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As an alternative to the loop expansion of the effective potential, we suggest a functional expan-
sion of the generating functional for an n-point Euclidean Green s function. The formulation of the
scheme is independent of the space-time dimension of the model. The scheme yields standard per-
turbation theory in the regime of a small coupling constant and allows to extract information on the
regime of strong coupling. As an explicit example we consider the scalar N model and compute
contributions up to the four-loop level.

I. INTRODUCTION II. FUNCTIONAL EXPANSION

Coleman and Weinberg' have shown the usefulness of
the loop expansion of the eA'ective potential to study
spontaneous symmetry breaking in massless scalar elec-
trodynamics. In Ref. 2 Jackiw has discussed the two-
loop approximation of the eA'ective potential for the mod-
el of n self-interacting scalar fields. In particular he
pointed out the need for computing higher-order loop
contributions in field theory. The purpose of this paper is
to propose a systematic functional approximation of the
generating functional of the n-point Euclidean Green's
function. The n-point Green's function plays an impor-
tant role in many-body, condensed-rnatter, and particle
physics. We choose as finite-dimensional functional
space the functionals obtained by expanding the generat-
ing functional in the coupling constant, and then com-
pute exp[ fd x X'"'[t)/BJ(x)]] in this finite-dimensional
functional space. This functional approximation has the
following properties. It corresponds to summing all loop
diagrams, generated by the finite-dimensional functional
space, up to infinite order. Expansion of the functional
approximation in the coupling constant reproduces stan-
dard perturbation theory. We want to underline two
features of this scheme: (a) The dimension of the func-
tional space is independent from the space-time dimen-
sion of the model (contrary to lattice field theory, where
the number of lattice nodes is related to the space-time
dimension); (b) the scheme is Lorentz invariant, like ordi-
nary perturbation theory (but contrary to lattice field
theory, which violates Lorentz symmetry on a finite lat-
tice). In Sec. II we introduce the functional approxima-
tion. In Sec. III we define the finite-dimensional func-
tional space and introduce a scalar product. Section IV
explains how to compute exp[ f d"x X'""[t)/t)J(x)]]. In
Sec. V we comment on mathematical properties of the
approximation. In Sec. VI we give an explicit example
applying it to the scalar 4 model and compute contribu-
tions up to the four (six)-loop level. In Sec. VII we dis-
cuss renormalization and perform it explicitly up to the
two-loop level. A conclusion is given in Sec. VIII.

We consider the scalar N model in 3+1 dimensions in
its Euclidean form, given by the Lagrangian

—'(a y) +—'m y'+ —y2 )M 2 4I

JV: W[0]= 1 . (2)

From W[@],one can obtain the n-point Green's function
via

ci'= 0

As a starting point for perturbation theory, one usually
defines a free generating functional W"'[d], defined as
in Eq. (2), but substituting the Lagrangian by the free La-
grangian X '". The following well-known relation
holds: '

W[ ctt] =JV ' exp f d x X'"' W' "'[o"] (4)

The free generating functional can be computed explicitly
to give

W "'[4]= exp —,
' f d x d y d(x)b, (x,y)8(y), (5)

where 6 denotes the free propagator

d "k exp[ik. (x —y)]A(x, y =
(2') k +m

We write Eq. (4) in shorthand, suppressing the normaliza-
tion JV,

W[d]= exp( A) W "'[d],

Let us recall some notations and properties of the gen-
erating functional W[8]:

W[d]=IV ' f2)tbexp f d x X(P)+8/
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where 3 is an operator in an infinite-dimensional func-
tional space X Let us construct a finite-dimensional
functional space

P'N) =
[f„[r)f ] l

n =0, . . . , N ] .
I

In order to make this a meaningful definition, the func-
tionals f„[8]should have something to do with W[8].
That will be specified below. Firstly, we suggest to ap-
proximate A by 3' ', chosen such that

III. CHOOSING 9™FROM PERTURBATION THEORY

In ordinary perturbation theory, one would expand Eq.
(7) in the coupling constant, i.e., in powers of 3, to a
given order K,

K gn
Wpert[ y] —y Wfree[ y]

ln=O ".
We identify Wf„, = W "' and define P via the basis

g (N) cy(N) c7(N) (9) f„[r)f]=2 "W"'[8], n =0, . . . , N . (12)

W' '[4]= exp( 3 ' ') W'„,' [8] . (10)

The above construction has been introduced because the
functional operator 3 ' ' is represented by a finite-
dimensional matrix, which can be diagonalized and hence
exp(A' ') can be computed. That means that we can
compute W' '[cf], i.e., the generating functional in a
finite-dimensional "toy" space 7 . The procedure can
be interpreted as partial summing of perturbation theory,
if we choose the functionals in 9' ' as those which would
appear in perturbation theory. Then one hopes to learn
something about the strong-coupling regime from the
small eigenvalues of 3' '. Below we will elaborate the
idea, using the functional basis from perturbation theory;
which will lead to a loop expansion. It might be interest-
ing, however, to try finite-dimensional functional spaces
constructed from other functionals also.

However, 2' ' is not an invariant subspace of 3, in gen-
eral. We demand that the mapping of 2 agrees with the
mapping of A' ' on a subspace of 2' ' as large as possi-
ble. Secondly, we suggest to approximate W"'[8] by
Wf„,'[8]. Finally, we suggest to approximate W[8] by
W( )[8],given by

Clearly, 3 does not leave 7 ' invariant. In order to
define A' ', we introduce on 9' ' (or more generally on
V) a scalar product. Because of the requirement that A
and A' ' should agree on a maximally large subspace we
define an orthogonal projector P' ' and put

Thus A' ' leaves 2' ' invariant and agrees with A on
p(N —1)

In order to specify a suitable scalar product, we look at
the functional dependence of f„on 8. It has the form

g n Wfree[g] —
Q [d(] Wfree[ y] (14)

where Q„[o"] is functional polynomial in 8 of degree 4n,
in the case of the (I) model, and W"'[8], according to
Eq. (5), is a Gaussian. Hence 2 "W"'[8] is a functional
like a Hermite function. However, there is a small but
important difference. The exponent of the Hermite func-
tions is negative, while here it is positive (the Euclidean
propagator b, being a positive operator). On the space of
those Hermite-type functionals we define a scalar product
by

(fig & =(PW"'lQW"'& = fd[i8]P[i4]*W"'[id]"Q[i8]W""[icP]
M

lim i™f d 8) f d PMP[i/]Q[i8] exp — g 8 b,
M~ oo oo oo

m n=1
(15)

We have introduced the imaginary unit i into the
definition, in order to obtain a minus sign in the ex-
ponent. Now we have a Wiener-type functional integral
with an exponential fall-off behavior, which guarantees
the existence of the integral. The scalar product has all
the properties of an ordinary scalar product, except that
it is not positive, (f lf & P 0, due to the factor [i] in the
measure. This is no problem, because in the following we
will have to compute ratios of scalar products; hence this
factor will cancel out in the final expression for the gen-
erating functional.

With this definition of the scalar product, one can veri-
fy the following properties of the functional operator A,
defined by Eqs. (1) and (4):

r 4

Firstly, 3 is Hermitian, i.e.,

&fl&lg&=& ~fig &, (17)

and secondly, 3 is a negative operator for a positive A, :
1.e.,

IV. COMPUTATION OF exp( A ' ') IN THE
EIGENREPRESENTATION OF A '

Starting from the basis, given by Eq. (12), we define the
matrices

4 6
4! |)8(x) (16) (19)
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[~]&
= g n .If.[+]& . (22)

Then the eigenvalues a are determined by

det( A —a„B) =0,
while the eigenvectors g are determined by

qAB '=ay,
with the normalization

gag =1 .

Then we can write

(23)

(24)

(25)

exp(A'~')= g Iu„[8]&exp(a„)&u„[+]I
n=0

If [+]&[a'exp(a)v*1 „&f.[+]I
m, n =0

(26)

and the generating functional, Eq. (10),
N

I
W' '[+]&

= „, g If.[~]& fn'exp(a)n*~ ].,0
(27)

A"'W' '[0]=1
Here we can already say something about the structure of
the solution. All functional dependence on 8 is given by
the functionals f„[cF]. The coefficient matrix is indepen-
dent of 8 (all cF dependence has been integrated out in the
scalar products) and hence it will be composed of loop di-
agrams only. This will be discussed in the next section in
some detail.

Because the operator A is Hermitian and negative for a
positive coupling constant A, , the behavior of the generat-
ing functional in the region of a large (positive) A, is dom-
inated by the smallest eigenvalues of A. We can compute
the eigenvalues of the A ' '. However, the question
arises, is A still negative after renormalization? This is
an open question. But what we can do is compute the re-
normalized A ' ' (see Sec. VII), determine its eigenvalues,
and check if they all have the same sign.

'We want to conclude this section with a comparison of
W' '[8] and W[rt'] in the coupling-constant expansion.
We claim that both agree in the coupling-constant expan-

which both are real and symmetric. Then the projector
P' ' and the functional operator A' ' can be expressed as

If [+l&(& ') .&f„[+]I,
(20)

&'"= Z If.[&]&(& '» ')..&f.[+]I
m, n =0

Now we can diagonalize A '

A'~'Iu [8]&=a Iu [8]&, &u Iu„&=6 „. (21)

Let us express the eigenvectors v in the basis of the
functionals f„:

sion to order K if K ~N. Expansion of 8'+'[8] in the
coupling constant to order K reads

W(N) [y] y Wfree[g]
nf (28)

We find that this agrees with the expansion of W[rt'], Eq.
(11)., for lr. ~N. This is due to the construction of 3'
Eq. (13), which leaves 9' ' invariant and agrees with 3
on 9 ". This is true independent of the particular
choice of the scalar product.

V. COMMENT ON CONVERGENCE PROPERTIES

The idea to approximate the function of an operator,
exp( A ), by exp( 3 ' '), where A ' ' is an operator in a
finite-dimensional subspace, has been found useful in
time-dependent scattering calculations, where the time
evolution exp(iHt) has been approximated in this way.
In nonrelativistic few-body systems one can show for a
wide class of potentials that exp(iH' 't) converges to
exp(iHt) in the strong sense. Although this approxima-
tion has been shown to work in numerical calculations
for several field theories [4",+, model, Thirring model,
@ED,+, (Ref. 9)], a rigorous proof is lacking in those
cases. Nevertheless, the idea is supported by practical ex-
perience.

However, there is a critical point, which deserves some
discussion. What we have done is to approximate the
functional W[8] by the functional W' '[8]. The ap-
proximation is defined by the topology introduced by the
scalar product based on a functional integration over the
source fields, where the integration extends from —ao to
+ ~. However, for the purpose of computing the
Green's function, one needs W[4] and its functional
derivatives at 8=0. Of course we can compute the func-
tional W' '[cP] at 8=0, but is this a good approxima-
tion? Certainly not in a mathematically rigorous sense.
Considering as an example the approximation of ordinary
functions by polynomials (Hermite) with a Gaussian
weight,

f dt exp( —t') '2t[P„(t)—f(t)]+ [P„(t)—f(t)]
0 dt

= —P„(0)+f(0), (29)

which shows that in order to establish convergence at the
point t =0, one needs convergence of the function plus its
derivative in the L, 2 sense. In principle, we could simu-
late this also in our functional space, by including a term
with a functional derivative in the scalar product. How-
ever, this would make the formalism quite clumsy. Nev-
ertheless we think that the functional approximation
scheme proposed above is useful, because, after expansion
in the coupling constant, it coincides with ordinary per-
turbation theory, where J =0 is taken.

VI. EXAMPLE: SIX-LOOP EXPANSION X = 1

The case N =0 is trivial. It is completely determined
by W"'and the normalization of JV '. i.e.,
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W(0)[y] Wfree[y] (30)

Let us consider now the simplest nontrivial case, X =1.
Using the abbreviation

lf„)—:l
n ), the matrices 3 and B,

given by Eq. (19), read

independent of (Olo). Then Eq. (24) implies that the
eigenvectors g are independent of (Olo). However, the
normalization of g depends on (Ol0) via Eq. (25). (c) Us-
ing Eq. (25), one can rewrite the coeKcient matrix of the
generating functional, Eq. (27):

exp(a)rI*B =g exp(a)(rlT) (32)
(012& &o13)

&olo&

&oil�

)
(31)

Thus we have to compute the matrix elements
(Olo), . . . , (Ol3). It will turn out that one can extract
by factorization a common factor (Olo) from the matrix
elements (Ol 1)&.. . , (Ol3). This has the following
consequences: (a) Then Eq. (23) implies that the eigenval-
ues a„are independent of (Olo); (b) the matrix AB ' is

I

Here the normalization of q cancels out; hence, the whole
term and hence the generating functional W' ~[g] is in-
dependent of (Olo). The above remarks hold in general
for every common factor extracted from 3 and B. This
will play a role when eliminating the volume dependence
of the loop diagrams.

Now let us turn to the computation of the matrix ele-
ments.

(a) (Olo). Although this matrix element is irrelevant,
we will compute it in order to review the functional in-
tegration technique:

&olo& =& w""I w'"'& =[i]f d[cF] exp —f d x d y d(x)b(x, y)8(y)

M
lim i™fdc(, f d8~ exp —g dAd,

M —+ oo QO oo i,j=1
(33)

Because 6 is a positive operator, one can compute its
square root and introduce the variable transformation

(34)

and

Thus we obtain Anally

(37)

Hence we have

(olo)= lim i™fddI . f d/Mdet~—+ oo —oo M'
J

X exp( —8,'J,.') .

(35)

One computes

(Olo)= »m
( + )M

v'det(b )
(38)

(b) (ol 1). To evaluate this matrix element one has to
do a functional integral with functional derivatives,
which can be done erat'ectively by partial integration. But
because the functional

l
1 ) = A

l

W' "'[8])has been given
in the literature, we want to start from that expression:

58;
det

58J
1

det(&b, )
(36)

A W"'[8]=co [8]W""[8]
where

co,[cP]= d y d x, d x46(x„y). . . A(x4, y)8(x)) . 8(x4)

+6fd y d x, d xzb(x„y)b(y, y)h(y, xz)8(x, )cP(xz)+3 f d y b. (y, y)

or, expressed in graphs, where the dot denotes a vertex, the straight line denotes the propagator 6, and the asterisk
denotes a source 8,

~i[~]= 4, +3 (41)

Thus we can write the matrix element (note the change of sign for terms with two sources)
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(0~1)=[i]fd[8]co,[idj] exp[ —(

=[) 4, fd[~]

X exp[ —( (42)

After a lengthy, but straightforward calculation, along
the lines of Eqs. (33)—(38), one obtains

(43)

f d [d]P[cf]exp[ —
( = (44)

where P[cP) is a polynomial in 8, represented by a graph
with external sources, one can use the following graphical

I

Here we would like to make a few comments. Firstly, the
technique to do these functional integrals over source
fields is the same as applied in stochastic quantization,
e.g. , when computing an n-point Green's function as an
average value over Gaussian white-noise sources 2) (Ref.
10). In order to carry out a functional integral over
sources r2" of the type

rule. (a) Take two sources of the graph, join them and
transform it into a line. Each such line gives a factor —,.
Do this for all sources. A graph with an odd number of
sources will give a zero contribution. (b) Determine an
overall factor, counting the number of possibilities to join
two sources. Secondly, the total contribution coming
from all three terms of the polynomial in Eq. (42), is iden-
tical to the contribution coming alone from the term with
the highest number of sources 8 (first term). This feature
is also found in the other matrix elements (0~2) and
(0 3). Thirdly, as mentioned above, the matrix element
(0 1) factors out the matrix element (0~0), which is
singular but irrelevant. Finally, the matrix clem. ent
(0~1) contains more singularities coming from the two-
loop graph. There is an infinite-volume factor plus an ul-
traviolet divergence. The treatment of these singularities
wi11 be the theme of the next section.

(c) (0~2). Because the functional operator A is Her-
mitian, one has (0~2) =(1~1). Thus we can write, in
analogy to Eq. (42),

( 1~1)=[i]f d [8]~ co,[i8]~2 exp[ —{ =

2

fd[d]

Xexp[ —( = (45)

Carrying out the calculation yields the result

(I il ) =(ohio)
9
16

9+—
2

3+—
2

(46)

As stated above this matrix element factors out the matrix element (0~0). Secondly, it is identical to the result that
would have been obtained by taking into account only the term of the polynomial, Eq. (45), with the highest number of
sources. The result contains an unlinked four-loop diagram, which has a square of the volume behavior.

(d) (0~3). This is equal (1(2). The functional ~2) = A
~
W"'~cP)) has been computed in Ref. 4:

g 2prfree[y] [y]grfree[y] (47)

where
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16 +72

+ 144 + 144

+72 (4&)

Then we compute the matrix element

(1~2) =[i]Jd[8](co,[i/])*cuz[i 4] exp[ —
(

3
27 81

8

27
8

405
. +8

243+
8

(49)

Again, this matrix element factors (0~0). The result is
identical to the one that would have been obtained by
taking into account in the polynomial co&~2 only the term
with the highest number of sources. In the result there is
a contribution from an unlinked six-loop diagram, which
has a cube of the volume behavior, and there are another
two unlinked diagrams with a square of the volume be-
havior. Hence, the expansion parameter X =1 produces
6 as a maximal number of loops. The maximal number of
loops for an arbitrary expansion parameter N would be
4%+2.

VII. RENORMALIZATION

In order to extract from the matrix elements
(0~0), . . . , (0~3) the information relevant for the com-
putation of physical observables, e.g., the n-point Green's
function (in the Euclidean region), one has to obtain finite
numbers for those matrix elements. As they stand, they
contain three kinds of singularities: (a) the singular ma-
trix element (0~0) itself, (b) the dependence on the

infinite volume, and (c) the ultraviolet divergence of the
loop diagrams. In this section we want to discuss how to
deal with these singularities.

(a) As has been pointed out in the last section,
a common factor appearing in the matrix elements
(0~0), . . . , (0~3) can be factored out and hence does not
appear in the generating functional [compare Eq. (32)],
nor in the Green's function. Thus we redefine the matrix
elements (0~0), . . . , (0~3) by division of (0~0).

(b) We have observed that the matrix elements (0~2)
and (0~ 3 ) (and the following ones, which would be in-
volved for an expansion parameter X ~ 2) have contribu-
tions from unlinked diagrams, which invoke an infinite-
volume factor to the orders 2 and 3, respectively. The
physical observables such as scattering amplitudes are
given by connected n-point Green's functions, which do
not contain any volume dependence. In standard pertur-
bation theory, expanding in the coupling constant, this is
achieved by simply discarding the disconnected dia-
grams. Also in many-body theory, when computing the
ground-state energy of a many-body system, one takes
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into account only the linked loop diagrams (Goldstone),
which have a dependence on the volume to first order. "
In the final expression for the ground-state energy densi-
ty, the volume factor is canceled out. Also in our forrnal-
ism we have to get rid of all volume dependence. To do
this, we discard all unlinked loop diagrams in the matrix
elements. Then we are left with terms which are all of
first order in the volume. Then the volume dependence is

I

completely canceled out in the expression for the generat-
ing functional, because we know that any common factor
appearing in all matrix elements is eliminated from the
generating functional. Thus we obtain the following
redefined matrix elements, represented by loop diagrams,
where we implicitly understand that the volume factor
has been divided out.

(ohio)=o,

(oil) = —1 3
41 4

2—1 9
4! 2

3+
2

(o 3)=
4!

3
81
2

405+
8

243+
8

+27 (50)

Now we observe that the maximal number of loops is 4,
contributing in the case N = 1.

(c) The singularities left are the ultraviolet divergences.
Note that in the case of the expansion parameter X = 1,
we have to renormalize a first-order loop diagram for the
functional ~1) [Eq. (41)] plus first-, second-, and third-
order loop diagrams for the matrix elements [Eqs. (43),
(46), and (49)]. We follow the discussion of renormaliza-
tion given in Ref. 12, using dimensional regularization as
suggested by 't Hooft and Veltman. ' We rewrite the ac-
tion

S„[y]= f d2"x—,'a„ya„y—+,'m y +—(~)—2 2 ~ 2 2 —u 4

we add a counterterm Lagrangian

& g (Q P)2+ & m 2+P~+ p2e( P4+D— (54)

and the renormalized Lagrangian is

(55)

(56)

In a first step we have to renormalize the infinities of
the functionals. In the case N = 1, only the functional f &

has infinities. Let us look at the first-order one-loop dia-
gram [Eq. (41)]. This leads to a mass renormalization.
We put A =C=D =0 in Eq. (54): i.e.,

(51)
Then the renormalized functional is given by

We will expand in a=2 —co around @=0. A new dimen-
sionless vertex strength has been introduced via

~old ~new(P

where p -has the dimension of mass. Thus, corresponding
to our original Lagrangian

(53)

J ren [y] g ~free[@]

where

A„„=A+A„=f d x( —)—p '4 ~ 2e

j 2g
a8(x)

a
aa(x)
2

4

(58)
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The counterterm gives
~i [+l —,m 8 Jd «(z,&)+ jd x8(x)b(x, z)

2

where

pr free[ y] — ct[y] grfree[ y] (60)
Expressing the renormalized functional in terms of
graphs

+ ——'mB (2

(61)

——( —)Rm —+P(2) —ln(m )+O(e) ——'m 8
4t 2

hence,

=finite; (62)

The number 8 is then determined by requiring that the
contribution from the graphs with two sources becomes
finite when e~O, i.e., using dimensional regularization:

functional f, . However, there is also a two-loop vacuum
diagram. This term will not contribute to a scattering
amplitude, but only to the vacuum-vacuum amplitude
and hence we neglect it. In principle it will be canceled
by the normalization factor A'.

In a second step we have to renormalize the infinities of
the first-, second-, and third-order loop diagrams occur-
ring in the matrix elements. Let us look at the first-order
two-loop diagram occurring in (0~1). Now we put
2 =C=O,

8=2k, —+F, (e, m ) (63) X„=—( —,'m 8$ +D), (64)

Here the following abbreviations have been used:
X=A, /(4~), m =m /(4~@, ), and i'(x) being the loga-
rithmic derivative of the gamma function. The function
F] is arbitrary, but has to be analytic in @=0. So far we
have succeeded to renormalize the one-loop term of the

where 8 is given by Eq. (63). Now we have to compute
the matrix element (0~1„„),including the counterterm 8
and hence determine the number D, such that result be-
comes finite when e'~0. The result (after dividing by
(0~0) and the volume) is

g~4 4 —2e

(0~1„,„)= — —+—[2$(2)+4F,(0)—21n(m )]

2

+ +g (2) —P'(2)+4/(2)F, (0)+F', (0)—F, (0) ln(m ) +O(e) D=finite, —(65)

Xm p ' 3 1D =Vol —+ —[2g(2)+4Fi(0) —2 ln(m )]32

+G, (e, m ) (66)

where 6& is arbitrary but analytic in e=O. This com-
pletes the renormalization at the first-order two-loop lev-
el. (3ne has to carry out the renormalization also for the
second-order three-loop and third-order four-loop dia-
grams, which we do not do here.

where Fi(0) and F&(0) denote the first two Taylor
coefficients of Fi(e, m ) at @=0. This determines the
counterterms D:

VIII. CONCLUSION

We have suggested a functional approximation of the
generating functional of Euclidean n-point Green's func-
tions. It is based on the choice of a finite-dimensional
space of functionals of the source field d. We
define a distance in the functional space by introducing
a scalar product. That allows us, starting from
g = Jd4x &'""[3/Bd(x)], to obtain an approximation

' in the finite-dimensional functional space and hence
to compute exp( A ' '). In principle, there is a large arbi-
trariness in the choice of the functional space. Here we
have chosen to consider the functional space generated
by the functionals which occur in the expansion in the
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coupling constant. This leads to diagrams familiar from
perturbation theory. In particular the operator A' ' cor-
responds to a finite real symmetric matrix, the matrix ele-
ments of which are given by loop diagrams. These can be
computed, the matrix of 2 ' ' can be diagonalized, and
hence exp( A' ') can be computed in its eigenrepresenta-
tion. We have given an explicit example for the case of a
two-dimensional functional space (X= l ), and computed

all the loop diagrams involved. We have shown how to
renormalize, doing it explicitly up to the two-loop level.
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