It would be prohibitively resource consuming to
repeat our study of the transition region using larger lat-

tices or to investigate deeper into it with 4 L, lattices.
Data analysis becomes also quite painful: The fact that
the Aux energy is rapidly decreasing means that larger
and larger L, 's are needed in order to tame finite box-
temperature effects. Those are rather dramatic for glue-
ball mass estimates as the signal -exp( —mt) becomes
small as compared to box-temperature-induced terms
—exp( E, L—, ) [in the low-z regionI (E+)-m ( 3

&
) ))E„see Fig. 10]. In addition, it

should be noticed that the variational part of the analyti-
cal calculation becomes inaccurate when one gets too
close to the tunneling transition. In view of these limita-
tions, the agreement found in Fig. 9 is almost marvelous.

Figure 11 presents our m ( 2 +, )/m (E+ ) ratios. The
line on the left-hand side indicates the small volume re-
sult. ' The other solid line is the analytical result for in-
termediate volumes. Close to the tunneling transition
these two lines should match. The figure shows that this
is almost achieved, but we notice discrepancies with our
MC data in this region. In view of the otherwise very
good consistency between analytical and numerical ap-
proaches this is somewhat surprising and presently we
have no convincing explanation for this disagreement.
Possibly the variational part of the analytical calculation,
which tends to become bad around the tunneling transi-
tion, has more difficulties with an excited state (like A,+
is in this approach) than with ground states (like E+ and
~). Towards larger z2 values our data are, as before for
&Irlm (E+), in very good agreement with the analytical
line.

The two dashed curves of Fig. 11 indicate the asymp-
totic large volume behavior. They are obtained as fol-
lows. First, in the range z2 ~ 2.5 we make a least-squares
fit with our data to the two unknown constants of Eq.
(2.37) and obtain R (~ )=1.06, c,z=1.70. The figure
shows that curves with R ( oo )+0.10 (and c,@

=1.70) are

0.40

u i / m(E+) mass ratio versus zz
f I I I

I

I I 'I I

I

t I I I

I

I I I I

10

m(E+) / E, mass ratio versus za
'I

I

I $ I I

0.35

0.30

0.25

0.20

0.15

0.10
0

I i i i i I & t & i I

8 4 8
I I i I I I I

FICx. 9. Plot of &a/m(E+) vs zz. The solid line is the
analytical result of Koller and van Baal (Ref. 7).

FIG. 10. Semilog plot of m (E+)/El vs z2. The solid line is
the analytical result (Ref. 7).
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1.4

1.3

1.0

I I 1 I

I
I I I I

I

I I I 1

I

I I I I

m(A, ) / xn(E ) xnass ratio versus zz Towards larger volumes the asymptotic &v/m(E+)
ratio will be approached from below if Eqs. (2.28) and
(1.4) hold. Instead, there is a monotonically decreasing
tendency in the zz volume range of Fig. 9. By compar-
ison with Fig. 5 it is obvious that this is due to an increas-
ing m(E+) mass. At our largest z2 values we have
m(E+)/m(A+, ) =1. We may try to extract the asymp-
totic ~~/m (A,+ ) ratio from our results. In view of the
rather difFerent large volume corrections for ~~ (2.38)
and m(A,+) (1.4), this is best done by taking the ratio of
Eqs. (3.1) and (3.3). The result is

0.9 lim =0.315+0.030 .
'o -m(A+, )

(3.5)

0.8
0

I I i I I I I I I I I I I I I & I

2 4 6

E+
lim =0.95+0.10.

z2 ~ m(Ai )
(3.4a)

However, although our data are all consistent with these
fits and a continuum limit m(E+) &m(A,+) would also
be consistent with theoretical constraints, ' it is neverthe-
less questionable whether we are allowed to apply the
infinite-volume equation (2.37) to m(A i+)/rn(E+) in
our volume range. The following objections stand against
this approach: (i} MC simulations' give evidence for
m(E+)/m(A, +)=1.50+0.05 (see Ref. 13 for less con-
vincing earlier results; similar arguments were recently
raised in the framework of Hamiltonian variational cal-
culations }; (ii) Vohwinkel's analytical calculation and
the numerical investigation agree on
m (T2+ )/m(A, +

) =1.7 in the intermediate volume range.
(T2+ is the spin-2 representation alternative to E+. )

Remark (ii) means that at least one of the spin-2 rep-
resentations of the cubic group is expected to exhibit a
significant crossover from intermediate to large volumes.
Remark (i) provides evidence that this happens mainly
for E+. Putting both remarks together, the circumstan-
tial evidence is that

m(A,+)
lim = 1.55+0. 10

m(E+) (3.4b)

holds instead of (3.4a). To confirm this conjecture, fur-
ther simulations at large volumes are desirable. In view
of the large volume results' ' for ~a and I (A,+ ), we
are thus left with a scenario that expects a smooth
infinite-volume extrapolation of the ~v/m(A i+) and,
possibly, the I (T2+ )/m(A, +

) mass ratio, whereas ratios
involving m(E ) are suspected to exhibit a "crossover"
in the range 6 & z, & 10.

FIG. 11. Plot of m ( A &+ ) /m (E+ ) vs z2. The short solid line
on the left-hand side is the small volume result of Luscher and
Munster (Ref. 21). The other solid line is the intermediate
volume result of Koller and van Baal (Ref. 7). The dashed lines
are large volume fits by means of Luscher's (Ref. 10) equation
(2.37).

already envelopes of our data. For the inverse ratio this
yields

Corrections to asymptotic scaling should drop out.
Therefore, the reliability of (3.5) is better than for the in-
dividual estimates (3.1) and (3.3).

The glueball calculations reported so far were done
with the adjoint Polyakov loop. To include more repre-
sentations of the cubic group we did an exploratory study
with two additional Polyakov loop trial operators, denot-
ed PP and PAP in the following. Here we use the nota-
tion P for a fundamental- and A for an adjoint-Polyakov
loop. The operator PP consists of two neighbored, paral-
lel fundamental Polyakov lines and PAP is made out of
three neighbored, parallel Polyakov lines that form a
right angle (the Polyakov line in the middle is in the ad-
joint representation). Figures of these operators are given
in Ref. 26. With respect to the cubic group the transfor-
mation properties of PP and PAP are identical to those
of the double plaquette and the bent plaquette. The irre-
ducible representations of these Wilson loops are con-
structed in Ref. 43 and we can read off from
there the irreducible representations of PP and PAP.
For PP we find A,+,E+,E+, Az+ and PAP gives
3 +,E+, T2+, T),T2 .

We did MC simulations measuring correlations for all
these representations of the cubic group. Unfortunately,
the results were somewhat disappointing. The new mass
estimates in the A &+ and E+ representation are nicely
consistent with previous results, but correlations for all
other representations turned out to be inconclusive sta-
tistical noise. The latter situation also holds for one of
the two E+ representations of PP. These features are
true for all the exploratory data sets (listed in Table I).
As this is not very interesting we just illustrate with
Table VII the situation for the 4 64 lattice at/3=2. 70. In
case of the two-dimensional E+ representation we give
results for both components separately, whereas for the
three-dimensional TI and T2 representations we pick out
the "best" result (upper bounds). A simple heuristic ex-
planation for the noisy signals can be provided. By in-
spection of the relevant combinations of Polyakov lines,
it is found that all noisy operators involve differences of
close-by, parallel Polyakov loops, such that their expecta-
tion values are zero (even in a broken phase). As the Po-
lyakov loops are strorigly correlated, these cancellations
imply an already small signal at distance t, =0, which
just is too tiny to propagate any further.
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TABLE VII. Supplementary data. Some effective masses from an attempt to estimate glueballs in
variant representations of the cubic group. The results of this table were obtained on a 4'64 lattice at
P=2.70. Behind the error bars, the numbers in square brackets give the distance t, to which the
effective mass corresponds. Note that the operator PP has two different E+ representations.

m (T+ ).
m(A+ }.
m(T] ):
m{r, ):

0.67(17) [4]
0.52(02) [4]
0.58(03) [4]

0.55(27) [4]
0.52(02) [4]
0.56(02) [4]

(4. 1 [1]

(3.2 [2](2.5 [2]

0.61(26) [4]
0.57(05) [4]
0.55 (05) [4]

(11 [1]

(6.7 [1](6.1 [2]

D. Glueballs or flux states'?

+[Aux bound state] 2 (3.6)

(ii) applied to the vacuum, the adjoint Polyakov loop has
a large projection onto the Aux bound-state wave func-
tion.

Gur data show that none of these conditions holds. In
Fig. 10 we plot m (E+ )/E, vs zz. For small z2 it is seen
that this ratio has no tendency to get stable around
m(E+)/E, -2 but becomes very large. Obviously a
similar result holds for m ( 3,+ )/E, . The observed mass
gaps in the A,+ and E+ representations of the cubic
group ignore the decreasing E, =L~ mass. Hence, there

Arguments were raised that adjoint Polyakov loops
are not trial operators for glueballs, but instead for (elec-
tric) fiux bound states (called "torelons" in Ref. 40). Let
us recall from Sec. IIG that correlation functions of
Polyakov loops in the fundamental representation fall off
with the mass E&=Le corresponding to one unit of 't
Hooft electric Aux. The question is now whether some
kind of Aux bound states may exist in the charge zero sec-
tor. For large volumes these hypothetical states would
disappear as their mass should rise linearly with L. De-
creasing L„one may imagine a level crossing between Aux
bound states and glueballs. Heuristically, such a picture
would be very appealing if the following conditions were
true: (i) These bound states exist and have mass

is no support for the existence of Aux bound states with
mass of order (3.6). The situation is somewhat less clear
for increasing zz)4. However, we shall demonstrate
that in this region the adjoint Polyakov loop couples only
weakly to the mass gap state, in contrast with a Aux
bound-state picture.

How well do our trial operators project the vacuum
onto the eigenfunctions of the estimated eigenvalues?
Table VIII gives a concise overview and is obtained as
follows. Let t, be the "asymptotic" distance of our best
effective mass. The equation

ch (;)(1)p= g with n =t, —1
o ch (, )(1)

(3.7)

estimates the projection of the trial operator. Table VIII
gives p (in %) for some characteristic P values and lattice
sizes. Let us remark that good upper bounds to the re-
sults of Table VIII are often already obtained by using
Eq. (3.7) with t, =2. The p values exhibit the following
systematics: (a) For L fixed the projection of the adjoint
Polyakov loop increases with increasing P. In case of
L=4 from p=8% (P=2.25) to p =80% (P=4.50); (b)
the projection of the fundamental Polyakov line is always
rather high. For L=4 it seems to reach a maximum
around I3=3.00 and to decrease then for increasing P; (c)
for P fixed and L increasing (see P=2.50, L =4,6,8 and
p= 3.00, L=4,6,8), the projection of the adjoint Polyakov

TABLE VIII. Projection properties of Polyakov loops. Relying on Eq. (3.7) projection probabilities
p of trial operators are estimated. The trial operators are the adjoint Polyakov line for m(A

& },
m (E+ ) and the fundamental Polyakov line for E&. Behind P, the used distance t, is given. Results are
given in %. The relative errors (omitted) are of the order of a few percent of the result.

L

43
43

43

6
83

43

43
63
83

43

43

L,

24
24
64
64
64
64
64
64
64

128
128

2.25 [4]
2.40 [4]
2.50 [4]
2.50 [4]
2.50 [4]
2.70 [4]
3.00 [4]
3.00 [4]
3.00 [5]
4.00 [5]
4.50 [5]

m(A [+ )

7.8%
18%%uo

27%
3.4%
0.2%
39%
55%
22%

5.0%
66%
71%

8.5%
22%
32%

4.2%
0.3%
49%
63%
28%

6.6%
77%
79%

86%
91%
96%
86%
77%
95%
95%
87%
79%
83%
72%

Data sei

Icos 01
Icos 02
Full 07 (Suppl. )

Full 30
Full 34 [Table II (c)]
Full 05 [Table II (b)]
Full 17
Full 32
Full 37
Full 21
Full 23
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line decreases strongly, whereas the projection of the fun-
damental Polyakov line is rather slowly decreasing.

It is amazing to note (8 64 lattice and P=2.50) that
with a projection of less than 1% the signal of the adjoint
Polyakov loop can still be followed far enough to allow a
rather clear estimate of the mass gap. In that case the
adjoint Polyakov line seems to couple rather "democrati-
cally" to all states in the spectrum. Presumably this is re-
lated to the fact that it is a nonlocal operator. The gap
between the estimated state and the other states is large,
which results in a rather rapid convergence of effective
masses [see Table II(c)]. For increasing L (P fixed), we
find that the adjoint Polyakov loops decouple from the
2 i+ and E+ mass gap wave functions. We take this as
further evidence that these wave functions correspond to
glueballs. One is tempted to speculate that for even
larger L string formation (see also next section) sets in
and the adjoint Polyakov loop may then project dom-
inantly onto a state (above the glueball state) with mass
given by (3.6). Concerning investigations with Wilson-
loop trial operators, it is instructive to remark that they
project differently than adjoint Polyakov loops onto glue-
ball wave functions. Analyzing results from Refs. 12 and
13 it is found that (a) Wilson-loop trial operators have
rather high projections ()30%) as long as they work at
all and (b) their projection decreases with increasing P (L
fixed).

One may also address the question of this section
analytically. The intermediate volume results (compare
the corresponding curves of Figs. 9 and 10) show a tun-
neling decrease for E„but not for m (A,+ ) or m (E+).
Consequently, the m ( 3,+ )/E, and m (E+ )/E, mass ra-
tios tend to infinity for zz —+0, a result which is highly un-
favorable for the hypothesis of fiux bound states (at least
in the considered limit).

The only evidence for Aux bound states comes from
strong-coupling expansion (P~O). In lowest order one
finds two very distinct ways to correlate adjoint Polyakov
loops. Either one covers the spanned area with pla-
quettes twice and obtains

(A(0)A(r, ) ) —p (3.8a)

corresponding to energy E[fl b d g i l 2E, (the area
has to be covered once to correlate fundamental
Polyakov lines ), or one covers a connecting tube with
plaquettes and obtains

(A(0)A(t, ))-P ' for t, ~oo . (3.8b)

K. Deconfinement, tunneling, and string formation

As discussed in Sec. II E we use asymmetric lattices to
study the connection between tunneling and
deconfinement. We assembled data (see Table I) on
4XL 64 lattices. As usual in this paper, Polyakov lines

The latter case corresponds to the lowest order of the
conventional glueball mass. It should be noted that at
this order E(fl„„„«„d„,«)(L) )m(fl~„,»»)(L) for L 3. It
would be of some interest to work out higher orders of
the strong-coupling expansion for lattices with L & 2.

2.294 ~ P, ~ 2. 302 (L, =4) . (3.9a)

This is in good agreement with previous numerical esti-
mates P, =2.29+0.01 (Ref. 74) and P, =2.295+0.005
(Ref. 75). These results assume as input Ising-model
values for certain critical exponents, whereas our esti-
mate makes no such assumptions. On the contrary, the
fixed-point method allows us in principle to go on and to
estimate the critical exponent v, using Eq. (2.41). Howev-
er, the accuracy of our present electric Aux data is not
quite sufFicient. Approximating the derivatives in Eq.
(2.41) from the straight lines in the left part of Fig. 13, we
have calculated v for the various ratios L z /L

&
with

4 L, & L z
~ 12. The obtained values scatter in the

range 0.53 + v+0.71. This is consistent with the expect-
ed 3D Ising-model value v=0.64 (Ref. 76), but not very
conclusive due to lack of accuracy.

Although L, =4 is of course rather small it is quite in-
structive to translate (3.9a) to units of Ai . We get

41.6AL (T, (42.5AL (L, =4) . (3.9b)

This is about 20% higher than the analytical estimate,
which is 28AL & T, &35AL. The analytical calculation
uses L, to set the scale. In the lattice regularization

in the fundamental and adjoint representation served as
trial operators. We measured momentum zero correla-
tions (P;(0)P;(t, )) (no summation over i) .Because of
the asymmetric geometry we have to distinguish between
Polyakov lines that close in L, direction and those that
close in L direction. We do this by introducing sub-
scripts t (like "time") and s (like "space") for the corre-
sponding string tensions (2.28) as well as mass gaps. The
numerical estimates are collected in Table IX.

The L dependence of ~, and m, is analyzed by means
of Fig. 12. The left-hand side of this figure plots
LE, =L,Lx, vs zr=L/L, =L/4 (P=const) and is al-
most a reproduction of Fig. 3 of Ref. 52. (Figure 12
corrects a trivial error of Ref. 52, where all numbers on
the abscissa of Fig. 3 have to be multiplied with 16 to
agree with the string-tension results given in Table IX.)
Relying on Eqs. (2.39a)—(2.39c) we obtain the estimate
2.28 (P, (2.32. The right-hand side of Fig. 12 gives the
corresponding plot for the mass gap m, . On both sides of
the transition point, the mass m, has a finite nonzero lim-
it as L grows, and Eq. (2.39a) holds with E, replaced by
m, . The exponentially small E, of the broken phase has
clearly no analog here, instead we expect a finite screen-
ing mass. At the critical point m, goes to zero although
it is not related to the order parameter. The right-hand
side of Fig. 12 shows this behavior. For f3=2.30 and
2.32, Lm, stays approximately constant, whereas Lm, in-
creases with L for P=2.28 and 2.34. In this way m, gives
another, perfectly consistent (although less accurate), es-
timate of the deconfining temperature.

The most accurate calculation of the critical tempera-
ture from the 't Hooft electric fiux is achieved by exploit-
ing the fixed-point property of Eqs. (2.39a)—(2.39c). Fig-
ure 13 depicts LE, vs P (L =const). Obviously, a natural
estimate for the fixed points (3, is
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T, =40AL together with L, =4 would then correspond to
the renormalized coupling g„„=1.52, whereas p=2.30
corresponds to the bare coupling go=1.32. Hence, the
bare coupling is somewhat smaller than the renormalized
coupling and that is where lattice calculations just begin
to make sense (in the continuum limit go~0 by asymp-
totic freedom). Not only the numerical but also the
analytical T, estimate suffers presently from a number of
more or less uncontrolled error sources. In view of the
entirely different systematics of both approaches, the
found agreement within about 20% is satisfactory. Al-
though Eq. {2.39b) does not hold for SU{3},we are op-
timistic that similar methods will work also in that case.
The reason is that Eqs. (2.39a) and (2.39c), which still
hold, are the really important ones.

For our 4X 6 64 lattices Fig. 14 demonstrates the tun-
neling transition. The ratio Q~, /m, is plotted vs z

/

and should be compared with Fig. 9. As compared to
symmetric lattices, the tunneling transition is shifted to a
considerably higher z value. In consequence we need
only moderately high P values in our simulation. In view
of the somewhat large discrepancy with the analytical
curve, a finite-size study using 6X12 ~ lattices may be
worthwhile.

Figure 15 plots the spacelike string tension ~, {2.28)
and mass gap m, the same way as Fig. 12 does for the
corresponding timelike quantities. The L dependence is
remarkably different. Independently of p, LE, as well as
Lm, always soar approximately linearly with L. The
deconfinement appearing in the behavior of the timelike
component of the gauge field does not influence the spa-
tial components in a substantial way, see also Ref. 77.
The similarity to permanent confinement in three-
dimensional gauge theory is striking.

TABLE IX. Results for the asymmetric lattices. This table gives the estimates from our simulation on 4L 64 lattices. The corre-
sponding statistics can be found in Table I.

01
02
03
04
05
06
07
08
09
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37

L

42

62

8
10
12
42

62

82

10
12
16
42

62

8

10
12'
16
42

62

8
10
122

16
42

62

8
42

62

8
42

62

42

62

42

62

42

62

2.28
2.28
2.28
2.28
2.28
2.30
2.30
2.30
2.30
2.30
2.30
2.32
2.32
2.32
2.32
2.32
2.32
2.34
2.34
2.34
2.34
2.34
2.34
2.36
2.36
2.36
2.38
2.38
2.38
2.41
2.41
2.45
2.45
2.50
2.50
2.70
2.70

0.3067(12) [3]
0.2521(23) [3]
0.2316(19) [3]
0.2229(27) [3]
0.2131(43) [3]
0.2882(15) [3]
0.2251(24) [3]
0.1974(24) [3]
0.1713(39) [4]
0.1548(34) [4]
0.1368(47) [4]
0.2703(18) [4]
0.1985(37) [4]
0.1534(33) [4]
0.1234(47) [4]
0.1151(58) [4]
0.0557(44) [8]
0.2557(19) [4]
0.1797(31) [4]
0.1210(44) [5]
0.0938{73) [6]
0.0495(12) [8]
0.0204(42) [15]
0.2475(18) [4]
0.1593(39) [4]
0.1091(39) [4]
0.2424{23) [4]
0.1357(44) [4]
0.0732(81) [5]
0.2264(14) [4]
0.1314(51} [4]
0.2119(14) [4]
0.1027(56) [4]
0.2006{14) [3]
0.0756(49) [4]
0.1625(09) [4]
0.0606(50) [4]

0.3067( 12)[3]
0.3480(20)[3]
0.3731(37)[3]
0.382(08} [3]
0.372(35) [3]
0.2882( 15 )[3]
0.3255( 16)[3]
0.3468(20)[3]
0.3592( 39)[3]
0.357(09) [3]
0.41(06) [3]
0.2703( 18 )[4]
0.3047(16)[3]
0.3240(21)[3]
0.3385(32)[3]
0.358(10) [3]
0.321(19) [3]
0.2557( 19)[4]
0.2881( 11 )[3]
0.3076( 16)[3]
0.3169(25)[3]
0.3263(38)[3]
0.316(12) [3]
0.2475( 18)[4]
0.2719( 16)[3]
0.2973( 16)[3]
0.2424( 23 )[4]
0.2643( 16)[4]
0.2543( 13 )[3]
0.2264( 14)[4]
0.2472( 13 ) [3]
0.2119(14)[4]
0.2368( 13 )[3]
0.2006( 14)[3]
0.2179(20)[4]
0.1625(09)[4]
0.1839(23)[4]

m

1.229(20) [3]
0.836(15) [3]
0.691(11) [3]
0.657(16) [3]
0.640(36) [3]
1.110{15)[3]
0.705(25) [4]
0.570(15) [4]
0.467(15) [4]
0.369(20) [5]
0.307(18) [5]
1.051(13) [3]
0.712(14) [3]
0.512(16} [4]
0.396(13) [4]
0.360(20) [4]
0.286(25) [6]
0.984(10} [3]
0.649(22) [4]
0.481(10) [4]
0.399(32) [6]
0.462(22) [5]
0.404(20) [5]
0.943(10) [3]
0.613(19) [4]
0.514(19) [4]
0.922(08) [3]
0.578(22) [4]
0.589(27) [4]
0.847(08) [3]
0.591(22) [4]
0.788(15) [4]
0.552(20) [4]
0.749(08) [3]
0.568(15) [4]
0.571(04) [4]
0.568(40) [4]

1.229(20) [3]
1.71(18) [3]

Noise
Noise
Noise

1.110(15 )

1.72(12) [3]
Noise
Noise
Noise
Noise

1.051(13) [3]
1.550(80) [3]

Noise
Noise
Noise
Noise

0.984(10) [3]
1.271(45) [3]

Noise
Noise
Noise
Noise

0.948(10) [3]
1.258( 35 ) [3]
1.44(19) [3]
0.922(08) [3]
1.227(27) [3]
1.52(13) [3]
0.847(08) [3]
1.090(20} [3]
0.788(15) [4]
1.010(18) [3]
0.749(08) [3]
0.930(16) [3]
0.572(04) [4]
0.728(10) [3]
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0.0 0.5 1.0 2.0

larger z~ values the MC data lie slightly below the
1

analytical curves, but this may well be explained by
higher-order corrections to the analytical calculation
and/or by inaccuracies of the somewhat limited data set.

In conclusion, in the investigated volume range we
have no string formation. However, it would be prema-
ture to conjecture that such a mechanism does not take
place at all. Instead, it is expected to occur at larger zE

values. Unfortunately, they are not directly accessible
with our present simulation method. If it is true, that
string formation sets in at values zE ) 1.5, then there is

I

an amazingly large gap between the tunneling transition
(at zz (0.1 the first relict of the deconfining phase transi-

1

tion on L oo lattices) and string formation, possibly the
last relict of the deconfining phase transition on L ~ lat-
tices. Obviously instantons do not play any role for the
tunneling transition, whereas they may well become im-
portant for the physics beyond zz = 1.5 (z2 =5).

1

IV. SUMMARY AND CONCLUSIONS

We have carried out a detailed numerical investigation
of SU(2) lattice gauge theory in medium-sized volumes.
The results supplement (or are supplemented by) recent
progress of analytical, continuum calculations in such
volumes. For L ~ lattices it is natural to divide
volumes into small, intermediate, and large. "Small"
volumes are those before the tunneling transition, where
&Irlm ( 3 i+ ) =0 holds. After the tunneling transition we
have &i~./m(A i+ )=8(1). More precisely, for this ratio
we are close to the infinite-volume estimate

/rn ( 2 i+ ) =0.315(30.) given by Eq. (3.5). However,
there is no string formation yet. This defines the inter-
mediate volume range. String formation is conjectured to
set in when we proceed from intermediate to large

E)

FIG. 16. MC results for E, /E, and E2/E, are plotted vs z&
1

(2.35b) and compared with the analytical predictions of Refs. 6
and 7. Data points are labeled by (L,/3). The lines on the
right-hand side indicate the asymptotic values expected (Ref.
16) from string formation.

volumes. As discussed in Sec. III E we were not able to
find positive evidence within the limitations of our
methods. (There is some support from other investiga-
tions. ' ) In the same volume range, where we expect
string formation, the m (E+) mass is supposed to in-
crease as indicated by Eqs. (3.4a) and (3.4b). In contrast,
the mass ratios +a/m ( 2,+ ) and m ( T2+ )/m ( 3,+ ) seem
to stay relatively stable and we do not know what physi-
cal reason makes the m(E+) mass so special. A by-
product of our simulations is a precise determination of
the bP(P) function, see Figs. 7(a) and 7(b).

Striking is the overall very satisfactory agreement of
numerical and analytical results, see Figs. 9 and 11 and
also Eq. (3.9b) vs Ref. 8. In view of the fact that most of
the numerical work is done on rather small sized lattices,
that the analytical calculations suffer from higher-order
perturbative corrections and, worse, all kinds of not un-
derstood systematic corrections, this is rather surprising
and gives rise to some optimism. It is desirable to extend
not only the numerical but also the analytical calcula-
tions to the SU(3) gauge group.

Note added in proof. Recently van Baal informed us
about minor errors in Refs. 6 and 7 which lead to maxi-
mal 3% correction for' the analytical curves depicted in
our Figs. 5, 9, 10, and 11. Of course, this would be hard-
ly visible on the scale of our figures.
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APPENDIX A

We prove Eq. (2.18a), a0~0. Let us define the scalar
product

(c,b)= gc„"b„"e

Note that (1,1)=Z; Schwarz inequality gives
(c,c)(1,1)~ (l, c) or

2

Zg( n)2e n z) g n n z

APPENDIX 8

We comment on problems with the congruential
random-number generator. Previously, other authors re-
ported similar problems. The results of this appendix
emerged from a consistency check on our string-tension
results. We estimate ~ from the finite-size behavior of the
"energy" F., defined as the average plaquette expectation
value. (The usual internal energy is 1 E. ) This ap-—
proach should be compared with Michael. Our
E =E (L, ) data are fitted with the expression
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TABLE X. Energy values. Average plaquette expectation value "energies" for 4'L, lattices at
P=3.0 [full SU(2) group]. The numeration of data is identical with Table I. If not marked otherwise, a
vectorized version of CDC's (see Cyber 205 FQRTRAN manual) congruential random number generator
is used. "Improved random numbers are congruential random numbers where at each call one (or a
few) extra random numbers are generated but not used, see Ref. 64, for an explicit listing of the related
computer code. One data set of this table relies on a shift register random number generator (Ref. 81).

No.

06
07
08
09
10
11
12
13
14
15
16
17
18
19

L,

16
16
16
24
32
32
64
64
64
64
64

128
128
128

Energy

0.723 592( 8)
0.723 591(6)
0.723 603(8)
0.723 513(12)
0.723 494(9)
0.723 502(9)
0.723 380(8)
0.723 386(8)
0.723 380( 12)
0.723 426( 8)
0.723 441(9)
0.723 451(5)
0.723 458(7)
0.723 419(6)

Hot start
Improved random numbers

Improved random numbers

Hot start
Improved random numbers
Shift reg random numbers

Hot start
Improved random numbers

—L Lv
eo+e&eE(L, )= —L.ZLv1+e

(B1)

Inserting a complete set of eigenstates of the transfer ma-
trix it becomes

The formula for E(L, ) would be (2.29) if we were talking
about the mean spacelike plaquette. However we have
kept the mean plaquette (spacelike and timelike together).
Let A'„denote the operator corresponding to E„. For
the spacelike plaquette we have

E„=—Tr( 8„V ') with Z =Tr( V' ') .1 L . L

Results using the usual congruential random-number
generator present a minimum (around L, =64), in con-
tradiction with Eq. (B1). Sequences of numbers produced
by this generator are known to exhibit strong autocorre-
lations at distances which are large power of 2. We be-
lieve that our results on 4 64 and 4 128 lattices are
aA'ected by this problem. The estimated errors on the en-
ergies are stable with respect to the number of bins. We
convinced ourselves that precision problems (like round-
ing errors) are not responsible for the discrepancies. The
problem disappeared when, each time a vector of succes-
sive random numbers was computed, one or a few extra
random numbers were also computed and not used. This
avoids powers and even multiples of two. The problem
also disappeared when shift-register random numbers '

were used.

Energy of a 4 N, Lattice
I

I
I I I

The axial gauge is implicit and the sum is over zero-
charge states only. For timelike energy E„,one obtains

E„=—Tr(Vl"TIES '
)

0.783 60

0.723 5g

For L,~ Oo this has the behavior E„=(A +Be ')/Z
—EiL

with the same Z and E& as for E„. In conclusion we
have Eq. (Bl). There is however a problem with nonzero
momentum states. E„,E„, and Z receive contributions
from states with all possible momenta, nevertheless one
expects that L, is large enough for formula (Bl) to hold.
In particular, in our application the lowest nonzero
momentum is very high.

Our data for the internal energy [E(L,)] of 4 L, lat-
tices at f3=3.0 with the full group are given in Table X.

0.723 &0

0.783 S5 I I I I I I I I I I I I I I I I I i I I I I I I I I
—

I

85 50 75 100 135

FIG. 17. Least-squares fit of our "energy" data according to
Eq. (B1). Only data with improved and shift-register random
numbers are included in the fit. The outcome is given by (82a).
For illustration the data (far off' the fit line) spoiled by a bad
choice of random numbers are also included in the figure.
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A ftt of the correct data with Eq. (B1) {for
L, = 16,24,32,64, 128) is depicted in Fig. 17 and gives

etc =0 12. 7(7), eo =0.723 417(6),

e, =0.72411(7), y~=0. 3 .
(B2b)

&tc=0. 131(8), eo =0.723 419(6),

e, =0.72414(8), y =5.2 .
(B2a)

Omitting the point L,, =24, which used the old random
numbers (24 is however not a power of two) one obtains

Both results are compatible with the preciser direct esti-
mates 16—19 of Table III (a). Strange is the near equality
of the constants eo and e, . We are very close to a cancel-
lation of the I., dependence of numerator and denomina-
tor in the expression (Bl) for E (L, ).
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