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We investigate QCD corrections to the cross section and differential distributions for
p +p~Q+Q+X, where Q and Q are heavy quarks. We calculate the order-a, corrections to the
parton reaction g+g~Q+Q. At the quark level this involves the computation of the virtual-
gluon contributions to the reactions g +g~Q+ Q, and the soft and hard contributions from the re-
action g+g~Q+Q+g. Results are given for the cross section and differential distributions for
the range of pp collision energies available at CERN and Fermilab. A comparison is made with the
recent data from the UA1 Collaboration.

I. INTRODUCTION

g+g~Q+Q . (1.2)

Both lowest-order 0 (a, ) processes have been extensively
analyzed in the literature. ' '" This analysis reveals that

During the last few years heavy-flavor production in
hadronic collisions has become an important subject. '

New experimental results have come from the search for
the top quark and the study of the properties of bottom
and charmed quarks. Analysis of the ratio
o(p+p~p —+p —+X)/o(p+p~p++p +X) (Ref. 3)
established the phenomenon of B B mixing, and al-
lowed bounds to be placed on the Kobayashi-Maskawa
matrix elements involving the top quark. The new exper-
imental data allows theorists to test the application of
perturbative QCD (Refs. 6—8) to processes where heavy
quarks are produced via light parton-parton interactions.
This is a subject of considerable importance for future pp
and pp accelerators.

There are two important contributions to heavy-Aavor
production. The first one, which is theoretically as well
as experimentally better understood, is the process where
the heavy Aavors appear as the decay products of the 8'
and Z bosons. The latter are produced via the Drell-Yan
mechanism in pp collisions. However, this source of
heavy-flavor production is only important for the top
quark provided its mass satisfies the relation m, &Mz/2
or m, &M~ —mb. In the second and dominant mecha-
nism the heavy quarks are directly created via parton-
parton collisions. When the heavy quarks are produced
at large transverse momentum this process can be de-
scribed by perturbative QCD, as will be explained below.
In lowest order of the strong coupling constant g, there
are two parton-parton subprocesses, quark-antiquark an-
nihilation and gluon-gluon fusion, i.e.,

q+q —+Q+Q,
and

at energies just above the threshold the total cross section
for process (1.1) is much larger than that for (1.2), provid-
ed the incoming quarks are valence quarks, which hap-
pens to be the case in pp collisions. When the c.m. ener-
gy is increased so that it is much larger than the heavy-
quark mass then the cross section for the gluon-gluon-
fusion process is the dominant one. The cross section for
(1.2) can be as much as an order of magnitude larger than
that for (1.1).

If one looks at the differential cross section one ob-
serves that both reactions produce the heavy quarks
mainly in the center of the (pseudo)rapidity region. '
Furthermore, the average transverse momentum of the
heavy quark is proportional to its mass. ' It is of in-
terest to see how these features of the Born cross section
are modified by higher-order radiative corrections or by
inclusion of new production mechanisms which are
present in higher order in a, . Up to order a, this re-
quires an examination of the cross sections and
differential distributions for the following parton-parton
processes

q+q~Q+Q+g,
g+g Q+Q+g,

(1.3)

(1.4)

g+q(q)~Q+Q+q(q) .

In a recent paper' the total cross sections of the above
processes have been completely calculated. From this we
infer that the radiative corrections are large and the main
contribution to the order-a, cross section can be attribut-
ed to process (1.4). This is especially true when the heavy
Aavors are produced near threshold. In the limit s ~4m
the phase space behaves like +s —4m and the square of
the Born amplitude is regular at s =4m . Hence the
O(a, ) Born cross section vanishes at threshold. The
0 ( a, ) contribution contains a Couloinb singularity
caused by the exchange of massless gluons between the
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II. THE BORN CROSS SECTION

As has been explained in the Introduction heavy-flavor
production is dominated by the gluon-gluon-fusion pro-
cess given in (1.1). The momentum assignment of this re-
action will be denoted as

g (kl }+a(k2} Q(pl )+Q(p2) (2.1)

The graphs which contribute to the Born amplitude are
shown in Fig. 1. For the kinematical variables we choose

massive quarks. The virtual matrix elements therefore
contain terms of the type n. /')/s —4m, which, when
combined with the phase-space factor V s —4m 2, yields a
total cross section which approaches a constant. Hence,
in the threshold region, the higher-order contributions
are larger than those of the Born processes in (1.1) and
(1.2}.

As has been argued in Refs. 15—17 the gluon-gluon-
fusion reaction (1.4) becomes even more important if one
looks at the differential cross section with respect to the
transverse momenta. At large transverse momenta one
gets a sizable contribution to the differential cross section
from the subprocess g +g —+g +g*. Here g denotes the
virtual gluon which decays into the heavy quarks. Usual
QCD estimates give do (g +g' —+g +g)/do (g +g ~Q
+Q ) of the order of 100 and thus the contribution of the
order-n, correction overwhelms the cross section for the
Born process by a large factor. However, this argument
only holds if g is aim. ost real, which is the case for
charm production but not for b- or t-quark production.
For this reason and the observation made above about
the threshold enhancement we concentrate entirely on
the gluon-gluon-fusion mechanism in this paper.

The presentation is organized as follows. In Sec. II we
discuss the Born cross section and introduce the notation
needed in the subsequent sections of the paper. We set
up the notation in the most general way so that also the
cross section for gluino-gluino production' g +g —+g+g
and the conventional QED reaction' y+y —+e++e
can be calculated. In Sec. III we discuss the virtual
corrections to process (1.2) and various details of our re-
normalization scheme. We use n-dimensional regulariza-
tion throughout the paper. ' In Sec. IV we give an out-
line of the calculation of process (1.4) and present a
method of how to split the cross section into hard- and
soft-gluon parts. The soft-gluon cross section will be
given in Sec. V. In Sec. VI we discuss the mass factoriza-
tion of the hard and soft plus virtual parton cross sec-
tions. An explicit formula for the latter contribution will
be presented. Also we indicate how one can reconstruct
the unrenormalized virtual cross section from the soft
plus virtual correction. In Sec. VII the results for the ha-
dronic cross section will be presented and discussed. In
Appendix A we list the scalar integrals which emerge
from the calculation of the virtual matrix elements.
Some kinematical details are presented in Appendix B.
In Appendix C we list the angular integrals which appear
in the two- to three-body reactions (1.3)—(1.5). Finally, in
Appendix 0, we present some of the longer formulas for
the contributions of the soft plus virtual corrections.

BIJOU!

(b) {c)

FIG. 1. The lowest-order Feynman diagrams contributing to
the amplitude for the reaction g(k, )+g(kz}~Q(p&)+Q(p2).

$ =2k] 'k2,

t,:t ——m =(k, —p, )
—I

u, —= u —m =(k, —p2) —m

(2.2)

The Born matrix element, which will be denoted by M„,
is given by the standard QCD Feynman rules. In this
and the subsequent sections we want to keep the notation
as general as is possible. This enables us to describe pro-
cesses which are related to the one given in (2.1) includ-
ing also their radiative corrections. The two examples
are the standard QED electron-positron pair creation

y(k, )+y(k2)~e (p, )+e+(p2) (2.3)

and gluino pair production

g(k1 }+g(k2} g(pl )+g(p2} (2 4)

XM I 2g ( CO~0 +CK~K +CQED~QED }

with 8~,8~ related to B«D by
T

t]u]
Bo = 1 —2

2 B«Dy B~= —
BQFD

(2.5)

(2.6)

where BQED is given by

t u 2 24ms ms s
u] t] t]u] t]u] t]u]

$2
+E

4t, u,
(2.7)

and e=n —4. Notice that the epsilon terms are mass in-
dependent. The color factors Cz, Cz, and CQED are
different for the various processes listed above. They are
given by

whose amplitudes can be obtained from the results of
Ref. 17.

Since the cross sections for the Born process and its ra-
diative corrections have to be evaluated in n dimensions
the algebra was performed by using the program
SCHOONSCHIP (Ref. 21). However, this program is only
suitable for four-dimensional y-matrix algebra so we had
to adapt the program for our n-dimensional computa-
tions.

The square of the Born amplitude M
=E'"(k, )E'(k2)M„, summed over the initial polarizations
and final spins can be written as
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Co =N(N 1—), Cx- =(N 1—)N ', CqED =0, (0)— (O) (0) (o)
gg o gg& gg, QED 7 (2.14)

Co =0 C~ =0, CQED =4, (2.8)

n,~k, +k~n, .

g pv+
n, k,

n k~k,

(n; k;)
(2.9)

gT denotes the sum over the transverse polarizations of
gluon i (i=1,2) and the polarization tensor Pt" satisfies
the relations

(2.10)

We have chosen an arbitrary vector n, (n; %0) for each
gluon i with n&Wnz. Since the expression in (2.4) is
gauge invariant the explicit dependence on n, drops out.
Therefore this method serves as a check on the gauge in-
variance of the physical quantities calculated in this pa-
per. Note however that we have taken the Feynman
gauge for the internal gluon propagator which appears in
the Born amplitude. The same gauge will be chosen for
the calculation of the higher-order radiative corrections
which will be discussed in the subsequent sections. The
independence of the matrix element squared on the n;
corresponding to the external gluons is a consequence of
the Slavnov-Taylor identities. We will say more about
this in the next sections.

Averaging over the initial gluon polarizations and
color we find that the result for the Born cross section in
n dimensions can be expressed as

e/2
t, u, —sm

p s

X5(s +t, +u, ) gM M

dt, du, ' I (1+@/2)

(2.11)

where K is the color-average factor. In the case of pro-
cesses (2.1) and (2.2) it is given by

K =(N —1) (2.12)

while, for the QED process (2.3),

%=1 . (2.13)

The mass parameter p in (2.11) originates from the
dimensionality of the gauge-coupling constant g in n di-
mensions. The constant S,=(4m) '~ originates from
the n-dimensional integration over the solid angle and the
remaining factor comes from the two-particle-to-two-
particle phase-space integral. For. later purposes we will
split the Born cross section in the same way as has been
done for the matrix element squared in (2.5). Using a
shorthand notation we can write

Co=2N (N 1—), Cx = 2N—(N 1—), CgED=0,

for reactions (2.1), (2.3), and (2.4), respectively, where N
denotes the number of colors.

In order to avoid the introduction of external ghost
lines while summing over the gluon helicities we limit
ourselves to the sum over the physical polarizations of
the gluon and use

Pt = g—e~z(k )e'T(k )
T

where the three cross sections on the right-hand side of
(2.14) can be derived from (2.5)—(2.8) and (2.11).

III. VIRTUAL CORRECTIONS

The order-a, QCD corrections to the difFerential cross
section in (2.11) require the calculation of the Feynman
diagrams shown in Fig. 2. The ultraviolet (UV), infrared
(IR), and the collinear or mass (M) singularities which
appear in the graphs are regularized by n-dimensional
regularization. In order to simplify the calculations we
have treated the heavy (c,b, t) and light (u, d, s) quarks in
the same way by giving both of them a mass m&. Note,
however, that in the light-quark case m& has to be con-
sidered as a regulator for the collinear divergence which
will eventually be removed by mass factorization.

For the internal gluon propagators we have chosen the
Feynman gauge. Although n-dimensional regularization
preserves the Slavnov-Taylor identities we have explic-
itly checked them on the amplitude level in our calcula-
tion. The relations for the four-, three-, and two-point
functions can be found in the above reference. This en-
sures that the total virtual amplitude denoted by M„
satisfies the identity (see Fig. 3)

k",M„(k„k2)=Mg (k„k~), (3.1)

g (M 'M'*+M'M '"
) (3.2)

with M =e"(k& )e (kz)M„. If we now use the polariza-
tion sum Pt'" in (2.9) the identity in (3.1) implies that ex-

provided the external gluon and quark legs are put on
their renormalized mass shells. Notice that the ghost-
ghost —quark-antiquark amplitude Ms (k&, k2) is propor-
tional to k2 .

The computation of M has been done as follows. For
the Lorentz algebra we used the program SCHOONSCHIP
(Ref. 21). The Feynman integrals which contain loop
momenta in the numerator have been dealt with by using
an adapted version of the reduction program of Passarino
and Veltman. This program, which was originally
designed to treat the UV divergences in a proper way, has
to be extended to account for the IR and M singularities.
This can be attributed to the appearance of double-pole
terms e which show up when IR and M singularities
coincide. In this way we could reduce all Feynman in-
tegrals to a set of elementary scalar integrals which are
listed in Appendix A. These scalar integrals have been
computed in two difterent ways. The first one is via the
standard Feynman parametrization technique. This is
feasible because many particles in the loop graphs are ei-
ther massless or have only UV divergences. The second
calculation proceeds via the computation of the absorp-
tive part of the Feynman integrals by application of the
Cutkosky rules in n dimensions. The real part is then ob-
tained by using the technique of dispersion relations.

The virtual cross section is obtained from the interfer-
ence term between the virtual and the Born amplitude.
Summing over the initial-gluon polarizations and the final
spins this term will be denoted by
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FIG. 3. Diagrammatic representation of the Slavnov-Taylor
identity for the process g+g~g+Q. For an explanation of
the signs see Ref. 22.

pression (3.2) is gauge invariant and therefore indepen-
dent of n, . This we have checked by using an arbitrary
n;. The final result for (3.2) can be written in the same
way as we have done for the Born amplitude in (2.5):

g (M'M'*+M'M'*)

+CO~0+ CK+K+CQEDI QED+ oI f )

(3.3)

This formula can be applied to the virtual corrections to
(2.1), (2.3), and (2.4) with Co and CK defined in (2.8).
However, the color factor for QED is now different so we
use CQED with

N —1
QED 2 & QED 8& CQED

N
(3.4)

gp

for (2.1), (2.3), and (2.4), respectively. Vf denotes the
fermion-loop contributions to the three-gluon vertex and
the gluon self-energy. Here the sum over all fiavors is im-
plicitly understood. The expressions for V~, Vz, VQED,
and Vf are rather lengthy so that they will not be given
here. However, they can be easily reconstructed from the
reduced virtual and soft cross section. How to do this
will be shown in Sec. VI after we have performed mass
factorization. The virtual unrenormalized cross section
becomes

e/2
d 0 gg & ITS t

&
Q ] sm

s K
dt, du, 4 I ( I+a/2) p2g

X5(s+t, +u, )g(M M *+M M *),

(3.5)

where IC is defined in (2.12) and (2.13). Using the same
shorthand notation as in (2.14) we can split the virtual
cross section as follows:

(3.6)

FIG. 2. The order-g Feynman diagrams contributing to the
amplitude for the reaction g(k~)+g(kz}~g(p, )+Q(p2). Ad-
ditional graphs are obtained from a&

—a2', c&
—c4,' d&

—d3,'

e&
—e2 by reversing the arrows on the external fermion lines.

Loops with dotted lines represent quark, gluon, and ghost loops.

In the explicit expression for the virtual cross section we
observe single- and double-pole terms of the type e
(i = 1,2) which are due to the UV, IR, and M singulari-
ties. Double-pole terms only appear when IR and M
singularities coincide. The latter show up only in the 0
and K part of the virtual cross section in (3.6). The QED
part has no collinear divergences and its UV divergence
can only be attributed to mass renormalization. Further-
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more it has IR singularities. The fermion-loop part only
has UV divergences due to coupling-constant renormal-
ization. Note that collinear singularities in the ferrnion-
loop part, which can be traced back to the light quarks,
have been regulated by giving each quark a mass mf.
The 0 and K part contain all types of singularities men-
tioned above.

The IR singularities cancel when one adds the virtual
and soft contributions to the cross section. The latter
will be presented i.n Sec. V. The UV singularities are re-
moved by renormalization. Since the cross section is a
renormalization-group invariant we can limit ourselves to
mass and coupling-constant renormalization. Starting
with the mass renormalization we have to choose the on-
shell renormalization scheme in order to satisfy the Ward
identity (3.1). This can be achieved by replacing the bare
mass in the Born cross section by the renormalized mass:

(2.4) is put in the adjoint representation of the local gauge
group.

Other subtraction schemes and/or renormalization
scales can be obtained via finite renormalizations. The
renormalized virtual cross section is now given by

2 (1) ~ 2 (1)
CT gg 2

d 0 ggs =s
dt&du

& R dt&du
&

r

+s 2 p+ —+yE —ln4m —ln
2% E m

2 (0)d 0'gg

d
(3.13)

where mass renormalization in the first term of the right-
hand side of the above equation is already implicitly un-
derstood.

m ~m 1+ CF —+3y —3ln4m —4—31n
a, 6 p

b F 6 E 2

(3.7)

IV. GLUON BRKMSSTRAHLUNG

The gluon bremsstrahlung cross section is given by the
process

N —1
(3.8)

for (2.1), (2.3), and (2.4), respectively. a, =g /4~ is the
strong coupling constant for (2.1), as well as (2.4).
a =a=1.0/137.0 for (2.3). yz is Eulers constant. For
the coupling-constant renormalization we have more
freedom as long as we limit ourselves to gauge-invariant
subtraction schemes. Here we will choose the modified
minimal-subtraction (MS) scheme with the mass of the
heavy Aavor m as renormalization scale. This will be
achieved by replacing the bare coupling constant in the
Born cross section by the renormalized one

r

gq ~g 1+ ' —+y ~ —In4vr —ln Po (3.9)
+s 2 p

m

Here CF denotes the Casimir factor which is determined
by the representation of the fermion

g(ki)+g(k2)~g(k&)+Q(pi)+Q(p2) . (4.1)

(a) (b) (c)

This reaction is derived from the basic process in (2.1) by
adding a gluon to the final state. Similar reactions exist
for the processes in (2.3) and (2.4). The eleven Feynman
diagrams which contribute to the amplitude M„" & are
shown in Fig. 4. In the calculation of these diagrams we

with a, as before. po denotes the lowest-order coefficient
of the p function. It can be split into a gluon part ps and
a fermion part Pf. (e)

po= po, s+po,f, (3.10)

where p and /3f are determined by the representations of
the gluon and the fermion with respect to their local and
global gauge groups. In our example Po s is given by

Pos= ", N, Pos=0, Po—=—", N, (3.1 1)

pof = '3nf pof =
43 pof = ', nfN (3.12)

for (2.1), (2.3), and (2.4), respectively. In the case of (2.1)
we have put the quark in the fundamental representation
of the local, as well as the global gauge group. The di-
mension of the latter is indicated by nf. The gluino in

for (2.1), (2.3), and (2.4), respectively, where we have as-
sumed that the gluon is always a singlet with respect to
the global gauge group. For po f we have

(i) (j} (I )

FIG. 4. The order-g Feynman diagrams contributing to the
amplitude for the gluon bremsstrahlung reaction g (k &)

+g(k2)~Q(p, )+Q(p2)+g(k, ). Additional graphs are ob-
tained from (a)—(e) by reversing the arrows on the external lines.
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found it convenient to introduce ten kinematical invari-
ants:

pose (4.5) into

(4.6)
s =(k, +k2)

s3 =(k3+p2 } —m

s~ =(k3+p, )
—m

$5 =(pi +p2) = ug

t, =(k2 —p2) —m =t —m

u, =(k, —p2) —m =u —m~,

t'=(k, k, )—',
u'=(k, —k3)

u6=(k2 —p, ) —m2,

u7=(ki —p, )
—m

(4.2)

$3 u5 t$ Q1

$4=u5 Q6 Q7

u5= —s —t' —u', (4.7)

In order to perform the angular integrations the square of
the matrix element has to be split into sets of terms of the
type (s')"(s")'. Here k, l are positive or negative integers
and s', s" represent pairs of the kinematical variables list-
ed in (4.2). The decomposition has to be done in such a
way that only one variable contains the polar angle 01
and the other one has both the polar angle 0, and the az-
imuthal angle 02. The decomposition requires extensive
partial fractioning which exploits the following identities
between the invariants defined in (4.2):

where k1+k2=k3+p1+p2. The invariants s, t1, and Q1
were already used in the calculation of the Born graphs
(Sec. II) and the virtual graphs (Sec. III). Since we are
considering a two-to-three-body process only five of the
invariants are linearly independent. The square of the
amplitude summed over all spins and (physical) polariza-
tions of the gluon is given by g M"M * where M is
defined by

M =e"(k, )e'(k~)e (k3)M„,i(k, , k~, ki) . (4.3)

As in the case of the Born and virtual amplitude we only
sum over the physical gluon polarizations. For this pur-
pose we again use Pf' in (2.9). The gauge invariance of
the matrix element squared can be checked by the obser-
vation that the explicit dependence on n; in (2.9) drops
out. The square of the amplitude was calculated in n di-
mensions up to order e (e=n —4) in order to account
for the IR and M singularities which show up in the real-
gluon cross section. We checked algebraically that the
n =4 part of the square of the matrix element agrees with
the expressions already found in Ellis and Sexton' and
Gunion and Kunszt. ' Following the notation in the
latter reference we write

u6= —s —t, —I,",
Q7= S Q1 Q

Using these relations one can write each term in the
square of the amplitude as a product of invariants, where
the number of invariants containing the angular integra-
tion variables is two or less: e.g. ,

t u u5 = —s ~t u5 +u u5 +t u
s —i i —i —i — ' —lr t —I —i i t —i —i « —i s —i)

(4.8)

We used scHoaNscHIP to perform this decomposition.
The resulting expression contains 80 distinct terms.
After substituting the angles into the . expressions for
(s')"(s")' the result (4.5) requires the evaluation of in-
tegrals of the form

de sin" '0
n 1 1

d02sgn 02 a +Q cos01

X ( A +B cos8, +C sin8icos&2}

(4.9)

gM M '=g (NCORo+NCxRx+C&EDRQED)

(4 4)

where Co, Cx are defined in (2.8) and C&ED is defined in
(3.4) for the process in (2.1), (2.3), and (2.4), respectively.

Averaging over initial spins and colors the cross sec-
tion can be written in the form (see Appendix B)

T

d2 (1) 52 —e
~ u 2

gg e 1 1

dt, du, 2 I"( I+e) p s

1+@

(s, +m ')'+'"
(4.5)

with s4 =s +t1+"1
and d 0„=sin' 0id 01sin'02d 02.

Like the virtual and Born cross section we can decom-

where a, b, A, 8, and C are functions of the external ki-
nematic variables s, I;1, u &, and m . The results for the
angular integrals are listed in Appendix C. Some of these
integrals can be found in the literature and the gen-
eral method of evaluating them follows the techniques in
Ref. 24.

Expression (4.9) contains collinear (M) singularities if
or ( ~ ] and a =b or g =jP +C which arise

when the outgoing gluon is eInitted parallel to one of the
incoming gluons. These singularities can be traced to the
terms t' ' and u' ' in the square of the matrix element.
The M singularities only show up in the 0 and L part of
the cross section since the gluon is only emitted from a
massive quark in the QED part. Besides the collinear
divergences there are also IR singularities arising from
soft-gluon emission. They show up when the cross sec-
tion in (4.5) is convoluted with the input (bare) gluon dis-
tribution functions. The hadronic cross section (see also
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Sec. VII) is defined by

Hl H2

2
M

dt1du 1

(4.10)

where S, T„and U, (see Sec. VII) are the hadronic
analogues of the parton kinematic variables s, t „and u,
defined in (2.2). f denotes the bare parton (bare gluon)
distribution function whereas d o. stands for the vari-
ous parton cross sections (Born, virtual and real gluon)
calculated in this paper. The limits x, and x2 are
determined by the kinematical conditions

$ —X1X2S, t1 —X1 T1

u, =x2 U1 with 0 x1 ( 1, 0 (X2 ~ 1,
s4 —x1x2S +x1T1+x2U1 0,

which yield

(4.1 1)

—U 1

S+T, '
x T1 1

2 S +
1

(4.12)

H H S4 -X1T1xf '(x, )f X1S+U1

R
o gg

dt1du 1

(4.13)

If we now choose 6 «rn, S, T„U,, which implies
A«s, t„u1, then one can approximate the second in-

tegral in (4.13) by

X1 T1

X1S+U1

2o'
ggX f ds4 s

0 dt, du1
(4.14)

For a plot of the kinematics, see Fig. 5. If the real-gluon
cross section in (4.5) is inserted into (4.10) we get IR
singularities which arise at the end point of the integra-
tion x2 =x2 . At this point s4 =0 and the gluon momen-
tum k3 vanishes. To study this phenomenon further
we make a change of variable in (4.10) via x 2

=(s4 —xiTi)/(xiS+Ui) and integrate over s4 rather
than x2. Then we split the integral over s4 as follows:

dx
dTidUi ~~|— xi $4 xi Ti

x l (S+Tl )+ Ul
X ds4+ ds4

0

Note that in this approximation one neglects terms of the
order b, /m, b, /S, b, /T„and b, /U, . This will not cause
problems since 6 will be set to zero in the final answer
(see Secs. VI and VII). The result (4.14) is just a convolu-
tion integral of the type in (4.10) over a 5 function which
appears in the case of the Born and virtual cross sections.
Since 0(s4 & 6 represents the soft-gluon region we can
define the soft-gluon cross section as

(1) S 2 (1)
' R

d 0gg o ggs =6(s+t +u ) ds4 s
dt, du1 0 dt1du1

(4.15)

Insertion of expression (4.15) into (4.10) leads immediate-
ly to (4.14). The above cross section contains all IR
singularities. The double-pole terms are those containing

whereas the single-pole terms contain the factors s3
s4 and s3 's4 '. The last set of terms, which lead to IR
divergences, only show up in the @ED part. The 0 and
K part of the matrix element contains both sets of terms.
The first will be often referred to as the soft-collinear
term.

The part of the matrix element contributing to the
soft-gluon integral in (4.15) can be obtained via the eikon-
al approximation. Here one neglects the soft-gluon mo-
menta on the quark lines with respect to the quark mo-
menta. However the three gluon vertices have to be
treated exactly. Notice that this method also applies to
the kinematics so that the gluon momentum which ap-
pears in the overall momentum-conserving 5 function in
(B8) can be neglected with respect to the other momenta.
In this way the 2-3 particle kinematics becomes
equivalent to the kinematics in a 2-2 particle reaction so
one immediately obtains the 5 function in (4.15). This
method provides us with the soft-gluon matrix element,
which has to be computed up to order e in order to ac-
count for the soft-collinear divergences. From this result
we infer the soft-gluon cross section which will be
presented in the next section. If one adds the renormal-
ized virtual cross section (3.13) to the soft-gluon cross
section (4.15) the IR divergences cancel. This implies
that all double poles cancel and the ones left over are
only due to collinear singularities. They will eventually
be removed by mass factorization (Sec. VI).

The other piece of the s4 integration, which ranges
from 6 & s4 & x, (S + T, )+ U„yields the hard-gluon
cross section. The hard-gluon matrix element squared
has to be computed up to order e as far as the terms t'
and u' ' are concerned. As has been already mentioned
below (4.9) these terms represent the hard collinear (M)
divergences which can be removed by mass factorization.
According to (4.6) the hard-gluon cross section contains
the pieces

2 (1)
ogg o

s
dt, du1

=—'a, KXCo

X

e/2
t1u 1 sm

P S

(s+t, ) +-u,

(s+t, )(s+t, +ui )

(s+t, ) +(s+t, +u, )

(s+ti)u,
u i+(s+t, +u, )

(s+ti)
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tf+(s+t, )' tf+(s+t, )'

t&u& s (s+t, ) t]Q
&

2

4m' 4m 4

su)
2 (s+t, +u, )—+yz —ln4m. + ln
E p (s+t, +u, +m )

(s+t, )'
+2 + +

Q}s u/s

4m (s+t, +u, ) t, +(s+t, )

u )
2 st] u&

s+t, +
u, (s +t, )

m [t, +(s+t, ) ] .+ It, ~u, ]
t&QI

2 (13
Ogg g

s
dt&du&

' finite

= ——'n KXC4 s I(.
p

(s+t, ) +u,
(s+t, )(s+t, +ui)

(s+t, ) +(s+t, +u, )

(s +ti )u i

'5

s +t)+u)+m
e/2

t&Q
&

—sm

2$

u, +(s+t, +ui)
(s+t, )

(4.16)

t', +(s+t, )'

t, u i(s +ti )

+2 '+
u)

2 (s+t, +u, )—+y~ —ln4~+ ln
E' p (s+t, +u, +m )

4m s 4m s+
t, u tu

4m s(s+t, +u, )+
tIQ

&

$2

t, u, (s+t, )

m s
2t, u ]

.+ [t,~u, I

1

2

5

s+t, +u, +m
finite

(4.17)

and

(4.18)
d ogg QED 1 — $ 1

()) H ' 5 3

J dQ4ROED,
dt&du

& s+t&+u&+m

where the symbol ( )s"'" denotes the finite part of the angular integrals listed in Appendix C. The exPressions for the
squares of the matrix elements, namely, Ro, Rz, and RQED, can now be taken in four dimensions. Because of the nota-
tional differences, they are 8 times smaller than their namesakes in Table I of Ref. 17.

V. SOFT-GLVON CORRECTIONS

The soft-gluon amplitude can be obtained from the matrix element in (4.3) by applying the eikonal approximation.
The limit k3 ~0 is taken in the numerator and denominator terms as has been indicated in the previous section [see the
text below (4.15)]. In this limit the kinematical invariants in the two-to-three-body process can be approximated by

$3~Op $4 +Op t ~07 u ~Op Q5~ Sy Q6~Q]y Q7~t] (5.1)

while the other invariants remain unaltered. The soft matrix element can be written in the following form [see (4.4)]:

with

o~o + KSK +CQEDSQED ) (5.2)

2t)Q )So=4
$2

1 1

u 's4 t's3
t]u&

2

+
s

1 1

$4 u s3

t +u
+

$2 t'u
m m
s2 s2

3 4

BQED (5.3)

S~=4 —tj, +1 1

u $4 t $3

1 1
u 1 + It s4 u s3

t2+u2
+ 2+

2

2 2m m
$2 $2

3 4

t, +u] s —2m
2 2 2

2 ~QED
s $3$4

(5.4)

and

m m s —2m
QED 2 2 QED

$3 $4 $3$4
(5.5)

where 8&ED is given in (2.7). From (4.5) and (4.15) we infer the soft-gluon cross section
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2
2

d 0gg
s

dt, du1

3 2 ~ 2 e/2S P t1u 1 sill
K

2 I ( I+a) p~s

$1+a
5(s+ti+u, )f ds~ i fdA„QM M ' .

&( + z)i+ n (5.6)

Using the expressions for the angular integrals in Appendix C the integration over s4 is straightforward. Decomposing
the soft cross section as indicated in (5.2) we obtain

2 (1)
Ogg 0

dt, du,

S

=KNCoF(s, t„u, )5(s+t, +u))

X-
t2+u2

$2
s 2m 2 8 2 sm

lnx ——+ 1+—+—ln&s' —4sm' e p2 e tu,

+ —,
' n —ln x+Li2 1—2 Stll 2 . Sm

t1u1 t1u1
—3g(2)

u1 1 xt12

+
2

—ln +—ln +Li2 1—
t, 2 u1

u1

Xt1
—Li 1—

2 xu1

u1 2 t1 1 xu12

+ —ln +—ln +Li2 1—
s2 e u, 2 t1

d2 (1)

s ' =KNC+F(s, t„u, )5(s+t, +u, )
dt, du,

xu1

u1—Li2 1—
xt,

(5.7)

8 u1 t1+u12 2

+ln x —ln +3((2}+ 2+
~2 $2

s 2m 2
lnx +——1&s' —4sm' E

t1+u1 s —2m
2 2 2

&s' —4sm'
——lnx +2 Liz(x)+2 Liz( —x) —ln x +2lnx ln(1 —x ) —g(2)

2 2 2 (5.8)

S2 (1)
s ' =KC&EoF(s, t, , u, )5(s +t, +u, )

,QED

dt1du1

$2m
&s' —4sm

' —+1 lnx+2Liz(x)+2Liz( —x) —ln x+21nx ln(1 —x ) —g(2) ——+12 2 2 2

(5.9)

with

1 —V/1 —4m /s ( (X
1++1—4m /s

(5.10)

and the common factor F defined by

1 6 SE e/2(yE —ln4m)

16~ I (1+@/2)

; e/2
t1u1 —sm

p s

Q2

pm

e/2

~QED

(5.11)

In the above expressions g(2) =m. /6 and yE is the Euler
constant. Liz(x} is the dilogarithmic function as defined
in Ref. 27. Note that all di6'erential cross sections are
proportional to the QED part of the Born cross section.
However, because of the typical non-Abelian character of

this process the soft-gluon expression (5.6) is not propor-
tional to the whole Born cross section [see (2.11)]. This is
revealed by the fact that in the case of process (2.1)
C&Eo=D whereas the O(a, ) part of the (5.6) yields

C&Eo =(N —1)/N cf. (3.4). Addition of the renormal-
ized virtual contribution (3.13) and the soft contribution
(5.6) leads to the cancellation of the infrared singularities
present in both of them. The leftover collinear singulari-
ties from the initial-state gluon radiation are responsible
for the single-pole terms. The latter can be removed via
mass factorization as will be shown in the next section.

VI. MASS FACTORIZATION

As has been mentioned in the previous sections the re-
normalized virtual plus soft- and hard-gluon cross sec-
tions still contain initial-state collinear divergences.
These divergences have to be removed via mass factoriza-
tion. The collinear-singular parton cross section do. ; can
be written to all orders in e, as
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0',j (s, t), u ),)M, 6)
s

dt) du )

xi ] dx2
I );( ),Q, )M, e)I .(,Q,p, e)

0 Xi 0

& lm ( ~ t 1|u 1 i gXs
dt) du )

(6.1)

where s=x&X2s, t, =x, t&, u& =X2u&. The I I; are the
splitting functions which have been calculated up to or-
der 0,, and can be found in the literature. They contain
singularities as poles in e and further depend on the mass
factorization scale Q, which is of the order of s, t„u, .
The parameter p is an artifact of n-dimensional regulari-
zation which appears in the splitting function as well as
in the parton cross section do, The reduced cross sec-
tion do'I has no collinear divergences and is therefore
finite in the limit a~0. The above equation holds for the

2d 0 IJs
dt, du,

d &(m
S

dt&du
&

d2 (n)
lJ

0 dt&du
&

2g (2)
= ps~

0 dtidu )

(6.2)

Here do';J"' and do' I"' represent the order-a," part of the
collinear-singular and collinear-finite cross sections. In
this section we will calculate the reduced cross section
d &

gg
which is obtained from d O' ". The latter receives

its contribution from the hard-gluon cross section
(4.16)—(4.18) and the virtual plus soft parts in (3.13) and
(5.7)—(5.11). The gluon-gluon splitting function 1 has
been calculated in the literature. Up to order o., it can
be written as

nonsinglet as well as singlet case. Like the I;., the par-
ton cross sections d&) can be expanded in a power
series in a, as follows:

2

I sg(x;, Q,p, e)=5(1—x;)+ Pss(x;, 5;)—+ g PI (x;)ln +f (x;,Q, p, , 5;) (6.3)

P (x;,5;)=N 8(1—x; —5;)

X + —4+2x; —2x;
2 2 2

1 —x; x;

+5(1—x; )(21n5;+ —", ) (6.4)

where the sum is over the light flavors l. =(u, d, s). As
has been mentioned above (3.1) the collinear divergences
due to the light quarks have been regulated by giving
these quarks a small mass mf. This implies that the col-
linear pole term e is replaced by the logarithmic singu-
lar term lnmI lm . The gluon contribution P and the
fermion-loop contribution Pf are given by

The function fss(x;, Q,p, 5; ) does not contain col-
linear divergences and can be chosen arbitrarily. This
implies that the reduced cross section do' depends on the
way one has performed the mass factorization in (6.1).
This is indicated by the mass factorization scale Q
which appears in d& as well as in f and I . In order
to regulate the pole at x; =1, which appears in I gg as
well as in f we have adopted the convention in Ref. 29.
Here one introduces a parameter 5; which enables us to
distinguish between soft gluons, where x;) 1 —5; and
hard gluons where x; ( 1 —6;. The parameter 5; is relat-
ed to the quantity 6 which appears in the soft-gluon fac-
tor in (5.11) via mass factorization. Substituting (6.2) into
(6.1) we obtain the following relations between the
coefficients do';"' and do I"'.

Pg~g(x )=5(1 x )( )Po~) (6.5)

where f30 I is obtained from Po in (3.12) by putting

nf =1. and

d & ss'(s, t ), u ) ) d o'gs (s, t ), u ) )

dt&du
&

dt&du
&

(6.6)

, d'&,'))(s, t„u) )
s

dt, du,

d 0' s(est ,))u)=s
dt)du )

s ) dxl 2P (x„5,)—+ g Pcs(x) )ln +fgg(x„g,p, 5)) s

2
~ dX2+ P (x~, 52)—+ g P (x2)ln +fgs(x2, g,p, 5~)

f= I
d & ss'(x2s, t),x~u) )

Xs
dt, du,

(6.7)
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Notice that we have used the relation (6.6) in deriving (6.7). From (6.3)—(6.5) we infer that P and fss can be split into
two pieces as follows:

P (x, , 5;)=8(1—x; —5;)P (x;)+5(1—x;)P + (5;),

f (x, , g,p, 5, )=g(1—x,. —5,. )f (x, , g, p, )+5(1—x,. )fs+ (Q,p, 5,. ),
(6.8)

where P,f and P +,f + denote the hard- and soft-gluon parts, respectively. Substitution of (6.6) and (6.8) into
(6.7) yields

d o ~ ~(s, r„u~) d o'~ ~(s, r„u~)
dt&du

&
dtidu i

2

os'(s, r), u ) )
Xs

dtidu i

PH(x ) +fH(x g2 +2) ~s 2

&
—2dx2 H 2 H 2

d os''(x2s, r), x2u, )+ Pss(x2) —+fss(x2, g,p ) s (6.9)

ui

s+t& ' s+ui (6.10)

respectively, with the constraints x
&

& E
—

6& and
x2 & E

—62. This implies that

u(
&i & E+ &2& E+s+t, ' s+u&

(6.11)

From he soft-gluon integral in (5.6) we observe that the
kinematical invariants s, t„u& in the hard-gluon part of
d o s's in (6.9) satisfy the inequality (see also Sec. IV)

From the 5(s + t, +u, ) factor in the Born cross section
for d o' ' in (2.14) we infer that the first and second in-
tegrals between the large square brackets of (6.9) are eval-
uated for

normalization scheme. Examples are the thrust distribu-
tion in e+e —+hadrons and the nonsinglet structure
function in deep-inelastic scattering. However, this is not
the case for the gluon distribution function. Neither in
deep-inelastic scattering nor in direct photon production
(g+q ~g+q+y) (Ref. 30) can we measure the gluon
distribution function for a given mass-factorization
prescription with a reasonable accuracy.

This is especially true for the large-x region. Here x
stands for the fraction of the momentum of the hadron
carried away by the gluon. This will seriously affect the
predictive power of our calculation. Since we cannot do
any better we have chosen the MS mass factorization
scheme with Q =m as factorization scale. This is the
same scheme which was chosen for the coupling-constant
renormalization. With this choice we have

s4=s+t&+u& )6 .

From (6.11) and (6.12) it follows that we can identify

(6.12)
2

fss(x;, Q,p, 5; ) =P (x;,5, ) yz —1n4m. +in
p

(6.14)

s+t& ' s+u&
(6.13)

As has already been pointed out in the text after (6.5),
d 0 gg depends on the choice we make for the function
f . Besides the dependency of the reduced cross section
on coupling-constant renormalization as mentioned
below (3.7), this now introduces a second arbitrariness.
However, from a phenomenological viewpoint the latter
is much more serious than the former. It is possible to
find a process where the running coupling constant can
be measured with a reasonable accuracy for a given re-

Other mass factorization schemes are also possible: see,
e.g. , Ref. E3.

The reduced cross section d & gg can now be split in the
same way as has been done for the hard part in (4.6) and
the virtual part in (3.6) so the hard-gluon part of the re-
duced cross section becomes

(6.15)

where the terms on the right-hand side of (6.15) are given
by



QCD CORRECTIONS TO HEAVY-QUARK PRODUCTION IN pp. . .

&
gg, o

s
dt, du,

Co
t', +(s+ t, )'

st, u&

(s+t, ) +u,
(s+t, )(s+t, +u, )

(s+t]) +(s+t, +u, )

(s+t, )u,

'u, +(s+t, +u, )

(s+t, )

t, +(s+t, ) 4m
X s(s+t, ) u,

Sm1—
t&u&

(s+t, +u, )
In

m (s+t, +u, +m )

8m (s+t, +u, ) 1—
u i

2 t&u]
.+ It]~u] I

$ +t] +ui+m
finite

(6.16)

2 (1)
&ggg

s
dt&du

&

= ——'a LXC4 ~ + t ]u]

(s+t, ) +u,
(s+t, )(s+t, +u])

(s+t]) +(s+t, +u, )

(s +t, )u,

u, +(s+t, +u, )

(s+t, )

t', +(s +t, )'

s(s+t] )

4m

ui
sm1—
t&u&

(s+t, +u, )
ln

m (s+t, +u, +m )

8m (s+t, +u, ) 1—
u i

2 t&u]
.+ I t]~u] I

H
gg QED

s
dt&du]

s+t, +u&+m
5

o., s+t, +u,
KCQED f d Q4R QED2 7T s+t, +u, +m'

finite
(6.17)

(6.18)

For the definitions of ( )""'" see the text below (4.18).
The virtual- plus soft-gluon part of the reduced cross sec-
tion can be written as [see (3.6)]

(dg (1))V+S (dy (1) )V+S+(dg (1) )V+S
gg gg 0 gg, K

+(dy (1) )V+S++(dy (1) )V+S (6 19)gg QED ggf

d2~ (i) V+S
2s

dt, du,
= )'6a, KNCo[Fo+ (t, u, t„u, )

+F0+ (u, t, u„t, )]

X5(s+t, +u, ),
v+s

dt, du,

+Fx- + (u, t, u„t, )]

X5(s+t, +u, ),
(6.20)

(&)
gg, QEDs

dt&du
&

V+5
=

—,', a, KCQ E[DFQ ED(t u t] u])

+FQED (u, t, u„t, )]

X5(s+t, +u, ),

We are able to give an explicit expression for the right-
hand side of (6.19). The first three terms are

where

Fo+ (t, u, t, , u, ), Fx (t, u, t„u, ),

v+s
FQpD (tyuyt]iu] )

can be found in Appendix D.
Notice that the apparent singularity at the threshold

s =4m ~ (i.e., s, =0), which is caused by terms containing
s&, s&

' explicitly disappears from the expressions in
F~+ and FQFD These pole terms are still present in
FO+ . However, one can check that for s ~4m the ex-
pressions in (D2) and (D3) behave like m. s ' where
s=s+I —4m /s; see (7.17). In the total cross section
the last term will be canceled by the factor of s coming
from the integration over phase space. This implies that
the contribution of the virtual plus soft correction term
in (6.20) leads to a finite expression for the total hadronic
cross section in the threshold limit s ~4m . This effect
can be attributed to the Coulomb singularity caused by
the exchange of massless gauge bosons between massive
fermions. We will come back to this point in the next
section.

Another observation we want to bring to the attention
of the reader is that the leading cutoff term ln 5 appear-
ing in (6.19) [see also (Dl) and (D2)] is proportional to the
Born cross section in (2.17). This is in agreement with
the work of Mueller and Nason ' who assumed that the
leading soft-gluon terms in heavy Qavor production form
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the exponential series exp[(2a, N ln 5)/n].
Finally we have the heavy-fermion-loop contribution

to (6.19):

d2~ (] )
V+S

Rgi f
dt]du i

,', a~Ã—C Ff +
( t, u, t „u, )

f=H, L

X5(s+t, +u& )

a~ mf d& sg
Po fin s

2mf H
' m

(6.21)

2' Vlf
[8—6g(2)+4rflnxf +In xf ]

s t)ui

2 m

3 st&u&
(6.22)

where

1 —rf
rf =(1—4mf/s)'~, xf =

I+ rf
(6.23)

where the summation is over the heavy (H =c, b, t)
and/or light (I. =u, d, s) quark contributions. The last
term in (6.21) contains the Born cross section in (2.14).
For s )4mf FH is given by

Fv+s (t )2

torization scale) appear in the renormalized cross section.
In such a scheme one invokes the decoupling theorem so
that light (mf (Q ) as well as heavy (mf )Q ) fermions
are simply removed from the perturbative expansion.
However, we prefer to let field theory take care of its own
large corrections. This is the case in the first part of
(6.21) where the expression F + is well behaved for
small as well as large mf/s. However, the logarithmic
terms in the second part of (6.21) are appreciable if Q
(=m ) is much larger or much smaller than mf. In the
former case one gets a negative contribution while in the
latter case a positive one. The source of these logarithms
is the self-energy insertion in the external gluon legs. In
calculating the hadronic cross sections (see Sec. VII) we
shall adopt the convention that the number of active
flavors nf in the running coupling constant and in the
internal fermion loops should never exceed the rank of
-the produced Aavor in the final state. This implies that
for c-, b-, and t-quark production we only include four,
five, and six internal (active) fiavors, respectively. Since
the factorization scale is of the order of the produced
heavy-quark mass m the heavy fermions with mf )m are
automatically decoupled from our hadronic cross section.
Therefore we only have to deal with the situation that
Q( =m) )mf. In the case of t-quark production the size
of the logarithmic terms ln(mf/m, ) where (f =c,b;
Q=m =m, ) is noticeable (about 20% of the cross sec-
tion, see Sec. VII). Therefore one has to resum these
large logarithms which can be done by replacing the run-
ning coupling constant in the gluon-gluon-fusion cross
section by

For s (4mf' FH'+'is given by

FH+ =(t, —u, )

2' Plf
(8—8rf arctanXf —4 arctan xf )

s t, u,

2 I
3 st] u]

(6.24)

where

1/2rf =(4mf /s —I )'~, Xf =
rf

(6.25)

In the case of the light u, d, s quarks the last term in
(6.21) is removed by mass factorization [see (6.7)] and
FL+, which no longer contains the mass of the light
quarks, is

~+s 2 m (t, —u&)Fv+s
L 3 st]u,

(6.26)

The renormalization of the fermion-loop contribution
in (6.21) divers from that used in Ref. 13, where the re-
normalization scheme was chosen in such a way that no
logarithms of the type ln(mf /Q ) (with Q the mass fac-

a, (Q) '=a, (Q)

X 'I+[a, (Q)/4m] g paf»(mf/Q')
f=H

(6.27)

The unrenormalized virtual cross section in (3.5) can be
reconstructed from the reduced virtual plus soft cross
sections in (Dl)—(D3) and (6.21) in a straightforward way.
First, we subtract the soft cross section (5.6) from the re-
duced cross section in (6.9). In this way one obtains the
renormalized virtual cross section on the left-hand side of
(3.13). The unrenormalized one (with respect to the
coupling-constant renormalization) follows from the
right-hand side of the last equation.

Before finishing this section we would like to comment
on the regularization dependence of the reduced cross
section. In particular we want to discuss the result which
follows from using n-dimensional reduction rather than
n-dimensional regularization for the parton cross sec-
tions. One has to be careful using n-dimensional reduc-
tion in order to regulate the UV divergences. Since it is
very hard to disentangle the UV divergences from the IR
and collinear singularities in the virtual amplitudes (3.6)
we limit ourselves to the collinear divergences which ap-
pear in the hard-gluon cross section. If we assume that
the reduced hard cross section is regularization indepen-
dent then one can derive the following relation from (6.9):
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d crss (s, ti, ui) d crss(s, ti, u) )

dtidu i dtidu i

ctg ~

i —s, dx, 2 d os' '(x, s, x, t»ui ) d o ss( x, s, xit, , u i)

2m 0 xi e dt idui dt idui

+ Pss—(xz) s
i —,dx2 2 ~ d crs's'(x2s, t»x2u, ) d o'ss(x2s, t»x2ui)

S
0 X2 E dt, du

&
dt&du

&

+ X(~ ~P gg x]~ ~P
X) ti du i

+ X, ,P X2, ,P
X2 dt, du i

(6.28)

Here the prime means that we have calculated the quanti-
ties by using n-dimensional reduction whereas the
unprimed quantities are calculated by n-dimensional reg-
ularization. Notice that do. ' ' —der' ' is of order E',

therefore we can neglect the difference if do. ' ' and do' '

are multiplied by finite functions. P (x) is a universal
function independent of the regularization method.
However fss and fss depend on the regularization
scheme. In order to perform the mass factorization we
have to define them in another process. This can be any
process provided it shows the same collinear divergences.
Here we choose the reaction

tion independence of the reduced hard-gluon cross sec-
tion only works for the massless parts. It breaks down
for terms which are proportional to the quark mass m .
We have also checked this statement for the reactions
q +q —+ W'+y+g, and q(q)+g~ W'+y+q (q ) in Ref.
26 where the 8'is massive but the quarks and gluons are
massless. In these cases the reduced hard-gluon cross
sections are independent of the regularization method
used. Hence it is the quark masses which are responsible
for the difference between n-dimensional reduction and
n-dimensional regularization.

g +g~S +g (6.29) VII. HEAVY-FLAVOR PRODUCTION

where s is a scalar which is a singlet under the local gauge
group. The gauge-invariant interaction Lagrangian is
given by

X;„,(x)=A/(x)G„' (x)G'" (x), (6.30)

fss (x)= 2N—1 —x
(6.31)

provided this term is only convoluted with the mass
terms in the Born section doss' in (6.28) and not with the
massless part. This is of course ugly and it means that
something is wrong with n-dimensional reduction or with
mass factorization.

For the moment we can conclude that the regulariza-

where P(x) is an external source and we work in lowest
order in A, and (in principle) in all orders of the gauge-
coupling constant. Our findings are that fss =fss so that
the difference between do. '" and do' ' only originates
from the difference between the Born cross sections
dcr' ' and do' '. We discovered that relation (6.28) holds
if we put the quark masses equal to zero. However, this
relation does not hold for the terms proportional to m
and m . This means that for the n-dimensional reduction
method we would not have found all the m and m
terms in the contributions between the large square
brackets in (6.28). The situation can only be rectified if
we assume that in n-dimensional reduction the function
f gets an additional part which is equal to

p (Pi )+p(P, )~Q (pi )+Q(p, )+X, (7.1)

where p and p denote the proton and antiproton, respec-
tively. The quantity X stands for all final hadronic states
which we sum over so that the above process is inclusive
with respect to the outgoing hadrons. We use capital
letters for the momenta and invariants of the proton and
antiproton to distinguish them from those of the quarks
and gluons. These invariants are [see (4.10)]

S =(P, +P2)

T, =(P~ —p2) —m

U, =(P, —p~) —m

(7.2)

where S denotes the square of the hadron c.m. energy and
T, , U, are the hadronic analogues of t„u, in (4.2). The
hadronic cross section for the process in (7.1) reads

In this section we will discuss the total and differential
cross sections of t- and b-quark production via the
gluon-gluon-fusion mechanism in (1.2). Besides t and b
production we could also study c production, but since
m, is much smaller than the collider energy we believe
that the c quark should be treated as a light quark rather
than a heavy one. In this paper we present the results of
our calculations for representative values of the input pa-
rameters. The hadronic reaction in which the heavy
Aavors are produced is given by
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d o(ST„U ) i dx, i dx~
Hss(x„x2, Q )

dT, dU, — x,
d &

s —5(s+ti+ui )cJss(s, ti, ui )
dt, du,

(7.6)

d oss(s, ti, ui)
Xs

dtldu l

its contribution to the hadronic cross section (7.3) can be
written as

(7.3)

The lower limits x, , x~ are defined in (4.12) (see also
Fig. 5). d oss denotes the reduced (mass factorized) par-
ton cross section which has been calculated up to order
e, in the previous section. H is the product of the
scale-dependent gluon distribution functions. It is given
by [see (4.10)]

d o(S, T„U, )

dTldUl

dx 1

X)

] XlTl
Xl Tl xlS + Ul

X lTl2 Xl Tl
Spxl Tly UlxlS+ Ul xlS+ Ul

H ( x„xz,g )=f~~(x„g )fs~(x2, Q ), (7.4) (7.7)

12'
(33—2nf)lng /A

(7.5)

Furthermore, we will take Q =m as the mass factoriza-
tion scale in the gluon distribution function as well as in
the running coupling constant a, . As we have already
mentioned below (6.13), there is an uncertainty in the ex-
pression for the gluon distribution function. This holds
for its x dependence as well as its higher-order @CD
corrections. The latter depends on the chosen mass fac-
torization scheme. Neither deep-inelastic lepton hadron
scattering nor direct photon production (p +p ~y+X)
provides us with sufficient high-statistics data needed for
an accurate determination of the gluon distribution func-
tion. Therefore the contribution of the gluon-gluon
fusion mechanism to the hadronic reaction in (7.1) will
heavily depend on the chosen mass factorization scheme
and the uncertainty in the large-x behavior of the param-
etrization in the gluon distribution function.

Denoting the gluon-gluon Born cross section (2.14) by
the shorthand notation

where fs~, f~~ denote the gluon distribution functions of
the proton and antiproton, respectively, which can be set
equal to each other.

For the gluon distribution function we have chosen the
EHLQ parametrization, with go=2 GeV/c and A=0.2
CxeV/c (Ref. 33). This choice implies f (x, Qo)-x ' for
small x. The running coupling constant is given by

The virtual plus soft part of the hadronic cross section
therefore equals

d 0(S, Ti, Ui)
dT, dUl

dx i

X)

X v+S
gg

XlTl
xl Tl xlS+ Ul

X lTl2

SxlT

Xl Tl
xlS+ Ul

(7.9)

The hard-gluon correction term is given by (6.15). The
hard-gluon part of the hadronic cross section reads

with x, given in (4.12).
Following the discussion below (4.12) we split the

order-a, correction to the Born hadronic cross section
into a virtual plus soft- and a hard-gluon part. The virtu-
al plus soft contribution, which is given in (6.19), can be
denoted by

V+S

s =5(s+t, +u, )oss+ (s, t„u„A) .
dtldu l

(7.8)

d cr(S, T„Ui)
dTldUl

dxl l dX2 d&
gg

Hgg xl x2, m' s' xlx2s, xl Tl x2Ul
X, X,* X2 dt, dul

(7.10)

where x 2 is determined by the condition [see (4.11)]

$4 =x lx2S +x l Tl +x2 Ul & 5
which yields (see also Fig. 5)

x2 =(b, —xi&i)/(xiS+ Ui ) .

(7.11)

(7.12)

Other differential cross sections such as, e.g. ,
d u/dy dpT, where y is the rapidity, can be obtained

from the above expressions by multiplying by the ap-
propriate Jacobians. The total cross section for (7.1) is

(S+S)/2o„,= J d( —T, )
(S—S)/2

S+Tl d o(S, T„U, )X, d( —U, )—Sm /T l dTldUl

(7.13)
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where S=5+I —4m /S and the pieces of d tT are given
by Eqs. (7.7), (7.9), and (7.10), respectively. Expression
(7.13) can also be inferred from the reduced parton cross
section d & since

o.„,=f, dx, f, dx2H (x,x2m )
4m /S 4m /x1S

tr(s, m )= f d( —t, )
(s —s )/2

s+&1 d 0. S, t, , u&X, d( —u, )—sm /f,
1

(7.15)

X&(x,x2S, m ),

—U
1

(i)x(-u1)
(1)

( —U1)
Il I

(a)

s-pM ~s---

where &(s, m ) is defined by

(7.14) The integration boundaries are indicated in the Dalitz
plot of Fig. 5. Notice that for do. the upper boundary
in the u& integral has to be replaced by s+t, —A. The
integrations have been carried out numerically by using
vEGAs (Ref. 34). We checked that (7..13) and (7.14) are
numerically equal.

Let us first consider our results for the parton-parton
subprocess. Because of the fermion-loop contribution to
d & + in (6.21), & depends on the internal fermion mass
m which takes the values of the heavy Aavor masses off
the c, b, and t quarks. The mass of the internal flavor
quark m is not necessarily equal to the correspondingf
mass of the heavy flavor quark produced in the final state
(denoted by m). In order to compare with the results of
Ref. 13 we omit for the moment the logarithmic terms of
the type ln(mf /m ) in the second part of (6.21) [cf., the
discussion after (6.27)]. The remaining part of the
fermion-loop contribution is very small due to the decou-
pling mechanism. Therefore one can write the perturba-
tive expansion of the parton cross section in terms of
scaling functions, ' i.e.,

2 2

&, (s, m')= ', [f' '(p)+4~tz, (m')fss'(p)]

(7.16)

(&) & (i)X (a)+ (a) -t1(-t ) ( —t ) (-t1) (-t1)

where f' ' f'" stand for the Born contribution to the
Rg '

gluon-gluon-fusion mechanism, and the order-a, correc-
tion, respectively, and p=4m /s. Notice that in contrast
with Ref. 13 we have already put the mass factorization
scale Q to be equal to m . In Figs. 6 and 7 we present
the various contributions to (7.16). For that purpose we
have split the order-a, correction into a virtual plus soft
part (6.19) [including the first part of the fermion-loop
contribution in (6.21)] and a hard-gluon part (6.15). For

0. 1 2

X 2 --—
Xg, m I

I

1 I

x„m x)+

(c)
x1

008—

CL

cA 0.04—
+-

FICr. 5. The Dalitz plot for the 8+8~Q +Q +X. (a)
shows —u1 versus —t1, where the points marked are
( t )"'*=(—u )—"'*=—'(s —+s' —4sm')ll+b, /'1/s2 —4sm'),1 1

( —t )' '*=(—u )'2'*= —' ls+v s~ —4sm')(1 —6/')/s2 —4sm').1 2

( —t )'"=(—u1)"' and ( —t1)' '=( —u1)' ' are obtained from1

( —t1)'", ( —t1)' '* by putting 6=0. (b) shows s4 vs —t1. (c)
shows x2 vs x1 where the points marked are x1
=(5—U, )/(S+T, ), x2 =(5—T1 )/(S+ U1). x1~ and x2 ~
are obtained from x1* and x2 by putting 6=0. The hatched
area represents the soft-gluon part of the Dalitz plot.

—0,04
10

1
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P
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FIO. 6. Plot of the scaling functions fss'(p) and fs~"(p) ap-
pearing in (7.16). (1) f' '(p), Born term. (2) fs" '(p), hard-gluon
part. (3) fss"(p), virtual+ soft-gluon part. (4) fs~"(p), hard
+virtual+ soft.
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FIG. 7. Plot of the scaling functions fg' '(p) and f'"(p) ap-
pearing in (7.16). (1) fg'g'(p), Born term. (2) fg'~"(p), hard-gluon
part. (3) fg'"(p), virtual+soft-gluon part. (4) fg'g"(p), hard
+virtual+ soft.

I

10 1010

the number of flavors we took nf =6. Note that in the
subsequent presentation of our results for the cross sec-
tions we have removed the ink terms from the virtual
plus soft contribution and added them to the hard-gluon
part. We then checked that the new hard piece was in-
dependent of 5 as 6~0.

Our results for f'" agree with those found in Ref. 13
for the whole range of p. From Figs. 6 and 7 we infer
that for 1.1 &p ' & 10 the Born process (1.2) dominates
over the order-o. , correction, whereas for p '&1.1 and

p ') 10 the inverse is true. Furthermore, Fig. 6 reveals
that the virtual plus soft contribution is smaller than the
hard-gluon part (lnb, terms from the virtual plus soft in-
cluded) except in the region 2 &p

' & 12. Notice that for
the comparison between the Born and the order-a,
correction one has to bear in mind that the function fgg'
has to be multiplied by 4+a, (m )-2. The large contri-
bution of the order-a, correction to process (1.4) in the
region p ') 10 is wholly due to the hard-gluon part and
can be traced back to the ss channel poles (4.2) appearing
in d& ss o in (6.16). This efFect can be explained by the
exchange of a gluon in the t channel of the subprocess
g +g ~g +g * with g

*~QQ. This subprocess contrib-
utes to do'

g 0 only and dominates in the high-energy
limit. Near threshold p '& l. l the dominance of the
order-a, correction can be attributed to soft-gluon radia-
tion coming from the expressions d& g o and d & g~s x in
(6.16) and (6.17), respectively. For p —1 the threshold
behavior of the cross section in (7.16) can be exactly cal-
culated from the expressions given in Appendix D. In
the limit that s ~4m we obtain

os(s, m )=ma, —Co —,'P —CxP+CoEDP+ %Co[Pin (SP ) ——,'Pln(8P )]

2

+ XCx.[ ~ m' 2Pln (SP )+10Pln(SP )]+ C&ED (7.17)

with p=&1 —p. In the case of QCD (%=3) the above
expression agrees with that given in (26) of Ref. 13. It de-
scribes the threshold behavior of o very well for values
of p

' &1.0001. Furthermore, we infer from the above
result that at threshold the Born cross section equals zero
whereas the order-o. ', correction becomes a constant.
This is due to the Coulomb singularity present in d & z+
and d& &ED which leads to the rr terms in (7.17). The
threshold behavior of the parton cross section of the
gluon-gluon-fusion process is very important for the ha-
dronic cross section. Since the gluon distribution func-
tion increases very steeply at small x values the main part
of the hadronic cross section is determined by the thresh-
old behavior of the parton cross section (s =x,xzS). Fi-
nally, we infer from Ref. 13 that the order-a, correction
to the gluon-gluon-fusion process dominates over the oth-
er heavy-flavor production mechanisms such as (1.3) and
(1.5) not discussed in this paper.

In the next figures we show the parton cross section
(7.15) evaluated for charm (m, =1.5 GeV/c ), bottom
(mb=5. 0 GeV/c ), and top-quark production (m, =40
GeV/c ). Here we also include the logarithms in the
second part of (6.21). Furthermore we use the running
coupling constant in (7.5). In the case of c-quark produc-

20—

15—

10—

I

10
1

10
I

10
s (GIZV )

l

10
I
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FIG. 8. Total parton cross section for charm production with
nf =4 flavors in the internal fermion-loop contribution and the
running coupling constant.

tion in Fig. 8 we use four active flavors only for the run-
ning coupling constant (a, =0.37) as well as for the inter-
nal fermion-loop contribution (6.21). This implies that
the heavy fermions with mf )m, decouple from the vir-
tual contribution [see the discussion after (6.26)]. In Fig.
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0.5 TABLE I. Total pp cross section (all units in pb) for b-quark
production mb =5.0GeV/c', a, (mb) =0.255 (qq), a, (mb) =0.247
(gg), and nf = 5 in (6.21) and (7.5).

0.3— &S (TeV)

0.63
1.8

qqO (a,')

0.39
0.55

ggO(a,')

8.9
26

ggO(a, )

11
40

—0.1

lQ

l

10 10
s (Gev )

t

1Q 10 10

FIG. 9. Total parton cross section for b-quark production
(nf =5). (1) Born term. (2) Hard-gluon part. (3) Virtual-soft-
gluon part. (4) Fermion loop. (5) Sum of 1 —4.

0.0020

0.001 5—

0.001 0—

~ 0.0005-

—0.0005
10 10 1Q

s (Gev )

FIG. 10. Total parton cross section for t-quark production
(nf =6). (1) Born term. (2) Hard-gluon part. (3) Virtual-soft-
gluon part. (4) Fermion loop. (5) Sum of 1 —4.

10 10

9 we show the parton cross section for b production.
Here we take five active flavors (as =0.255) which leads
to a small contribution from logarithmic terms of the
type 1n(mf/mb) for mf (mb (here only m, is relevant).
Furthermore, we have split the total parton cross section
into its various parts: i.e., Born, virtual plus soft (without
the fermion loop), fermion loop and hard gluon (includ-
ing the lnb. terms from the virtual plus soft}. The various
contributions follow the pattern already discussed for
f~~"(p) in (7.16). The same contributions are shown in
Fig. 10 for the parton cross section for t-quark produc-
tion. Here we have chosen six active flavors (a, =0.169).
It appears that the contributions of the logarithms
ln(mf/m, ) to the fermion-loop contributions are much
larger than in the previous case (here both m, and mb are
relevant). These terms contribute about 20% of the ha-
dronic cross section, so we have to resum them in order
to make reliable predictions.

%'e now give a sample of results for the hadronic cross
sections for b as well as t-quark production including the
di8'erential distributions with respect to pT (transverse
momentum) and y (rapidity). Since we have numerically
stable values for the total cross sections (accurate to at
least 1%), we simply chose a small value for 6 and in-
tegrated the original virtual plus soft contribution and

TABLE II. Total pp cross section (all units in nb) for t-quark
production, a, (40)=0.169(qq), a, (40)=0.155(gg); a, (80)
=0.150(qq ), a, (80)=0.135 (gg); and n& =6 in (6.21) and (7.5).

m, (GeV/c ) &S (TeV) qqO(a, ) ggO(a, ) ggO(a, )

40.0
40.0
80.0
80.0

0.63
1.8
0.63
1.8

0.54
1.9
0.016
0.17

0.39
10
0.0011
0.23

0.38
7.7
0.0014
0.18

the hard contribution separately, plotting all the relevant
distributions. We then checked that the addition of the
two pieces produced stable results, after cancellations of
at least 1 order of magnitude, and the correct value for
the total cross section. The cancellations occur all over
the phase space so a considerable amount of computer
time was required to stabilize the final values in all the
bins in pT and y. However, the final distributions are
good to about 5%. We concentrate on~etting accurate
theoretical results for pp collisions at &S=0.63 and 1.8
TeV. For the input parton distribution functions we
chose the EHLQ parametrization.

The total pp cross sections for b (mb =5.0 GeV/c ) and
t (m, =40.0 GeV/c, and m, =80.0 GeV/c ) production
are presented in Tables I and II, respectively. The results
for the order-n, and the order-a, contribution to the
gluon-gluon-fusion processes are shown separately. We
have also included the cross section for the order-cx„qq
fusion process (1.1), using the EHLQ quark-antiquark
structure functions, since it is relevant for t-quark pro-
duction. For b-quark production we have chosen five ac-
tive flavors (nf =5). In the case of the qq fusion process
we took the running coupling constant a, (m ) given by
(7.5) (a, =0.255). However, for the gluon-gluon-fusion
process we have to resum the logarithms of the type
ln(mf /m ) which can be achieved via the replacement of
a, by a, in (6.27), (a, =0.247). This replacement will

only introduce a minor correction in the case of b pro-
duction. For t production we have chosen six active
flavors (nf =6). Further we proceed in the same way as
in the case of b production. For the qq fusion process we
take a, =0.169 (m, =40.0 GeV/c ), and for the gluon-
gluon-fusion process we choose a, =0.155, (m, =40.0
GeV/c ). Changing a, into a, will decrease the gluon-
gluon cross section by about 20%. If m, =80.0 GeV/c
the values for e, and cz, become 0.150 and 0.135, respec-
tively. From Tables I and II we infer that the a, cross
section is a significant fraction of the total for these
masses and energies. This cou1d already be expected
from the input parton cross sections as has been dis-
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TABLE III. Total pp cross section (all units in pb) for b-

quark production m& =5.0 GeV/c, a, (m&) =0.190 for both qq
and gg, and nf =5 in (6.21) and (7.5); see Ref. 14.

&S (TeV)

0.63
1 ' 8

qqO(a, )

0.22
0.31

ggO(a,')

5.3
16

ggO(a, )

5.0
18

cussed above. Comparison with the literature reveals
that the values for the b and t production cross sections
as quoted in our tables are larger than those of other au-
thors" due to our choice of the running coupling con-
stant.

If we want to make a comparison with Ref. 14 one has
to use the renormalization scheme where all heavy fer-
mions are decoupled from the radiative corrections. As
discussed after (6.26) this implies that the second part of
(6.21), which contains the logarithmic terms ln(mf /m )

have to be removed from the fermion-loop contribution.
Furthermore, we use the two-loop corrected running cou-
pling constant as given in (10) in Ref. 14 with A=0. 17
GeV/c and factorization scale Q =m. The values of the
running coupling constant for b and t production are
0.190 and 0.125 (m, =40.0 GeV/c ) and 0.112 (m, =80.0
GeV/c ), respectively. Furthermore, the number of
fiavors in both cases was chosen to be nf =5. The values
for the b and t production cross sections are presented in
Tables III and IV, respectively. From these tables we
infer that there exists an agreement between our results
and those given in Table II of Ref. 14. The small
discrepancies are due to the fact that we have not calcu-
lated the small contributions from the processes (1.3) and
(1.5). To further check our numbers we used the expres-
sion for'fs~"(p) [in (23) in Ref. 13]. We were able to
reproduce our numbers in Tables I—IV to within 1'F~. In
addition we computed for t-quark production (m, =40.0
GeV/c &S =0.63 TeV) the ratio of the order-a, correc-
tion divided by the Born cross section which in our case
is about 1.5 (a, =0.158). The last number is in agreement
with Fig. 14 in Ref. 13.

The differential cross sections with respect to pz and y
which are shown in the subsequent figures are computed
with the same two-loop corrected running coupling con-
stant and the renormalization scheme as used in Ref. 14.
Here both the gluon-gluon-fusion mechanism and the
Born cross section for the qq reaction have been taken
into account. Since the cross sections for the Born and
the order-a, contributions are almost equal in magnitude

it is best to separately display the distributions for the
Born cross section and the total cross section. Figure 11
shows the pT distribution for the b quark with mass 5
GeV/c in the reaction p +p ~b +b+X in order a, and
a, at &S =0.63 TeV. The same distributions are plotted
in Fig. 12 for &S =1.8 TeV. In Fig. 13 we show the pT
distribution for the t quark in the reaction p +p
~t+t+X with mass m, =40.0 GeV/c for &S=1.8
TeV. These results show that the radiatively corrected
pT distributions are uniformly larger than those of the
Born approximation. Since the cross section is largest for
s near threshold both the virtual plus soft and the hard
parts contribute. In Figs. 14—16 we also present the rapi-
dity distributions for the b and t quarks choosing the
same parameters as given above. The corrections are
again uniformly positive and primarily change the height
of the distribution.

Notice that our results for the pz and y distributions
cannot directly be compared to those from Ali, van Eijk,
and ten Have in Ref. 3. These authors implemented a pT
cut on the hard-gluon radiation cross section in order to
avoid the collinear singularities arising in the matrix ele-
ment. The correction they obtained therefore had to be
positive. Mass factorization removes this singular part
from the cross section so it is not obvious what the
correct results should be. The QCD corrections in this
paper are obtained from an exact calculation.

The UA1 group have recently presented their data for
b-quark production at &S =0.63 TeV„ in the form of a
differential distribution in pT )pT'" with an experimental

to

3
10

C9

G

c 2
10

I—
CL

U

40.0
40.0
80.0
80.0

0.63
1 ' 8
0.63
1.8

0.29
1.03
0.009
0.095

0.26
6.5
0.0008
0.16

0.21
4.1

0.0008
0.10

TABLE IV. Total pp cross section (all units in nb) for t-quark
production, a, (40)=0.125, a, (80)=0.112 for both qq and gg,
and n& = 5 in (6.21) and (7.5); see Ref. 14.

m, (GeV/c ) &S (TeV) qq O(a, ) ggO(a, ) ggO(a, ) 10 20
~, (c~vic)

30 40

FIG. 11. do. /dpT for b-quark production (mb =5.0 GeV/c')
at &S =0.63 TeV. Dashed line: 0(a, ) cross section; solid line:
sum of the 0 (a, ) cross section and the 0 (a, ) correction.
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FIG. 12. do. /dp& for b-quark production (mb =5.0 GeV/c')
at ~S =1.8 TeV. Dashed line: Ola, ) cross section; solid line:
sum of the 0 (a, ) cross section and the 0 (a,') correction.

FIG. 14. der/dy for b-quark production (mb =5.0 GeV/c )

at &S =0.63 TeV. Dashed line: 0 (a, ) cross section; solid line:

sum of the 0 (a, ) cross section and the 0 (a,') correction.
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)
C9

—2c 10
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10
102

10 0
I l I
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P~ (GzV/c)

I

80 100
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I
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I
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FIG. 13. do/dp& for t-quark production (m, =40.0 GeV/c )

at &S =1.8 TeV. Dashed line: O(a, ) cross section; solid line:
sum of the 0(a, ) cross section and the O(a, ) correction.

FIG. 15. da/dy for b-quark production (mb =5.0 GeV/c )

production at &S =1.8 TeV. Dashed line: 0(a,') cross sec-

tion; solid line: sum of the 0(a, ) cross section and the O(a,')
correction.
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E)—
CL

CL

0.

0.01 =
r
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PT (Gc Vl c)

30

—210

FIG. 17. The inclusive bottom cross section in pp collisions
at &S =0 63 TeV for pr(b) &pP'" and ~y(b) ~

(1.5 as a function
-of pT'". The dashed curve is the theoretical prediction from the
O{a,) cross section and the solid line stands for the sum of the
O(a, ) and the O(a,') contributions computed in this paper.

I

—2

FIG. 16. do /dy for t-quark production (m, =40 GeV/e ) at
&S =1.8 TeV. Dashed line: O(a, ) cross section', solid line:
sum of the O(a, ) cross section and the O(o., ) correction.
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APPENDIX A

cut ~y~ (1.5. Since this is an inclusive b or b production
cross section we have to multiply the total cross section
values in Table III by a factor of 2. We have added the
appropriate cuts to our computer programs to generate
this pT)pT'" distribution. Figure 17 shows our results
superimposed on the experimental data. Since the Born
production cross section is too low, there is now direct
evidence for the large @CD correction discussed in this
paper. A more detailed theoreti. cal analysis of the correc-
tions to the p~ distribution will be presented in due
course.

1
C, = e

16m

2
. E/2

e/2( yE —ln4m ) gyes

p

1 —+1—4m /s
X =

1++1—4m /s
(Al)

In this appendix we will list all scalar Feynman in-
tegrals which emerge from the Passarino-Veltman reduc-
tion technique applied to the graphs in Fig. 2. The nota-
tions for the one-, two-, three-, and four-point functions
have been taken over from Ref. 23. Furthermore, we
have
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g(2) =

The expressions for the scalar integrals are already
analytically continued into the physical region. Only the
real parts of the integrals are given. This is because any
imaginary part will disappear when the first-order correc-
tion, containing these integrals, is contracted with the
Born matrix element.

The one-loop four-point function is defined by

D(q&, q2, q3, q4, m„m2, m3 m4)

d /ld
2-" q'- ', q+q '-', q+q+q, '- ' q+q+q, +q, '-: '

where m; represent the internal masses and the external outgoing momenta q; satisfy the relation g4, q; =0.
There are three different types of four-point functions. They are given by

(A2)
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1 1
D(p, , —k, , —k~,p~, O, m, m, m)=iC,

1 —4m /s

2X ——lnx —2 lnx ln(1 —x)+2 lnx ln( 1+x)—2 lnx ln
m

—2Li~(x ) +2Li~( —x ) —3g(2) (A3)

D( —k(,p),pp, —k~, O, O, m, O)=iC, —+—21n +ln +21n ln
1 8 2 tj s s

6 & m m m
—4$(2)

m
(A4)

1 4 2D( —k„p„—kz, pz, O, O, m, m)=iC, —+-
tju j

ln +1n
j

m

—tj+2 ln ln
u j ——g(2)

7
2

(A5)

The other D functions can be obtained by interchanging k j k2 or t j u j.
The one-loop three-paint function is defined by

—e 1

(2~)" (q —m, )[(q +q, )
—m z][(q +q, +qz) —m 3]

(A6)

There are six different types of three-point functions
which are listed below:

C(p„p~, —k( —kq, O, m, O) C(pz, p„—k, —kz, m, O, m)

1=iC, [2Li~( —x)+ —,'ln x +g(2)],
s 1 —4m /s

(A7)

C(pl, —k&,pz
—kz, O, m, m)

1=iC,
s't/I —4m /s

——lnx —2lnx ln(1 —x)2
E

—2 Liz(x)+ —ln x —4g(2)

(A12)
1= iC,—[g(2 ) —Li~( t /m )],
j

C( —k„pl,pq
—k~, O, O, m)

1 2 2 t
=iC,——+—1n

E

(A8) The other C functions can be obtained by interchanging
k j~k2 or t j~u j.

The one-loop two-point function is definetl by

d 1B(ql, m„m~)=p 2m" q
—m, q+q, —m

(A13)

t 1+ln' +Li, +—g(2), (A9)
m2 2 m2

C( —k„—k~,p, +p~, 0,0,0)

There are five different types of two-point functions:

B(p, —k„O, m)=iC, ——+2——ln (A14)

1 4 2 s 1 2=iC,——+—ln +—ln
e & m

s 7——g(2)
m

B (pI +p~, m, m) =iC ——+2++I —4m /s lnx
2

(A15)

C( —kl, —k~,p~+p~, m, m, m)

1=iC, [ ,'ln x ——3g(—2)],

(A10)

(A11)

B(p„O,m)=iC, ——+22

2B ( kmI, m)=iC,
E'

(A16)

(A17)
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B (p, +pz, o, o)=iC, ——+2—ln
2

m
(A18)

A (m)=p 'f d "q 1

(2Ir)" q
—m

(A19)

The other B functions can be obtained by interchanging
ki+-+k2 or t, ~u i.

The one-loop one-point function is defined by

pI =(EI,O, . . . , 0, —co3singIsingz co3slngIcosgz

—co3cosg, ),
pz=(Ez 0 . 0 0 pl»ng, lplcosg),

(84)

(85)

where the dots in (Bl)—(85) stand for n —3 equal and op-
posite angular components.

From four-momentum conservation and the on-mass-
shell constraints one can derive the identities

There is only one type:

2 2
A (m)=iC, m ——+1 (A20)

s+u& s+t& s4
CO�- iN2 C03—

2+s4+m 2+s„+m 2+s4+m

APPENDIX B

In this appendix we outline the kinematics for the reac-
tions discussed in the text. The two-to-three-body pro-
cess in (4.1) is described in the c.m. frame of the recoiling
gluon and quark (antiquark). In n dimensions the
momenta are given by

s4+2mE)=
2+s, +m'

Q(tI+uI) —4m s
Ipl =

2+s, +m'

ti+u i+2m

2+s, +m'

tI$4 s(uI +2m )
cosg=

( s+t )IQ(t I+u I)
—4m s

(86)

k, = (co„0, . . . , 0, I p sing,
I p I cosg —

coz ),
kz=(coz, o, . . . , O, o, coz),

(81)

(82)
where s, t„u„and s4 are defined in (4.2). Furthermore
we have the relation

k3=(co3 0 . . . 0 co3 1IlglsIIIg2 co3slnglcosgz, c03cosgI),

(83)

s+t&+u& =s4 .

The cross section is given by

(87)

p2 d k3 d pif ' f ' f ' 5(p,'—m')5(k' )
2s (2II)" I (27r)" I (277-)"

X 5+ (P, —m )( 2Ir )"5"(k, +k z
—k 3

—P, —P 2 )
I
M (88)

where M is the matrix element of the process given in (4.1) and e=n —4. The factor (I/2) is from the average over
the initial gluon helicities, and IC is the color-average factor defined in (2.12) and (2.13). The integral can be rewritten as

—2E'

IT=K( —,
')2 ~ f d "pzd "p5+(pz —m )5"(k, +kz —

pz
—p)

2Ir

x fd"k3d"p, 5+(k3)5+(pI —m )5"(p —k3 —p, )IM (89)

The second factor in (89) is the standard two-body phase-space integral. Its evaluation in the c.m. frame of the gluon
and the quark yields

fd "k3d "p, 5+(k3 )5+(p, —m )5"(p —k3 —p, )IM~I2

—1~ /2 2 ( i ) (P m ) I dg
—3g dg

~ —4g i Riz
1(n —3) (p )" o 0

(810)

After integration over the n-dimensional vector p, the cross section can be expressed in terms of variables chosen in the
c.m. frame of the antiquark and the quark-gluon pair. In this frame we have the parametrization

k, =
—,'&s (1,0, . . . , 0, 1), k, =

—,'&s (1,0, . . . , 0, —1), p, =(E2 o, , o, Ipl»ny, lplcosy) .

Hence the cross section is

(811)

n 3

IT=K( —,') — ' f dE2(E2 —m )"i f dy sin" y f dgIsin" gI dgzsin" gzlMsI(n —3) ' '
o (s+m')"' ' o

'
o

(812)
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where we have integrated over all angles of the gluon momentum which do not appear in iM i . After changing the in-
tegration variables E2 and y to t

&
and u &, using

t&+u1 u&
—

t&
E2 = —,cos+=

Q(t, +u, ) —4sm

we find

(813)

g2d (7 ~( ) )3 eP

dt, du) ' I (n —3)

' n/2 —2

SP

n 3

, f dO)sin" 8)f dOzsin" HziM" i

(s4+m )" 0
(814)

which is the formula used in Sec. IV.

I' ")=2~,4 (Cl)

APPENDIX C

Here we give the angular integrals of the terms
(s')"(s")' which arise from the partial fractioning of the
square of matrix element iM i

in (4.3). The general ex-
pression for the angular integral is given in (4.9). The
specific four-dimensional integrals for a A b and
A &8 +C are listedfirs:

4
2bB a(B +C ) bAB-+82+ C2 (82+ C2)3/2

A+V82+C
Xln

A —&8'+C'
I(0,2) 1

4
A —8 —C

with X= (a A bB)—(A —8 —C)—(a b),—

I,' ' "=-2~-(aA+ ,'bB), - (C10)

(C 1 1)

(C12)

'"=2'
I"-"=2~A4 7T

(C2)

(C3)

0) =2~(a + 'b )4

I'; -"=2~[A 2+-'(82+ Cz)],

(C13)

(C14)

I4' '= —ln
b a —b

(0 )) 77 A+V 8 +C
&82+C' A &8'+C'—

() )) m aA bB+&X—
v'X aA —bB —3/X

(C&)

(C6)

4
4abB b A(C —28 )+8+C (8+C )

[a(B +C ) bAB]—
(82+ C2)5/2

b C(A 8 C)— —
2(8'+ c')'"

I(1,2)
4

2a(B +C ) 2bAB-
( A 8 C)X— — A++8'+C'

Xln
A 3/8 +C— (C15)

4

b (b A —aB)
x'"

2b(bA aB)—
(a b)X—

a A bB+3/X—
a A bB —V'X— (C7) I{—1,2)

4
2[a(8 +C ) bAB]—

(82+C2)( A2 82 C2)

bB A+')/8 +C
ln(82+ C2)3/2 A +82+( 2

+ a (8 +C ) bAB a A—bB +&X—
lnx'" a A bB —&X—

(CS)

(C16)

I(—z, z) 2b (8 C ) + 2[a(8 +C ) bAB]
(8 +C ) (A —8 —C )(8 +C )

(2 2) 2b 2(8 +C )

(a —b )X (A 8 C)X——

+ +bB 3b(bA aB)[a(B +C )—bAB]—
x'" x'"

2bB [a(8 +C ) bAB]—
(8z+ Cz)s/z

b AC
(8'+C')'"

aA bB+&X-
Xln

a A bB —3/X— (C9)
A+ )/82+Cz

Xln
A —)/8 +C

(C17)
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2(8 —C ) + 2(bA —aB)
(a~ —b~)

aC +28(bA —aB) a+b
ln

b 3 1 .—b
(C18)

In n dimensions ' we need the following integrals,
which we classify into groups where b= —a, A =B
+ C2 pr b — g A2+82+C2 or a2+b2 A2 82
+C, respectively.

Group 1, b = —a and A =B +C:

I „' =2m—0)
a n —4 (C19)

1 1=2m
aA n —4

A+B
2A

' n/2 —3

1+—,'(n —4) I iz +O((n —4) ) (C20)

a n —2 F 1
1 A B—a(A+8)I„' =2m F) 2

—1, 1,—n —1,
A (n —4)(n —3) ' ' '2 ' 2A

2
n —4

+O(n —4)
2B

(C21)

z&~ a n 1 A —8 a (A+8)I„' =2m F) 2
—2, 1,—n —1, =77

A (n 4)(—n —3) ' ' '2 ' 2A
2 + A 4AB ——38

O( 4)
n —4 (A+8)'

(C22)

Group 2, b = —a and A %8 +C:

I (1, —1)
n +O(n —4)

2B
(C23)

—(i i) 1 2 (A +8)
g(A +8) n —4

1 ~ A++8 +C——ln
A —&8'+ C'

n —4 A +8 +C-+ ln
2 A+B

—
(& g) (A +8) 2 C 4AB 28I n' + +On —4a n —4 (A +8)~ (C24)

+2 Li2
8+&8'+C'
A —V'8'+ C'

8 +8 +C-
A +B +O((n —4) ) (C25)

I {1,2)
n

A+&8'+C'——ln
A —V'8'+ C'

+ n —4 A +8 +C—
ln

2 A+B

(A +8) 2(B +C + AB)
g(A +8)2 n 4 A2 82 C2 A2 82 C2

8+&8'+C'+2 Li2
A —&8'+C'

(A +8)&8'+C'—2 ln—B —C

8 —&8'+ C'—2 Li2 A+B

A++8 +C
A +8 +C—(A +8)

A2 B2 C2

+O((n —4) ) (C26)

I „' = n+O(n —4)—{2,0)

a (C27)
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I (2, 1) 1

a (A +8)
8 +AB+C 2

1
(A+8)+ln

(A +8)z n —4
I.

2C —1+0(n —4)(A+8)
(C28)

I (2,2) 1

a (A+8)~
3C 2B

(A+8)' A +8
2 +1 (A +8)+ln

n —4 g2 B2 C2

+ —1+O(n —4)
(A +8) A —B~—C~

(C29)

Group 3, a Xb and A =8 +C:
-(,„1 2 ( A bB—)

aA bB —n —4
(C30)

A 2 (a A bB) — 2b (b A aB)—
(aA bB) —n 4 (a b) A— A (a b)— (C31)

From the partial fractioning of the two- to three-body matrix element in (4.5) we obtain 32 independent integrals. How-
ever, since the parametrization of the incoming momenta can be interchanged using (4.7) there exists a ti~u, symme-

try. This implies that the number of independent functions is reduced. It appears that there are only 19 independent
types. These 19 integrals belong to 7 different classes which are characterized by the dependence of the functions a, b,
A, B, and C on the variables s, t1, u1, I . Note that many integrals can be obtained from the other results by inter-
changing t, and u, .

APPENDIX 0

In this appendix we give the results for the virtual plus soft terms in (6.19). The first term is

Fo (t, u, t„u, )=48&ED 2(t, +u i )s ln 5+ (t i+u f )s —1+in (1+x) —4t,s ln ln6 .

+2—[4(s+2m )s '+2(t —u) s ]g(2)—m (t —u) si 's t 'u

ss ' —
—,', s s 't 'u ' ——"s t 'u '+ —", m s '+ —"sm t 'u '+8m t 'u ' —8l s 't 'u

—[4(s+2m )+24sm s, +(t —u) ( —,'ssi + —,'s, '+3s ')

—s(s +2sm —4m +6s m si )t& 'u, ' Ig(2)s
I

+[—,'s(17s —Sm )u '+4sm t ' —
—,', s s, 't 'u ']t, '

+[—s t u i+ —sm t u i —'ssii s~[ —" g(2)]64 16 4 1 2

—sm [—", —4g(2)] —m [16—16((2)][t, 'u, '

+2s "t, u, +4s (s —m )t i u '+ Ss m [1—g(2)]t, u
&

+[—11—5(t —u)s ' —Sm s '+2(s —5sm —3m")s 't

—2m (s+m )s 't —8(s +2m )t, ' —32m ti ]ln

+ [4(s —2m )s '+5ss, '+3s s
&

+(t —u) (3s, +4s 's, ' —2s )

—
—,'s[2(s —4m )+3s s, +5s s, ]t, u, ]in2 . 3 —2 2 —I —1 —1 ( 1+x)

—[2+2(t —u) s —8(t —u)s ' —4(s+4m )t, '

—2(s~+4sm +Sm )t, 'u, '+Ss m t, u, ]ln
1

lnI u1
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+[4u, (s+4m )s 't, ' —S(t —u)s ']

t—Li2
X@I f71

—[8(s+2m )+48sm s, +(t —u) (3ss, +Ss, '+6s ')

I
1n

771

—1nx ln—1nX Li2 I—

1+x+2(s +4m )(2—s ti 'u
i )s 'ln(1+x)ln

—2s(s +2sm —4m +6s m si )t, 'u, '][Liz( —x)+ —,'ln x]s

+[4(s +3m )s '+(t —u) s —
—,'(3s +12sm +16m )t, 'u, '+4s m t, u, ]ln x

+[2(3s+8m )s '+2(t —u) s —2(s +4sm +Sm )t& 'u, '+Ss m t& u
& ]

tIul
X Li~ 1 —

2
+2 Li~ 1—

SPl

tl —21nx 1n +(s —2m )s 'lnx
m

+[8(s+2m )s '+4(t —u) s +4(s+4m )ti '+32m t, j 2ln(1+x)ln 1

m
—Li 1—

2

where x is defined in (5.10). Further we denote

s, =4m —s, s=sV 1 —4m /s

B&ED is defined in (2.7) and 5=b /m, where b. is defined in (4.13).
The second term is given by

F~~+s(t, u, t„u, )

= —4B&EDI21n 5—[(3t&+3u i+4t~u&)s +(s —2m )(t~+u
&

)s s 'lnx)ln5I —2+(9+8m s ')g(2)

(t —u)(s —+m s t 'u '+ —'m s 't 'u ' —"t 'u '—)4 16

+ '(t —u) s t— 'u '+128m s t 'u ' —190m s 't 'u
4

Sm t Q ——S t Q ~+ 92m t Q —26171 s4 16

+ I(19s +Ssm —112m )s '+6(t —u) s ' —12m (t —u) s

—(s —2m )[(5s +20sm +32m )t& 'u, ' —16s m ti u, ]If(2)s
—12sm (s —m )t, u ' —8s m g(2)t, u, +2s m Is —m [12—2 (6(2)] tI, u,

+[(—3s +6s m +84sm" —64m )s ' —3(s —2sm +20m )g(2)+ —",,'s t 'u '+
—,', m tus ']t& 'u, '

+[—'(t+u) s —"(t +u )s—2+ —'(t +u )s u16 32 32

+ —'m (t +u )s —"s t '+ —"'s u —' —' t s 'u—
4 16 16 16

—128m s u '+264m s 'u ' —176m u '+8m su ']t, '

+[20+2(t +7m )s ' —(14s —74sm +2m4)t 's '+2m (8s +7sm +m )s 't —16m (s —6m )t,

+32(s —m )tl '+Sm (2s sm —2m —)t ul '+8m (s —1lsm +Sm )t 'tl 'u& ']ln

—[—",,'s 64m s ' ———", t,s + —'„'(t —u) s ' —12m (t —u) s

—(6s +17s m —40sm —32m )t, 'u, '+24s m (s —2m )t, u, js 'lnx

+16m (s t, 'u, ' —2)t, 'u, 'ln

—(I —,'(19s +Ssm —112m )s

+(s —2m )[3(t —u) s +8s m t, u, —
—,'(5s +20sm +32m )t, 'u, ']Is
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—
—,'(3s +18sm +4m")t& 'u

&

'+ —,'(9s+Sm )s '+Ss m tl u, )ln x

—[2(s —4m s —16m )s ' —2(t —u) —4(s —2m )(8m t, +(s+4m )t, ')]s 'lnx ln

—[16—8(s +2m ) t, 'u, '+48s m t, u, ]ln 1n
Pl m

—[2(7s —Sm )s '+2(t —u)s '+16sm t, 3 —8m t,

+4(s +2m )(s 4m—)s 't, ' —8(s +sm —3m )t, 'u, ']Li2

+8(s —2m )[3+8m s '+(t —u) s —(s +4sm +8m )t, 'u, '

+4s m t, u, ][lnx ln(1 —x)+Li2(x)]s

+I14s —96m s '+2(s —2m )[2(t —u) s —s(s+4m )t, 'u, ']j[lnx ln(1+x)+Liz( —x)]s (D2)

with the same definitions as above.
The third term is given by'

FqED (t&u&t„u, )
V+S

= —4B&ED[1+(s—2m )s 'lnx ]1n5

+2/(2)+2+3m (s —2m )t 'u ' —4m (s —2m )(5s —Sm )s t

—[10s —24m —s(3s +10sm —24m )t, 'u, '+16s m (s —2m )t, u, ]g(2)s

+[28sm +32m —(3s +Sm )g(2)]t& 'u, ' —8sm [4sm +Sm +sm g(2)]t, u
&

—4s m [s —8sm —s g(2)]t, u, —8m (s —Sm )t,

+[2s+52m —72m s '+64m s —(20sm —100m +136m s ' —64m s )u ']t, '

—4m [s —26m +16m s ' —s(s —m )u ']t&

+[4s(1—sm t, 'u, ')+2(s —2m )(2—s(s+4m )t, 'u, '+4s m t, u, )]s 'lnx

—
I 1 —

—,'(3s —Sm )t, 'u, '

—[Ss —12m ,'st, 'u, '(3s—+—10sm 24m )+Ss —m (s —2m )t, u, ]s 'Jln x

—2[1—(27s —32m )t '+(4s —22sm +15m )t +6(5s —4m )t, ' —4m (s —4m )tl

+2(13s —18sm +Sm )t, 'u, ' —2(lls —18sm +Sm )t 'u, '

+2(2s —13s m + 18sm —Sm )t u I
' ]ln

—4[s —(s+2m )(s —4m )t, ' —2(s —12sm +Sm )t, 'u, '

+Sm (s —2m )t, ]lnx ln
].

S
Pl

+4[1—(s+4m )t, ' —2m t, +2sm t, 2(s +sm —3m —)t, 'u, ']Li2

—8(s —2m )[2—s(s +4m )t& 'u
I '+4s m t& u

& ][lnx ln(1 —x)+Liz(x)]s
—2(s —4m )[2+s(s +2m )t& 'u

I '][lnx ln(1+x)+Liz( —x)]s (D3)

with the same definitions as above.
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