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Two-dimensional fermionic theories, the SU(N) Gross-Neveu and the massive Thirring models,

are analyzed in the covariant Gaussian approximation. In the Gross-Neveu model we find three

phases (renormalizations}. In one of them the results coincide with the leading order in 1/N expan-

sion. In the other two phases the gap equation has no solution and there are no fermionic excita-

tions in the spectrum of the theory. It is argued that those renormalizations are relevant for
N =1,2. The massive Thirring model is found to possess a line of ultraviolet fixed points. In the

limit mb~0 the axial symmetry is not broken. The 2~2 S-matrix element for the nonasymptoti-

cally free phase is calculated and it qualitatively agrees with the exact expression. We also find an

asymptotically free phase with vanishing bare coupling.

I. INTRODUCTION

Two-dimensional renormalizable quantum field
theories (QFT's) have been very well studied by a variety
of methods. The exact results for many of them are
known. ' For this reason they have served as convenient
test cases for any new nonperturbative method developed
to investigate more realistic renormalizable theories in
four space-time dimensions.

Recently we formulated a covariant Gaussian approxi-
mation (CGA) (Ref. 3) and applied it to the scalar 4
theories and the Abelian Higgs model in four dimen-
sions. This is a generalization of the Gaussian effective
potential approach to the calculation of the effective ac-
tion. With its help one can calculate the Green's func-
tions of a theory at arbitrary momenta and the implemen-
tation of the full renormalization program, including
wave-function renormalization, becomes possible.

The essence of the method is the following. The
effective action is calculated in accordance with the
Jackiw-Kerman formula:

S, [P(t)]=f dt(id, H) . — (1.1)

Here, however, not all the states in Hilbert space are con-
sidered but only those having a form of a Gaussian (in
field representation):

~Q, ~, G,I ) =N exp[ —
—,'[N —P(t)][6 '(t)+iI(t)]

X [0&—P(t)]+i'(t)[4 —P(t)]] .

(1.2)

In field theory of several degrees of freedom P(t), n.(t) be-
come P'(x, t), m'(x, t) and 6(t),I(t) become matrices
6'~(x,y, t) and I'J(x,y, t) Hence the app.roximate effective
action is a functional of four real functions P, n', 6, I. It
can be recast into a more convenient, explicitly Lorentz-

covariant form. ' Expressing n and I in terms of P, P, G,
G by means of the equations of motion one obtains
S,ttfg(t), G(t)] Further. , instead of 6 one introduces a
covariant object-truncated propagator

BS,~
c)P(t)c)P(t')

' (1.3)

where the derivatives are partial functional derivatives
[6(t) is not differentiated]. Then S,it can be reexpressed
in terms of P(t) and G„(t,t'). The result is that S,s is an
approximation to the Cornwall-Jackiw-Tomboulis corn-
posite operator. effective action in which only the non-
overlapping diagrams are kept. The minimization of this
action with respect to P(t) and G„(t,t') leads to shift and

gap equations which are equivalent to truncated first and
second Dyson-Schwinger equations (DSE's) (Ref. 9) with
all terms containing three-point and higher proper
Green's functions (PGF's) omitted. The approximate
Green's functions of a theory are found by functional
differentiation of the effective action (or equivalently the
shift equation). It was shown in Ref. 4 that this is
equivalent to summing all the nonoverlapping Feynman
diagrams of a theory in which the propagator is G„ the
solution of the gap action.

In this work we apply the CGA to two well-studied
two-dimensional theories: the SU(X) Gross-Neveu and
the massive Thirring models. Our aim is twofold. First,
we want to demonstrate the generalization of the method
to fermionic theories. Second, we are interested in com-
paring the results of our approximation with rigorous re-
sults that are known for the S-matrix elements in these
two cases (Ref. 2).

In Sec. II we formulate the CGA for a Lagrangian with
general four-Fermi interaction. General expressions for
the fermion propagator and four-point function are de-
rived.
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In Sec. III we consider the SU(N) Cxross-Neveu model.
This is a relativistic analog of the theory of superconduc-
tivity in which the Gaussian approximation originated.
After performing the full renormalization program we
calculate the renormalized propagator and four-point
function. Our results are very similar to the 1/N
leading-order results. ' The theory is asymptotically free,
fermion mass is dynamically generated, and the
phenemenon of dimensional transmutation occurs. The P
function for large X is very close to the perturbative one.
The S-matrix elements of two-particle scattering at high
energies are in good agreement with the exact results
when N is large enough. In addition to the 1/N renor-
malization two more possibilities to choose the bare cou-
pling as a function of cutoff exist. We argue that they are
relevant for the cases N = 1 and 2. In both of these cases
there is no consistent solution of the gap equation, which
means that no fermionic excitations exist in the spectrum
of the theory in this approximation.

In Sec. IV we consider the massive Thirring model
along the same lines. Here we find a solution with finite
bare coupling. The theory has a line of ultraviolet fixed
points. This corresponds to the solution of the Thirring
model presented in Ref. 2. The S-matrix elements quali-
tatively agree with exact results. In the limit mb —+0 axi-
al symmetry is not broken and fermions disappear from
the spectrum. There is an additional possibility to renor-
malize the theory with a vanishing bare coupling in the
infinite-cutoff limit. This phase is asymptotically free and
does not correspond to a known solution of the Thirring
model. We also consider the SU(N) generalization of the
Thirring model. It has the same qualitative structure for
any X.

Results are discussed in Sec. V.
The Appendix contains some technical details.

II. THEORIES WITH GENERAL FOUR-FERMI
INTERACTION

In this section we develop the CGA for arbitrary fer-
mionic theory with quartic interaction of the type

L =O'D '4+ —,'g(%'1 '%') (2.1)

where + is a bispinor that generally carries Lorentz and
internal-symmetry indices and I is a general matrix in
these indices. We work in Euclidean space and use the
following representation of Dirac matrices:

QP=l&3~ 71 ~O 1~ 75=~0V1 2
(2.2)

5 T
(2.3)

as variational parameters. The matrix elements are
defined by

S ~(x,y)=( &+ (x)q'~(y)) —
1t (x)P(y),

& ~(x,y)=(&iP (x)~I'~(y)) f(x)—P(y) .
(2.4)

Here the index a stands for Lorentz and any internal in-
dex that is carried by the field 4. We introduced f
classical Grassmannian shift. This simplifies the pro-
cedure of calculation of Green's functions and retains
likeness to the usual path-integral formulation of fer-
rnionic systems. Eventually we shall be interested in solu-
tions for /=0.

The Gaussian effective action in analogy with the bo-
sonic case is an approximation to the Cornwall-Jackiw-
Tomboulis effective action with "bubble" diagrams only
retained:

S,s[Q, G]=S,~[g]—trlnD 'S —trD 'S

—bubble vacuum diagrams . (2.5)

The minimization of this effective action with respect to
g and G results in the set of truncated first two DSE (Ref.
9). For the Lagrangian Eq. (2.1) these two equations
(which we shall call the shift and gap equations corre-
spondingly) are

The roost natural and straightforward generalization of
the CGA to fermions is to consider the Grassmannian
shift f and a truncated propagator matrix

(2.6)

(2.7)

Here and in what follows we use the notation

S ~(x,y)=ax-~-~ Py, T ~(x,y)=ax--= ~ Py .

To obtain the effective action S,tt[f(x)] one has to express the truncated propagators S and T via g using the gap equa-
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(2.8)

tion and substitute into Eq. (2.5). The (functional) derivatives of S,s[g] are the time-dependent Green s functions of the
theory in the CGA (Ref. 11).

The essential step in the calculation of effective action is renormalization. In two space-time dimensions the theory
described by the Lagrangian Eq. (2.1) is just renormalizable. We therefore impose the following normalization condi-
tions in order to establish the dependence of the bare parameters mb and g on the ultraviolet cutoff

~ —1
mp —p

—PZ ph

(2.9)

I (0,0,0,0, )= —g„. (2.10)
The condition equation (2.9) is necessary in order to establish the wave-function renormalization factor z which scales
the field 4 so that the Green's functions are finite for all momenta.

In order to do that we must find two- and four-point proper Green's functions (PGF). The shift equation always has
a zero-shift solution /=0. For obvious reasons we shall be interested in the Green s functions only in this case (the vac-
uum must obey the fermion number selection rule). The truncated propagator can be easily found in every particular
case from the gap equation.

In the no-shift case the full Gaussian propagator is equal to the truncated one as can be seen by differentiation of the
shift equation.

The four-point PGF is the third derivative of the shift equation:

6 S~f

(2.11)

Here we took into account the fact that the first derivative of the truncated two-point PGF vanishes for zero shift. The
auxiliary four-point functions that enter Eq. (2.11) are found by differentiation of the right-hand side (RHS) of the gap
equations:

$2r:,g„p (p„p,.p„p,) - s 'q(p„p, )
A~( pW, ( p)

(2.12)

$2 {)0 &3

(2.13)

(2.14)

(2.15)

where

where the dotted lines are the ones that constitute loops
in Eq. (2.11).

These equations are formally solved by

I, = —gA[1+X(p, +p )]
r'. =gA[1+ I (p, +p, )]-',

(2.16)

+[I"S(k+p)] [S(k)I"]sp[,
(2.17)

[~r jfP~]
—~P-"x~ "P~"

d kX„„,~., (p)=,I
—r'.~[S(k +p) r'S(k)„

(2m )
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4ra, pysa(PZ&P3&P4&p &
)

4r, syp (P4 P3 P»P/) (2.19)

The formulas (2.12)—(2.19) will be used for calculations in
the particular cases of the Ciross-Neveu and Thirring
models in the following sections.

d k
Y[ j[p j(p)= J — [I /S(p —k)] [l 'S(k)] p . (2.18)

(2zr )

Using Eqs. (2.12) and (2.13) we can rewrite Eq. (2.11) in
the simpler form

4 4
rsypa(P4&P3&pz&p/ g+5ypa+ra~sypa(P4&P3&PZ&pl )

The gap equation is

S '=za '+z g [S"p(k)—6"5 ptrS(k)] .
d k

The general form of its solution is

S,, ' =z5'JlP'+M) p,
where M satisfies the equation

M = —z(2N —] )gMIO(M) .

(3.3)

(3.4)

(3.5)

Here Io is a divergent "bubble" integral which (introduc-
ing the momentum cutoff A) is equal to

III. SU(N) GRGSS-NEVEU MODEI

The model is described by the Lagrangian

L =zi 4'//l+'+z (4—"0')
2

(3.1)

1 d p 1 A
Io(M) =- ln +1

(2')z p'+M' 4 M'

A nontrivial solution of this equation exists if

(3.6)

D.,"~(P)=z6'I/. , r'-~p=5'~5.
p (3.2)

Here %" is a complex Dirac spinor transforming as the
fundamental representation of SU(N) group. The wave-
function renormalization factor z was explicitly intro-
duced into the Lagrangian. Thus the Green's functions
that we are calculating are already the renormalized ones.

It is known that the actual symmetry of the theory is
not SU(N) but rather O(2N) (Ref. 14). The transforma-
tions forming this group mix not only particles but also
particles with antiparticles. The eigenstates of the theory
are O(2N) multiplets and thus it is one of the theories
whose exact S matrix is found in Ref. 2.

In the notation of the previous section,
Z 1 ~

Thus there is no wave-function renormalization.
Using Eqs. (2.17) and (2.18) we calculate

(3.8)

gz = 4~ A
ln (3.7)

2N —1 p~

We shall, however, have to calculate the four-point func-
tion to see whether this value of g renders it finite and
whether other possibilities to renormalize the theory ex-
ist.

The wave-function renorrnalization can be established
already at this stage. Since the full Gaussian propagator
in the absence of shifts is equal to the truncated one, the
normalization condition Eq. (2.9) becomes

X[5 ](p ](p)= —[Q '~'+(1 2N)0' "]2B—(p)a ([5y][pa]

—(Q"'~'+ 0'" ')
I [4M c4 (p) —28 (p)]b, [5y][pa] +4M 3 (p)bz[5y][pa]

+2i lp MA (p)(C /[5 ][pa] +CZ[sy][pa] ) I

I'Is~yI(p ](p)= 5'"5"
t 2II (p)b/[sy][p ]+[4Mz~ (p) 2I] (p)]a/[5yj[p ]+4M'~ (p)az[5y][p ]

2/ lp f
MA (p)(d '/[5 ][p ] +dz[5 ][p ] ) I

(3.9)

(3.10)

Here we introduce the following notation:

g d'k g 1 v 1+4Mz/pz 1—Ap= —2 —ln
(2~)z (k'+M')[(k+p)'+M'] 4~ v'p'V'p'+4M' v'1+4Mzypz+1

2
18 (p) = I (M)+2 M + 4—(p) 0'""=—5'i6 ' Q'""=5'"6i'—O'"J'

0 4

, (I/)").p(P')"),5
2p

l
) /g y5&a

5 5
b/[5y][pa] P) z1 ap) y5& bz[5y][pa](P

5 5

2p
Z ap~1'7 )y5 d /[5y][p ] (P ) =cz[5y][pa](P) =

1
a

/[sy][Pa]�

(P ) =—,'5aP5y5, a z[5y][Pa] (P ) z PaPP y5
2p

5 5
/[5y][p ](P)=

2
(I j' ) pj'ys

Zp

l
"Z[5y][pa]'P '

2p

(3.1 1)
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To invert the matrices 1+X and 1+Y we use the algebra of matrices Q;, b;, c;, and d;. All the relevant formulas are
given in the Appendix. The result is

~a
~
kyl3a(P4&P3 ~pz tP 1

gilgj k
+g 1

Q] +Q2+

2X —1 |. 4ilp, +pzlMA (c, —cz)+ Q]+
1 —(1—2X)8 1 —28 (1—4M A)(1 —4M A +28)+4(p +p ) M A

—(1 —4M A)b~+(1 4—M A +28)bz+2ilp, +pz lMA (c, —cz)

(1—4M A)(1 —4M A +28)+4(p, +pz) M A

(3.12)

(1+4M A)a +(1+4M'A —28)az —2ilp)+pzlMA (d )+dz)
+g ( gl kg/l g'lip jk b +

(1+4M'A)(1+4M'A —28)+4(p, +pz) M A

(3.13)

In the above expressions a,. should be understood as

QI [fjy ][po ]) etc. The argument of the functions 2 and B
and the tensors a;, b, , c, , and d, is (p& +pz).

There are four possible choices of g that make I" finite:

point as

I
A, (s ) =——— I 'g$p (s = r = u ) . (3.20)

4~ ) A

p2
(3.14)

(3.15)
A, (s)=—4~ s ~

—1

Mz

Then for large momenta we have

(3.21)

Ag=4~ln '

p
(3 16) and the p function is

g = —4mln (3.17)
P(X)=—2s "=—2

Bs 4'

Here p and g, are arbitrary finite constants.
Let us first consider the possibility Eq. (3.14). In this

case the gap equation [Eq. (3.5)] has a nontrivial solution.
The renormalized four-point PGF is P„„,(z)= —2 ' (3.23)

For large enough X this coincides with the perturbative
one-loop P function

I s,"/.'(P4 p3 pz pi)= 2~[|' "&"&;,~«J '(pi+pz)

iP»pz
(3.18)

2 d kJ(p)=2 M +
4 (2ir) (k +M )[(k +p ) +Mz]

1 ~ z z ')/1+4M /p —1

4m. '(/1+4M /p +1
(3.19)

One notices that this expression does not depend on any
dimensionless parameter. Once M is specified by the nor-
malization condition Eq. (2.8) there are no additional pa-
rameters in the theory. This is the phenomenon of di-
mensional transmutation discussed in the framework of
this model in Ref. 9. The theory is asymptotically free—
I" vanishes at large momenta.

I.et us define the e6'ective coupling at the symmetric

In fact our expressions are very close to those obtained in
the leading order in I/X expansion. The renormalized
four-point PGF coincides exactly and Eq. (3.14) becomes
the 1/X result with the substitution 2X —1~2%. It is

interesting to contrast them with the exact solution of the
model given in Ref. 2. Figures 1(a) and 1(b) show the
scattering amplitude corresponding to 0.

2 of Ref. 2 calcu-
lated with our I versus the rigorous solution for
difFerent values of X. For large enough X they coincide
practically in the whole range of energies. For smaller X
the agreement is poorer but the qualitative behavior of
the approximate solution at high energies is still the same
as the exact one.

The situation here is similar to that in the negative
coupling +" scalar theory in four dimensions. There too
for large X the P function was close to the perturbative
one. For smaller X the discrepancy became larger but
the qualitative features remained correct.

There is another similarity with the W theory. Let us
consider the energy density of the Gaussian states Eq.
(1.3):
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(b) FIG. 2. The schematic dependence of energy density of
Gaussian states on the mass parameter M in the Gross-Neveu
model for bare coupling of Eq. {3.14).
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FIG. 1. The 5-matrix element equal to o.
2 of Ref. 2 of the

Gross-Neveu model as a function of relative rapidity of two par-
ticles for difFerent values of N. For the exact definition of 0 see
Eq. (4.17). The exact solution is shown in dashed lines, the
Gaussian approximation result in solid lines.

1 AE =2AM ln +1g 4~ ~2
A MA

l 1 + M
M A

2
1 A+(2N —l)g ln +1

4~
(3.24)

2% 2 M
2

(3.25)

This is finite and bounded from below for any value of M.
The function (3.24) is schematically depicted on Fig. 2.
The solution of the gap equation that we found corre-

One notices that with the bare coupling given by Eq.
(3.14) this is not bounded from below as M ~ oo for any
finite A. However, if we take the limit A~ 00 and leave
out of Eq. (3.24) terms that vanish in this limit for finite
M we obtain

sponds to the local minimum of the energy at M =p . It
is a complete analog of the "metastable vacuum" of Ref.
15 in the 4 theory. Here also as the cutoff is removed
the lifetime of this metastable state becomes infinite since
the potential barrier is proportional to the cutoff.

It is known that for N ) 2 the 1/N leading order is a
good approximation to the exact results. However, for
% =1,2 it does not agree with them even qualitatively.
For N= 1 the Lagrangian equation (2.1) coincides with
the Lagrangian of massless Thirring model. It is known'
that in this theory the coupling-constant renormalization
is finite, mass is not generated, and there are no fermions
in the spectrum of the theory. In the case X =2 the situ-
ation is similar. It is known that the Smatrix found for-
mally in Ref. 2 does not contain poles corresponding to
massive fermions and the theory does not contain fer-
mions in the spectrum.

Keeping this in mind we are now going to ask what is
the meaning of additional solutions for the normalization
condition Eqs. (3.15)—(3.17). First it can be seen that the
solution (3.17) is unacceptable. Consider the energy den-
sity equation (3.24). For the bare coupling equation
(3.17) and N ) 1 it is unbounded from below as a function
of M . In this case the energy does not have a local
minimum for finite M and thus no interpretation similar
to Eq. (3.25) can be given to it. For N =1 it coincides
with the solution equation (3.14).

For other solutions, Eqs. (3.15) and (3.16), the energy is
bounded from below. In these two cases there is no non-
trivial solution of the gap equation (3.5). The status of
the solution M =0 is also rather shaky. The energy den-
sity [Eq. (3.24)j is a function of M rather than M. If we
minimized this expression with respect to M as is usual-
ly done in bosonic theories [and not M which was done in
order to arrive at Eq. (3.5)] no solution at all would have
been found. In any case M =0 is an end point of our pa-
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rameter range and our attitude towards it must be very
cautious. It seems more correct to interpret it in the fol-
lowing way: for the bare couplings, Eqs. (3.15) and (3.16),
there are no reliable solutions of the gap equation and
therefore no real fermions exist in the spectrum of the
theory in these phases.

Here one could argue that since M =0 is the end point
of the parameter range of our variational calculation,
bare couplings that lead to M =0 are senseless at least in
the framework of the approximation. However this is
not convincing. If we were to consider the same bare La-
grangian but with a nonzero bare mass (which also

defines a renormaliable theory) the couplings, Eqs. (3.15)
and (3.16), would lead to a nonzero solution of the gap
equation which would depend on m&. Thus for nonzero
m& those renormalizations certainly make sense. When
the limit m& ~0 is taken this would mean not that the re-
normalizations no longer make sense but rather that the
fermion mass is not dynamically generated in these
phases and fermions disappear from the spectrum. Thus
the renormalizations equations (3.15) and (3.16) repro-
duce correctly the gross feature of the theory for X = 1,2.

Let us look in more detail on the I for those two re-
normalizations. ' For Eq. (3.15) we have

41k 'i

~sy)a(p4~p3~p2~p i )

41+12) PV1+P2) s+ t Vi+f2)X'1.PlV i+A'2)r'f»
(pi+p»' 1 —4M A (pi+p2)

+ g, 5"5"' (P', +P, ) ji(P +P )p,+, [Vi+Ah'1. Pf. (P'i+f4)r'1P
(pi+p~)' 1 —4M A (p, +p4)

, (5'5'"—5"5"'), (p +p ).,V +P3)ps+[Vl+P3)1'i.,((Pi+f3 ~ lgs
(p i +p3 )2 1 —4M A (p i +p3 )

+2g (5"5"'5 p5rs 5'5'"5 —s5pr) . (3.26)

The effective couphng is

3 1
A,(s)= —g 2 2(1 —4M A(s))

(3.27)

lt has a finite limit as the scale s goes to infinity, A,~—g, and is completely X independent. For Eq. (3.16) one obtains

ij kl il jk 1f's",$'.(p4 p3 p2 pi)= &5"5"—'+5'5" 5 8»
1 M

ln +2J(p, +p2)
277 p

1(5ij5kl+ 5il5jk)~5 ~5ay P5

ln, +2J(p, +p3)
2% p

(j ~I,I3~5—,P2~P4)

(3.28)

The effective coupling is

~( )
%+1

N
1 %+1 4m

1 M s ~ X s
ln +J(s)4a p2

(3.29

and the P function

P( jt, ) = —
A,%+1 4m

(3.30)

This phase is asymptotically free. Its X dependence is
also very weak and difFers strongly from the 1/N phase.

Thus in these two phases the effective coupling behaves
in such a way that the addition of new fields to the theory
does not change it. The effective coupling defined in Eq.
(3.20) is essentially the coupling per degree of freedoin.

Thus the picture is more like that of N particles with
self-interaction k or particles interacting in pairs than N
particles genuinely interacting with each other. This can
indicate that these renormalizations are nontrivia11y rea1-

ized only for some small values of N, while for large N
they result in a direct sum of several systems rather than
a system with a really different dynamics. ' This conjec-
ture is of course outside the range of the CGA and in the
framework of the approximati6n we have all the three
phases for any value of X. However it is consistent with
the known results for X = 1,2.

Hence we find that the 1/N renormalization correctly
describes the theory for X &2. In this case the fermion
mass is generalized dynamically and the phenomenon of
dimensional transmutation takes place. For N =1,2 the
other two renormalizations are probably relevant. In
these cases there is no consistent solution of the gap equa-



530 B. ROSENSTEIN AND A. KOVNER

tion and no fermions in the spectrum of the theory.
It is satisfying to discover that in addition to the 1/X

renormalization the CGA provides possibilities for ex-
istence of the other phases whose major feature—
nonexistence of real fermions —is confirmed by exact re-
sults for small N.

d kS &'(p)=D &'(p)+g I — I[y S(k)y ] &(2'�)'
—(y„) ptr[y„S(k)]I,

(4.2)

IV. THIRRING MODEL

In this section we analyze the massive Thirring model
along the same lines. The theory is described by the La-
grangian

where

D p'(p)=z(P +mq) p.
Its solution has a general form

S ' =z (/+M),

(4.3)

(4.4)

I. =zql(i/+ mq )qI+z —(0'y„%') (4.1) where the mass M is the solution of the gap equation

Our motivation here is again to test the method. It is
known that this theory has a phase which is not asymp-
totically free and the coupling constant undergoes finite
renormalization. ' All the theories investigated up to
now with the help of the CGA including the four-
dimensional U(1) Higgs model were found to be asymp-
totically free. The impression could arise that this is an
artifact of the method rather than the real feature of the
theories. Hence it is interesting to test it on a theory
which is known to have a nonzero ultraviolet fixed point.

The second truncated DSE in the absence of shifts is

M =mb —z Mlng A
2m'

(4.5)

M=m h,
z=l .

(4.6)

(4.7)

In the same way as in the previous section we calculate
the auxiliary functions

Since the truncated propagator is equal to the full Gauss-
ian one, the two normalization conditions Eqs. (2.8) and
(2.9) can be already implemented. They lead to

4 1
1 «&&&(p4,P3,P2,p~ ) = —2g a

&

—a,
1 1+4B

[(1—8m 3 )b, —(1—8M & +4&)&,+4~ lp +p IM~ (&&
—

&2 )]
(1—8M'A)(1 —8M'3+4&)+16(p +p ) M ~

(4.8)

4, 4g
a, apys(P4 P3»2»t ) =

1
(4.9)

The argument of A, B,a, , etc. , is (p, +p2 ) and a; stands for a,.(s~)(& l, etc. Here we use the notation of Eq. (3.11).
There are three possible choices of g that make this function finite:

(4.10)

A
g =2m ln

p
(4. 1 1)

A
g = —2~ ln

p
(4.12)

First let us consider the renormalization equation (4.10). The renormalized four-point PCxF in this phase is

apys(P l,p 2,P 3,P 4 ) =2g (y„y„—y„y„)
T

1+g
(P i+P2)' Vl +f2 ) 13(f1+12 ) s V 1 y +P2y ) P(PI y +P2y ) s

1 —8M 2
—(P 5P2 P4)

(4.13)



GROSS-NEVEU AND THIRRING MODELS. COVARIANT. . . 531

The effective coupling is

X(s)= ,—'r—'..»(s =t =u)

-34-1$.0153045603.5
I

I
I

I
I

I
I

I
I

I
I

I
I

3.h

7.5 %.0 10.5 12.0
I

I
I

I
I

=-- 3- —+ g2 1 —8M A(s) s-~

and the P function

P(A, ) = —2[A(s)+g] .

(4.14)

(4.15)

3.3

'' —g =.OI

30 g=.=.I

3.3

3.1

3.0

Hence the theory is not asymptotically free but has an ul-
traviolet fixed point A, = —g. This coincides with the
nonasymptotically free phase discussed in the previous
section.

From the definition of 3 [Eq. (3.11)] we see that in or-
der for I to have no tachyon poles the following must
hold: g ) —~. It is known that the theory is well defined
only for g ) —m/2 (see, for example, Ref. 14). Thus al-
though the restriction we obtain is milder it reflects the
qualitatively correct feature. The effective two-particle
interaction for positive g is that of attraction while for
negative g repulsion. This is in agreement with exact re-
sults. 2

It is interesting to compare our results with the
rigorous formula of Ref. 2. To this end we calculate the
S-matrix element corresponding to fermion-antifermion
backward scattering:
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S(9)=— 1 +
sinh0 g 0

m sinhO

+2
g im —0
~ sinhO

(4.16)
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OP
-9.6

-LL.h
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Here 0 is the relative rapidity of the two particles:

p2p &

—p @2=M sinhO,

p Q~ =cosh0
(4.17)
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9 0 IO.S 12.0

Figures 3(a)—3(c) show the comparison of our result to
the exact one for different values of g. As in the case of
the Gross-Neveu model there is a qualitative agreement
for large energies and small couplings.

The next question to address is what is the status of
other renormalization equations (4.11) and (4.12). First,
consider the renormalization equation (4.11). It has a
feature that in our view makes it unacceptable. Let us
concentrate on the limit mb~0. In this case the gap
equation (4.4) has a nontrivial solution:

(4.18)

The renormalized four-point PGF is
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3.0

I

1.2

«2. h

M.2

"7.8

"9.6

0 L.S 3.0 h. 5 6.0 '7.$ 9.0 10.5 12.0

I
'

I
'

I
'

I

1.2

M.2

-7.8

"9.6

41 prs(pi P2,»3 P4)

[(p, +p2) +4M ]22 (p, +p2)

-Ll.h

13.2

-15.~-3.0
I 1 I I I I I I I I I I I I I I I I

. 0 1.5-1.5 3.0 h. S 6.0 7.$ 9.0 10.5 1

-1L.h

-13.2

-'LS.~2.0

' 2(pi+P2)'~(pi+P2)

P4) . (4.19)

FIG. 3. The fermion-antifermion backward-scattering S-
matrix element of the massive Thirring model for diA'erent

values of coupling g. The exact solution of Ref. 2 is shown in
dashed lines, the Gaussian approximation result in solid lines.
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Here again the dimensional transmutation phenomenon
occurs. However the theory of Eq. (4.1) with mb=0
possesses a continuous U(1) axial symmetry. The genera-
tion of mass. would mean that this symmetry is spontane-
ously broken, which is forbidden in two dimensions. '

Indeed I" has a Goldstone-particle pole at zero momen-
tum. If one would consider post-Gaussian corrections
this massless excitation is likely to lead to a severe in-
frared problem destabilizing this phase. A similar situa-
tion occurs in theories where the axial symmetry is bro-
ken in 1/X leading order when the next to leading
corrections are taken into account. ' Thus this phase
must be unstable beyond Gaussian approximation.

Turning to the third solution of the normalization con-
ditions Eq. (4.11) we find the renormalized four-point
function to be

L =%(irl+mb )4'+ —(%y 4'), i = I, . . . , X .
2

(4.22)

It is straightforward to repeat all the steps of our analysis
in this case. The gap equation is

M =m ——Mlng A
b (4.23)

Again there are three possibilities to renormalize the
theory:

So we find an additional, asymmetrically free phase in the
massive Thirring model. In this phase in the limit I& =0
the only solution of the gap equation is the trivial one
M =0, and the axial symmetry is not broken.

It is easy to generalize these results to the SU(X)-
Abelian Thirring model:

4
Pys(pl Pz P3 P4)

l M
ln +2J(p, +p, )

277 p
X() p) yp ) s) ps) (4.20)

A
g =2~ ln

p

(4.24)

(4.25)

The effective coupling vanishes at large momenta A
g = —2~ ln (4.26)

S
A, (s) ~ 2' in-

+~ oo M
P(A, ) =- ——A,

1 2 (4.21) In the first case one obtains the renormalized four-point
PGF.

r'„pkls(pi, pz, p3,P4) =2(5"5kly.py ys
5'l5J") ".py

—
yp)

+g 5 5 (11 +/2) PV1+Pz) s
(P i+Pz)' Pi+Pz 'YaP Pi+~»y&

1 —8NM A p, +pz

i»»P2 P4) (4.27)

This is a theory with finite ultraviolet fixed point. In the case of Eq. (4.26) one obtains

4ij kl
~aPys(P 1 ~p2 ~P 3 &P4

—g —55~6&y & M
[(p, +pz ) +4M ]2 A (p, +pz )+ ln

4~ p~

5 5
~abye

2(Pi+Pz) A(Pi+Pz)+ ln
z

g M
4~ p~

—(j~l,P~5,P2 ~P4 ) (4.28)

This has the same infrared problem in the limit mb ~0
as in the one-component case (since then M =p). The
solution, Eq. (4.25), leads to an asymptotically free phase
in analogy with the one component case.

Thus we conclude, that the CGA gives the following
results for the Thirring model [and indeed the theory Eq.
(4.22) for any N]. The theory has a line of ultraviolet
fixed points g (—m/X. In the limit m&~0 the axial
symmetry remains unbroken. The only solution of the
gap equation in this case is M=O. As discussed in Sec.
III this solution cannot be taken at its face value. The

correct interpretation is that no consistent solution of the
gap equation exists and thus there are no elementary fer-
mions in the spectrum of the theory. This is in full ac-
cord with the rigorous reults. ' In addition to that an
asymptotically free solution with vanishing bare coupling
is possible.

V. CONCLUSIONS

We have analyzed in covariant Gaussian approxima-
tion two solvable two-dimensional fermionic QFT: the
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SU(X) Gross-Neveu and massive Thirring models.
In the Gross-Neveu theory we found that three renor-

malizations are possible. One is almost identical to the
1/N leading-order renormalization. In this case the
theory is asymptotically free. Fermion mass is dynami-
cally generated and a dimensional transmutation
phenomenon takes place. There are two more possibili-
ties to renormalize the theory. In these two cases mass is
not generated and the spectrum of the theory does not
contain fermions. The effective coupling in these cases
does not depend on N which makes is plausible that they
are realized for some specific values of N. This is in
agreement with the known fact that for N = 1 and 2 the
theory does not have real fermions in the spectrum.

An important difterence in this connection must be
noted between the CGA and the leading order of 1/N ex-
pansion. In 1/N expansion only one renormalization is
possible. Since all the expressions are analytic in N the
same qualitative picture persists for all the values of X (if
the results of the approximation are taken seriously).
The situation for N=1 is rather strange. In this case
there still is the dynamical mass generation and the fer-
mion acquires mass. However for N = 1 the Gross-
Neveu model coincides with the massless Thirring model
and possesses an additional U(1) axial symmetry. The ap-
pearance of a massive fermion signalizes spontaneous
breakdown of this symmetry. However the Green's func-
tion equation (3.18) shows no sign of a Goldstone pole.
This paradox is resolved in the CGA. For N =1 two re-
normalizations, Eqs. (3.14) and (3.17), coincide. There-
fore, the limit N —+1 must be taken not in the renormal-
ized expression for the four-point GF but rather in the
bare one [Eq. (3.13)]. When this is done carefully addi-
tional contributions to Eq. (3.18) appear and we indeed
find the four-point function of Eq. (4.19) which exhibits a
pole at zero momentum in the axial channel. In addition
to solving this puzzle the CGA provides for the discovery
of other phases which better represent the true behavior
of the theory for smal1 N. Thus although the CGA is in
some cases similar to 1/N leading order it does not al-
ways give the same results and sometimes can have
greater generality.

It is interesting to note that in the case of 1/N renor-
malization there is a strong similarity with the N theory
in four dimensions. The energy density of Gaussian
states with difterent masses is not bounded from below as
a function of mass as long as the ultraviolet cutoff' is
finite. In the limit A~ ~ the solution of the gap equation
is protected from decaying into a state with infinite mass
by an infinite potential barrier and thus becomes stable.
Exactly the same feature is observed in the N" theory
where (for the case of infinitesimal negative bare cou-
pling) the global minimum for finite cutoff' is a state with
infinite field shift P (Ref. 15). Notwithstanding this insta-
bility at finite cutoff', the results of our approximation
(which in this case coincide with the 1/X leading order)
are in good agreement with exact results for the Gross-
Neveu model, which is exactly solvable. This in our view
is a strong indication that N3+, theory cannot be discard-
ed just because of the same instability (or equivalently be-
cause its bare coupling is negative). Thus the theory with

negative coupling discussed in Refs. 4, 6, and 15 is a good
candidate to be a nontrivial well-defined QFT.

In the case of the massive Thirring model we found
two phases. In the first one the coupling constant under-
goes finite renormalization. The theory has a line of ul-
traviolet fixed points. In the second phase the bare cou-
pling is infinitesimally small and the theory is asymptoti-
cally free. The same is true for the SU(X) generalization
of the Thirring model.

The comparison of S-matrix elements of both Gross-
Neveu and Thirring models with exact expressions re-
veals that in both cases there is a qualitative agreement.
In the former model it is better for large values of N and
in the latter case —for small values of coupling.

We conclude that the CGA is capable of giving quali-
tatively good results for QFT. This justifies further at-
tempts to apply the approximation to more complicated
and phenomenologically relevant theories.
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APPENDIX

In this appendix we present the relevant formulas for
the algebra of the "projector" matrices defined by Eq.
(3.11). We use the same representation of Dirac matrices
as throughout the paper:

Yo=io.3, y& =to.
&, 'Vs—:To'V& = o z ~

(A 1)

They obey the Fierz identity

&'~yX~p~=& y&ps+ X~yX p~
—

2&ap&y~ .

The algebra of the "projector" matrices is

(A2)

a&a& =a&, a2a2 =a&, b&b, =b), b2b2 =b2

C, C& =c2C2=d&d& =d2d2 0

a&az =b&b2=0, a, b =0, a,.c =c,a- =0,

b;d =d;b. =0,

b&C2=b2c& =c&b& =c2bz=0,
(A3)

a&d& =a2dz=d&a&=d2a& =0

b~c~ c~& b2c2 c2& c&bp c~ c2b~ c2

a)d~=d2, a2d, =d), d)a) =d), dqaq =dq .

Using Eq. (A2) and the definition equations (3.11) one can
obtain the following expressions that were used to arrive
at formulas of Secs. III and IV:
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y~yyPs 1[~P][r&] 1[~P][1's] ' y~Pyr s 2[~P][ys] 2[~P][ys] ' y~Py01' 1[~P][r~] 1[~P][1's]

5 5 g. +a —b —a~[~p][r&] ~[~p][r&] 2[~p][r~]
—

a2[~p][y&] ~ ~~&~py a, [~p][r~] ~ 1 [~p][r&] ~2[~p]Ir~] 2[~p][r&] & (A4)

~& pr &[~p][y&] &[~p][y~] 2[ p][r&] 2[~p][y&]' ~y p~ &[ p][y&] &[~p][y&] b2[~p][y&]+ 2[~p][y5]

To invert the matrices (1+X)and (1+F) we used

(1 —a,a, —aa p, b—, pb ——y, c, —y c )

1 1tt1+
1

a2+
1 1

[(1—p2)b1+( pl)b2+ylC1+y2C2], (A5)

a2t22 p1b1 ptb 2 y 1 d1 y 2d 2 )

1 |.1+ b2+ l(1 a2)+1+(1—a1)&2+y1d1+y2d2)l
1 —

2 1 —a, )1—a, ) —yy, (A6)
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