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Under certain conditions we argue about the existence of a renormalization scheme in which the
renortnalization-group fiow, defined by the p function of the theory, is expressed as a gradient fiow
in the neighborhood of a (fixed) point in theory space.

The renormalization group (RG) proved to be a very
effective Inethod for the study of statistical or field-
theoretic systems near their critical points. The Wilsoni-
an description of the RG is a very powerful tool for a
better understanding of the scaling behavior of physical
systems in terms of the geometry of the underlying
"coupling-constant space. " Recently, attempts to under-
stand this space globally (topology) have been undertaken
by a number of authors. The pioneering idea goes back
to Zamolodchikov, who proved that in the context of
two-dimensional (ZD) statistical mechanics, an "entropy
theorem" for the RG Aow can be shown to be valid under
broad assumptions. What Zamolodchikov has shown in
this c theorem was that if the space of running coupling
constants g '( t ) ( t being the RG parameter) of a generic
2D theory admits a positive-definite metric G; (g(t) ) then
there exists a scalar function of the couplings C(g(t))
which decreases monotonically under the influence of the
RG operator:

dC/dt= —P'G, PJ~0,

where /3'(g(t) ) =dg '(t)/dt is the p function.
When applied to a models this theorem suggests a

geometrical understanding of the equivalence of the con-
formal invariance conditions and the background-field
equations of motion. In the renormalization scheme (RS)
where the p functions have an exact quadratic form,
these conditions may be interpreted as string-field-theory
equations of motion.

It is natural to ask whether a corresponding statement
to Eq. (1) holds in higher-dimensional theories. It is the
purpose of this paper to answer positively this question,
at least under some broad assumptions which encompass
a large class of (scale-invariant) physical theories. In par-
ticular it will be shown that there exists a renormaliza-
tion scheme (Wilson's scheme) in which the p function is
expressed as a gradient Aow in coupling-constant space
(CCS). Moreover, arguments will be given for an inter-
pretation, under certain restrictions to be stated below, of
this scheme as a Riemann normal-coordinate scheme in
CCS. It would be instructive first to review brieAy
Wilson's approach to the study of critical systems. '

Consider a d-dimensional theory described by an ac-
tion I(g', a), where g' is a possibly infinite set of cou-
plings and a is an ultraviolet (UV) cutoff (we ignore possi-
ble infrared infinites, assuming that the correlation func-
tions of the theory are infrared soft). Wilson assumed the
existence of a complete set of local operators IO,. I in
theory space, and expanded I in terms of g' around a
point So in that space as

I=Io(So,a)+g' Jd r 0;(r) . (&)

From this point of view Ig') may be understood as a set
of coordinates in CCS with the origin taken (for conveni-
ence) at So.

The existence of the cutoff in the propagator is as-
sumed in the free part of the action Io. Under this as-
sumption and the scale independence of the partition
function, Wilson has proven the existence of a RS such
that the p function was quadratic (exact relation):

p'(g (t) ) =p'(S, )+y', (S,)g'(t)+ —,'a ',„(S,)g'( t)g "(t),
(3)

where t = lna. If So is a "critical Point" then P'(So* ) =0.
In this case y'i(So*) is defined to be the anomalous-
dimension matrix, whose eigenvalues define the so-called
critical exponents of the theory, y;, which are assumed to
be real for our purposes. The /3' function defined in (3)
exhibits a highly nontrivial dependence on the expansion
point So, as becomes clear from (3). From now on we
shall abbreviate it by p'(g(t), So). Let us expand first
around a critical point So*=S*.

The nonlinearities in (3) are removed by the introduc-
tion of the so-called "scaling fields, "

A, ', defined by
dA, '/dt =y'A, '. In this sense we may use exact scaling re-
lations for the correlation functions of the bare operators
0;=BI/M, '. [In the case of real y; we are considering,
the couplings may be classified as irrelevant, marginal,
and relevant depending on whether y; &0, y; =0, or
y; &0, respectively. ' The usual formalism of perturba-
tive renormalization (Gell-Mann —Low —type p functions)
is achieved by solving the equations for the vanishing of
the /3 functions of irrelevant couplings in terms of the
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relevant and marginal couplings. In this sense, rescaling
2' by exp( —y'Ina), to define dimensionless couplings A,o',

with d Ao'/dt =0, would define the conventional bare cou-
plings ko expressed in terms of renormalized couplings. ]

The eouplings g' can be expressed in terms of the seal-
ing fields k' through

g'=A, '+ —'B' AQ. "+0(A, )gk (4a)

with B '
k
= (y, +yi, —

y, ) 'a '
k (Ref. 6). For the purposes

of this work we shall assume that y +yk —y;%0. The
case of marginal operators (or in general cases where this
quantity vanishes) can be dealt with by slightly perturb-
ing the zero value and this will be assumed from now on
(cf. also Refs. 2 and 3; for some discussion on incorporat-
ing strictly marginal fields, y, =0, cf. Ref. 6). The opera-
tors 0; appearing in Eq. (2) are related to 0, by [using
(4a)]

f d r 0, —=0* =0 * B',kg
"—0 *, +0(g ), (4b)

H;, (1,2)=G;, Iridal' " (5b)

D; k(1,2, 3)=C; i, lr, I

" Ir, I

'" Ir
I

'" ", (5c)

where 5;.=y;+y —yk, etc. , and Ir;~l=lr, r/I and 6;J-
C; k are totally symmetric; the anomalous dimensions y;
(scaling exponents) for fd r 0, (r), are defined by the ac-

where 0*;—: d r 0, .
As we shall argue below, although there is no symme-

try between upper and lower indices in a '
k (S* ), it is pos-

sible to define a simple rule for lowering and raising in-
dices (metric in theory space at S*), which makes the
"covariant" a,jk(S*) totally symmetric. It is instructive,
for this purpose, to discuss briefly some properties of the
Kadanoff-Wilson operator-product expansion (OPE).

Consider the two- and three-point functions in a d-
dimensional field theory (for concreteness we assume that
0, are rotational and translational invariant):

H; (1,2)=(0,(ri)0 (r2))o,

D; „(1,2, 3)=(0;(r, )0 (r2)Ok(r3))o,

where ( )o indicates correlators taken with respect to
Io(S*,a).

Scaling arguments and symmetry considerations im-
ply that (5a) depend only on the distances for isotropic
systems (caution: no sum over indices implied)

tion of the linear RG operator lO ";=y;0 *, (in the nota-
tion of Ref. 6; from now on we draw the reader's atten-
tion to the fact that in the parts of the formulas which
contain explicitly scaling exponents no sum over repeated
indices will be implied).

Given the locality of 0, (r), conservation of free energy
implies that

6; =0 ify, —y &0. (5d)

[Even in the case where 0, are not strictly local operators
(i.e., when internal deformations are taken into account )

G, =0 ify, —y do not differ by an integer. In the case
Iy, I

«1, this does not make any diff'erence relative to the
strictly local case. ]

Consider, now, the case where a & Ir, —r~I & any other
scalein the theory. In this limit the product 0, (ri)0 (ri )

can be expanded around the "midpoint, " since their ar-
guments come close to each other. An OPE analysis (as-
suming its infrared softness) can be used to recompute
(5a). One has

0 (r, )Oq(r2) ~ U k(r, r2)0 ( —,'(r—, +r~)) .

Scale invariance implies

(6)

U,k(r)=u, klrl '

where u -k are constants for isotropic theories.
In the limit

I r23 I
=r i& I

))
I r23 (always within the

framework of a finite-cutoff theory) one can write, after
taking into account (5b), (5c), (6), and (7),

Ctgk
—u

ig Gm

To relate a'~I, (S*)with u'~k we apply the RG program
of Wilson and Wegner (the linearized theory is sufficient
as long as we are dealing with 0;). The nonlinear RG
equation implies

a' „0*;=—2 J h(q)(50* /5S~)(50 *„/5S ~), (9)
q

where S are fields (e.g. , "spins" etc.). h(q) is a "short-
range" function in momentum space used by %'ilson to
cut off the high-momentum components of the fields. His
choice, which we can make generic use of, is
h (q)=const+2q, or in configuration space h (r)
=(const —8 /Br )5' '(r), where the 5 function has to be
understood as a regularized one (in terms of the cutoff'a).

Using 5/5S = f exp(iqr)5/5S(r), it is straightfor-
ward to arrive at

a' „0*,= —2 f d r, f d"r2 f d "r' f d r"[50 (r, ) /5(Sr')][ 50(rz)/5S(r")]h(r' —r") .

Given the "short-range" of h(r' —r") and the locality
of 0, (r) it is sufficient to use OPE analysis to compute the
integrand in (10a). Noticing that a'

i, (S*)is computed att:—Ina=0 (i.e., a= 1) we can act on both sides of the
OPE relations with the linear part of RG operator and
integrate over the configuration space to obtain, after
some straightforward manipulations (due to the com-
pleteness of 0, ),

= —Q~u (10b)

where 0,& is the d-dimensional solid angle,
=2(~"~ )/I (d/2). Infrared softness has been assumed.

Moreover Eqs. (8) and (10b) show that there is a natu-
ral metric G,"(S*)in theory space such that the "covari-
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B,N(g, S*)=G; (S*)P'(g,S*) (12)

hold. In (12), G,, (S*) is the "value" of the metric at S*,
independent of g'. The "effective action" C&(g, S*) is,
thus, at most cubic in powers of the couplings g', and this
is why, when applied to 20 o. models, this approach may
be related to string field theory. Note that Eq. (12) has
been derived under very broad assumptions about y, ,
namely, the reality of y; and infrared softness, but not
necessarily that ~y; ~

&&1, as in Refs. 1 and 3 (we remind
the reader that in Ref. 1 this condition has been used for
a proof of the existence of other fixed points within a
sufficiently small neighborhood of the starting point).
What we shall argue about, however, in this paper is that,
under the condition ~y;~ &&1, Eq. (12) may be understood
as a tensorial relation in CCS through the identification
of the Wilsonian scheme with a normal-coordinate sys-
tem9 in coupling-constant space (CCS), which by assump-
tion has zero torsion. This can be justified by noting the
vanishing of the (symmetric) Christoffel symbol of CCS at
g

* in this scheme, as becomes evident from a straightfor-
ward three-point function analysis, which we sketch
below. To establish the vanishing of the symmetrized
higher derivatives of the connection it is necessary to
consider higher-point function calculations, which de-
pend on the details of the theory. Our conjecture is that
this is true, i.e., that the g's in Wilson's formula (3) are
normal coordinates [vectors in CCS, so that the right-
hand side (RHS) of (3) is covariant]. We note in passing
that the requirement of being in the neighborhood of a
point S, is explained naturally in the geometric context
of normal coordinate expansion, given that the two
points must be connected by a unique geodesic, which is
achieved, in general, if the points are close enough to
each other.

A suitable metric 6; (g) for CCS, expressed in terms of
the renormalized (finite) couplings, can be defined by the
two-point function

6; Irl
' '(O;(r)O (0) ) I, (13)

where ( . . ) is taken with respect to the full action
I=Ip+I;„„and is assumed to be well defined. From the
expression for the metric at a point r and using (2)

we have BkG; ~ o „=—
~r~

' '[B,k(O (r)O&(0))o
+B k(o;(r)o (0))0+~r~ " ' ' I; "]where

I,,"=~"~'C,,„[I( —,'(d 5,„5,„))l ( —,'&;k )—I ( —,'&,—k )]

X[r(-,'(d —5,.„))l (-,'(d —5,„))r(-,'(5,„+|'„))]-'.
In the limit ~y; ~

&&1,I, "=C;&Qd2yk(y;+yk.—y ) '(y +yk —y, ) '. Using (5a) —(5c), (10b), and (11),

ant" a; k(S*) are totally symmetric in their indices:

a; i, (S*)=—6;i(S*)a' k(S*)= —Qd C; k .

It is now clear that there exists at least a class of RS
(Wilson scheme) in which "semi-off-shell" relations of the
form (assuming that Wilson's scheme is compatible with
a symmetric (or equivalently diagonalized) anomalous-
dimension matrix'

we immediately obtain that BkG j g p —i 0 and thus
the connection vanishes at g'(=0) (lowest-order condi-
tion for normal coordinate scheme; we remind the
reader that this is the only theory-independent condition
as well).

A useful result is that for any vector 2, when expand-
ed in terms of (normal coordinates) g =g',

B,C& [g',S']=G; (g )A'(g )~,

=G;,(S*)A'(g )l„ (14)

where symm denotes that only the totally symmetric part
of the coefficients in the expansion in powers of g' has
been retained. Relation (14) is a consequence of the
Riemann normal coordinate expansion of the metric ten-
sor (in any scheme) as well as of symmetry properties of
the curvature tensor in CCS. In the Wilson-normal coor-
dinate scheme the RHS of (14) with 3'=P' yields Eq.
(12), since due to the symmetry properties of the relevant
quantities discussed above it can be represented as
G~(S*)PJ(g,S*). Thus we observe that in this RS the
Aow function N is cubic in powers of the couplings. This
completes our geometric interpretation of (12).

Relation (12) has been conjectured for 2D models in
Ref. 5, but here a proof has been given (under the above-
stated broad assumptions) independently of the dimen-
sionality of configuration space-time. It was sufficient for
our purposes that we proved (12) in a given RS (in a gen-
eral scheme the P function will not be exact and we do
not know whether the expansion coefficients in powers of
the couplings satisfy integrability conditions for the P
function to be represented as a gradient fiow). To arrive
at (12) the assumption for the reality of y; has been made.
The converse is also true if the metric 6;~(S*))0 (posi-
tive definite), namely, (12) implies the reality of the criti-
cal exponents, ' as can be seen by differentiating (12) with
respect to g" and going to the fixed point,

a, a„e[,.=6„(S*)a,g'I, * . (15)

Inverting (15) we observe that ~);pj s* is a product of a
positive-definite matrix and a symmetric matrix in CCS
and therefore it has real eigenvalues, i.e., real critical ex-
ponents. Notice that the critical exponents are invariant
under RG transformations as can be seen by noticing the
"vector" character of P' under a RS change
P"(g')=(Bg"/Bg")P"(g). The anomalous dimension ma-
trix is defined as y, j(g*)=B;PJ~ +, where g* are the

coordinates of the fixed point S', the eigenvalue problem
of y, , which essentially defines the critical exponents,
remains invariant under this transformation, as is directly
seen.

Of course not all the systems admit real critical ex-
ponents. Apart from cases where OPE is not well
defined, if G,J is complex (allowing for non-Hermitian
theories, say) or not positive definite, then this argument
fails, although (12) may still be valid. Moreover two-
point functions of the form (13), etc. , are not always well
defined

Although above we carried out the analysis in the
neighborhood of a critical point in theory space, one can
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imagine repeating the above procedure in the vicinity of
any other point Sp [where P~(Sp)%0]. As long as the as-
sumptions (about the existence of complete set of 0,
around So, two-point functions of the theory, smallness
of y;, normal coordinate scheme conditions, etc.), are still
valid one can perform Wilson's expansion around So in
the manner of Eq. (2), and in this way an efFective action,
N(Sp, g'), which interpolates between fixed points will be
established (this would be Zamolodchikov's version in d
dimensions). Under the assumption about the positive
definiteness of 6,. (Sp), the fixed points will be the only
stationary points of the "flow" N, which otherwise
behaves monotonically under the influence of the RCx
transformation, d C&(g( t) ) /dt =PJB .4(g( t) ). Of course
the question whether relations of the form (12) hold glo-
bally is theory dependent and we shall not attempt to
answer it here. There may be topological obstructions in
CCS to this, and certainly the subject is worth further in-
vestigation (noncompact CCS is also another possibility).

Off-shell relations of the form (12), are useful in making
a connection between Morse theory and flow functions in
CCS. In Ref. 2 arguments have been given for the
identification of the flow function of Zamolodchikov with
a perfect Morse function in CCS, which might lead to a
better understanding of the topological (global) features
of the theory space. We only mention that off'-shell rela-
tions of the form (12), which express the 13 function as a
curl, are necessary and sufhcient for an interpretation of
the RG flow problem in terms of a supersymmetric
quantum-mechanical particle moving in a curved space
with metric 6;.(Sp). It is straightforward to show ' ' in
such a case, that the supersymmetry charge Q=g'[V;
+6

&
( Sp )P (g Sp ) ] ( V; being the covariant derivative in

CCS and P' spinor coordinates satisfying canonical an-
ticommutation relations) is nilpotent Q =0 if and only if
equations of the form (12) hold.

Another remark we would like to make concerns at-
tempts to find closed expression of the flow N. In 2D o.
models Zamolodchikov"s c theorem expresses this func-
tion as an appropriate combination of two-point func-
tions of components of the stress tensor of the theory. It
can be shown (by a simple scheme change ( ' that in that
case the flow function becomes the central charge
coe%cient. ." This can be relevant to attempts of finding
closed expressions for the flow function in higher dimen-
sions d )2. In the recent Ref. 12, suggestions have been
made and perturbative arguments have been given for the
integrated (over space-time) trace of the stress tensor
(pertinent to rigid scale invariance) to play the role of the
flow.

In any case, irrespective of the possibility of represent-
ing the flow 4 in a neat form in terms of some physical
quantities of the theory, other than the )(3 functions, our

work provides the proof to all orders of the fact that un-
der the above-stated broad assumptions the P function
can be expressed (in a given scheme) as a gradient in
CCS, which allows eventually for the construction of an
exact flow. From this point of view, basic properties of
systems exhibiting an initial scale invariance, e.g. , asymp-
totic freedom in QCD, etc. , can probably be understood
in a geometric context this way. We hope we shaH come
to these issues in the near future.

As far as the string cr model is concerned, we mention
that the construction of a flow seems possible in higher-
genus Riemann surfaces. ' " Identification of this func-
tion with the (quantum) string efFective action generating
the correct scattering amplitudes (including loops) is not
yet clear. We note in passing that, although some en-
couraging indications exist at the tree level, however, the
situation is quite complicated in summing up higher-
genus surfaces. Problems associated with infinite genus
surfaces, convergence of string perturbation theory,
gauge symmetries in strings, etc., are far from being un-
derstood in this context. We also mention that in the
case of supersymmetric strings the normal coordinate
choice may not be allowed. As argued in Ref. 14 the con-
nection terms in CCS may be identified with contact
terms in OPE of vertex operators corresponding to "truly
marginal operators*' (i.e., marginal operators whose exact
P function vanishes), which are known to be essential for
a world-sheet supersymmetry in a Neveu-Schwarz-
Ramond formulation or space-time supersymmetry in the
light-cone approach to superstrings. ' The trick of slight-
ly perturbing these operators in order to define a normal
coordinate system and identify it with that of Wilson,
may, thus, not be allowed, although Eq. (12) is still valid.

We should also point out that in the case of d-
dimensional perturbations with strictly marginal opera-
tors (y;=0) or operators with y;+y; —y„=0, etc. , al-
though one can define scaling fields, so that Eq. (12) still
holds, the scaling fields are related to g' of Wilson's
scheme via an expansion in powers of both g' and t = lna
since the B's in (4a) are made to depend explicitly on t in
this case. Hence, the possibility of defining a normal
coordinate scheme in CCS in this case is not clear. These
are interesting issues the study of which, however, falls
beyond the scope of this paper.

N. E.M. acknowledges useful discussions with Dr.
I.J.R. Aitchison and Dr. R.B. Stinchcombe and Hertford
College (Oxford) for financial support. J.M.S.S. acknowl-
edges the Department of Theoretical Physics, Oxford,
United Kingdom, for their hospitality during the last
stages of this work. J.L.M. and J.M.S.S. were supported
in part by Comision de Investigacion Cientifica y
Tecnica, Spain.

K. Wilson and J. Kogut, Phys. Rep. 12C, 75 (1979).
2(a) C, Vafa, Phys. Lett. 8 212, 29 (1988); (b) S. Das, G. Mandal,

and S. Wadia, Mod. Phys. Lett. A 4, 745 (1989).
A. B. Zamolodchikov, Pis'ma Zh. Eksp. Teor. Fiz. 43, 565

(1986) [JETP Lett. 43, 730 (1986)];Yad. Fiz. 46, 1819 (1987)
[Sov. J. Nucl. Phys. 46, 1090 (1987)].

4(a) A. A. Tseytlin, Phys. Lett. B 194, 63 (1987); (b) A. M. Po-
lyakov, Phys. Scr. T15, 191 (1987); (c) N. E. Mavromatos and



RENORMALIZATION-GROUP FLOWS AS GRADIENT FLOWS IN. . . 539

J. L. Miramontes, Phys. Lett. 8 201, 433 (1988); 212, 33
(1988); (d} N. E. Mavromatos, Mod. Phys. Lett. A 3, 1079
(1988); (e) H. Osborn, Nucl. Phys. B308, 629 (1988); Phys.
Lett. B 214, 555 (1988); (f) N. E. Mavromatos, Phys. Rev. D
39, 1659 (1989}.

5T. Banks and E. Martinec, Nucl. Phys. B293, 733 (1987).
F. Wegner, in Phase transitions and Critical Phenomena, edited

by C. Domb and M. S. Green (Academic, New York, 1976)
Vol. 6.

7L. Kadano6; Phys. Rev. Lett. 23, 1430 (1969);A. M. Polyakov,
Zh. Eksp. Teor. Fiz. 57, 271 (1970) [Sov. Phys. JETP 30, 151
(1970)];K. Wilson, Phys. Rev. 179, 1499 (1969).

8L. Schafer, J. Phys. A 9, 377 (1976).
A. Z. Petrov, Einstein Spaces (Pergamon, Oxford 1969)~

D. J. Wallace and R. K. P. Zia, Phys. Lett. 48A, 325 (1974); E.
Brezin in Methods in Field Theory, 1975 Les Houches Lec-
tures, edited by E. Brezin, R. Balian, and J. Zinn-Justin
(North-Holland, Amsterdam, 1976).
J. Polchinski, Nucl. Phys. B303, 226 (1988).
J. Cardy, Phys. Lett. B 215, 749 (1989).
D. Espriu and N. E. Mavromatos (unpublished).
D. Kutasov, Phys. Lett. B 220, 153 (1989).
M. B. Green and N. Seiberg, Nucl. Phys. B299, 559 (1988).


