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Trace anomaly in A,P" theory near a fixed point
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We make a number of observations on the trace anomaly in A,P theory near a fixed point. We
show that the trace anomaly for the unique finite energy-momentum tensor may not vanish but may
in fact blow up near a fixed point. We make comments on the renormalization-group equation
satisfied by Green's functions of 0„.

I. INTRODUCTION

The energy-momentum tensor in scalar P theory has
been studied extensively. ' ' Callan, Coleman, and
Jackiw studied the canonical energy-momentum tensor
and showed that it did not have finite matrix elements in
one-loop order and that an improvement term of the
form (t)&r)„—t) g„,)P was needed to make the tensor
finite to one-loop order. Freedman, Muzinich, and Wein-
berg ' studied it further and showed that an improve-
ment term of the form f(A, )(t)„B —8 g„)t(), where f(A, )

is a series in the renormalized coupling constant A, , makes

0„ finite to two-loop order but that such a "finite im-
provement program" fails beyond two-loop order. Col-
lins ' considered the problem from many angles and
showed, in particular, that there is a unique 61„of the
form

[where ao(e) is a series in @=4 nwith only n—on-
negative powers of e], which is finite to all orders in per-
turbation theory. Here ao(e) is a unique series in e,
which is determined successively in perturbation. Collins
further showed the above 0„ is the only finite O„of the
form

(1.2)

where ao(e, A, , m ) is a finite function of renormalized Pa-
rameters A, and m at e=O. It was shown in Ref. 11 that
the energy-momentum tensor of Eq. (1.1) is also a unique
energy-momentum tensor of the form

negative powers of e. This should be contrasted with 0„
of (1.1) which needs no counterterms.

Thus e„of Eq. (1.1) is an energy-momentum tensor
having a unique significance, and it has a nontrivial trace
anomaly.

Schroer' has given the following criterion for 0„ to
be acceptable as an energy-momentum tensor which
enters the generators of conformal transformations: Its
trace should be soft at a fixed point. Collins ' has argued
this to be the case for e„ofEq. (1.1). In this work, we
shall take up a closer scrutiny of this claim and show that
generally this may not be true. We find that the trace 0"„,
instead of vanishing, may, in fact, blow up at a fixed
point. This is argued in Sec. III.

Normally, when one deals with the scaling equation for
Green's functions of the theory, or those of operators at
the fixed point [see Eq. (4.1)] one generally puts to zero
the P(A, )(t)/M, ) term because P(A, ')=0. In Sec. IV we
shall take up the study of the scaling equation for the
Green's functions of 0„"and show explicitly that this term
proportional to P(A, ) cannot be dropped, as it yields a
nonzero contribution to the equation. In Sec. V we
derive the result of Sec. IV in another way. The results of
Sec. III rely on the sign of y (I,*). Hence, in Sec. VI, we
give a large-N calculation of y (A, ) in an O(X)-invariant
scalar theory and show that, at least in this theory,
y (A, *) is positive for A,

*)0 as was required in Sec. III.
Certain applications of the new results obtained in Sec.

III and the connections of these results to dilation and
conformal identities are under study by us and will be re-
ported elsewhere.

II. PRELIMINARY

(1.3)

where ac(E, Rois ',mo/P ) is a finite function of bare Pa-
rameters A,o and mo at @=0. (Here p is the arbitrary pa-
rameters in dimensional regularization. )

Brown gave an alternate construction for a finite
energy-momentum tensor, but this energy-momentum
tensor has the property that the improvement term is
nontrivially renormalized in higher orders and contains

We shall work in the context of A,P theory whose
Lagrange density is given by

(2.1)

P=Z' @, ma=Z m, Xo=p9Z& . (2.2)

We shall use the minimal-subtraction scheme (MS
scheme) throughout to determine the renormalization
constants for X and for operators. The renormalization
transformations are
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Here Z, Z, Zi are independent of m in the MS scheme.
The following set of operators ' is closed under renor-

malization:

0, =$(a +mo)p, 02=

ly renormalized: '

I a2y2I «=z —i
I azyzI R

We define the renormalization matrix by

(2.4)

g 2y2 g a2y2
(2.3)

(0;J""=QZ,, IO, I" . (2.5)

(Our choice of 0, differs somewhat from that in Ref. 7.)
02 and 03 are finite operators and 04 is multiplicative- As shown in Refs. 7 and 9, Z; has the structure

p(A, )

A,E

p(A, ) y(A, )

4A, E

4y (A, )
Z14

Z

Z.-1
(2.6)

y(A, ) =p lnZa
ap A, , mo, e

(2.7)

where p(A, ), y(A, ), y (A, ) have been defined by the stan-
dard renormalization-group definitions:

aA,
p(A, , e) = —km+ p(&) =p ap Ao, mo, e

K(A, ) being the coefficient of simple pole in g(e)Z
It can be shown that Z14 satisfies the renormalization-

group (RG) equations

a az14
p Z,4= [—Ae+P(k)] =2y Z,4+y, 4Z„(2.14)

ap

and consequently X satisfies

(2.g)

y (A, ) = ——p lnZ
1 a
2 ap Ao moe

As Collins has shown the following energy-momentum
tensor has finite matrix elements to all orders in A, :

e„,=a„ya.y g„~+ '—(a„a.—a'g„, )y',

p X=[—Ae'+P(A)] =2y X+y,4Z„.a ax
ap

Equation (2.14) implies that

y„(x)= —x z', i4' .

(2.15)

(2.16)

where g(e) is a series in non-negative powers of a=4 n. —
We redefine

g(E) is chosen in perturbation theory requiring that X
has no worse than simple poles. Then Eq. (2.15) implies
that

n 2 Eg(e)= g(&)
4 4

Then it can be shown that g(e) begins as 0(e ).
It is easily shown that '

(2.9)
P(A, ) K(A, ) =2y X"'=2y (A, )[Z'i4'(A, )+K(A.)] .a

(2.17)

&e~&= ——'&o, )""——"&o,)'+&o, &'

——'g( )z-'&o, & (2.10)

or, using the expressions for Z; (j= 1,2,3), this becomes

K(A, ) is chosen successively in perturbation series from
Eq. (2.17) and since terms in K(A, ) and g(e) are related in
a one-to-one manner, Eq. (2.17) fixes g(e) uniquely in per-
turbation series given Z', 4'.

The anomalous part of ( e"„) is then [See Eq. (2.11)]
T

where

—
—,'X"'(0~) —(02) +(03) +0(e), (2.11)

& g, )R—,'[ZIi'+K(A)] & 0, )"

= p(~)(o ) p(~) — &o &"
4~ 1 4g Y 2

(2.18)

X=Z,4+g (e)z (2.12)

and X'" denotes the coefticient of simple pole terms in X;
viz. , (2.19)

X'"=ZIi,'+K(X) . (2.13) Green's functions (02) vanish on shell at nonzero
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momentum q. In the massless limit (03) =m (P )
also vanishes. Thus it would appear, on the face of it,
that at a fixed point A,

* for which P(A, *)=0, the trace
anomaly would always vanish as the coefficients of
(0, ) and (0„) are proportional to /3(A, ). However,
as shown in the Sec. III, this is not always true.

2y (X")
exp —f, „d~"

—a

III. EXPRESSION FOR TRACK ANOMALY
IN THK NEIGHBORHOOD OF A FIXED POINT

P(A, ) =a(A, —A, ')" (3.1)

for A, su%ciently close to I,*. Here n is a positive integer
and a is a negative constant. Equation (2.17) has an exact
solution:

In this section we shall deal with the coefficient of
(0~) in anomaly equation (2.19). It should be em-
phasized that as E(A, ) is not arbitrary but is restricted by
the requirement that it should satisfy Eq. (2.17) which in-
volves P(A, ), K(A, ) can show an unusual behavior near
A, =A, *. There is no reason to expect that like other quan-
tities IC(A, ) will be smooth near a fixed point A, *. This is
confirmed by the calculations below.

We shaH do our calculations in the context of a fixed
point A, =A,*NO, for which P(A, *+5) is negative, for 5
small and positive. Thus if running coupling constant is
in a region A,(p)) A, *, then as p —+ ~, A,(p)~A, ' from
above, under certain assumptions regarding the behavior
of P(A, ) near A, =A, '. Thus for an arbitrary mass scale p
(0(p( oo), A,(p) will be restricted to be above A, *. (A
similar analysis can be carried out in other cases depend-
ing on the kind of fixed point and the behavior of P near
it.)

We shall assume that P(A, ) is analytic at A.". Thus,

Assuming further that Zii~ (A, ) is a smooth function at
A, =A, *NO,

2y (k')Ziiq'(A, ') i 2y (A.")
exp — „dA,

"
i.*+s P(A, ') i.*+s P( A,

"
)

2y (A, ")Z'i~'(A, *)

a6

= —Z', "(A,*) +Z', "(A,*) . (3.3)

This yields
a

This requires that

E(A, )+z"'(A,*)=(A, —A, *) [K(A, '+5l(A, —A. *)

+z'„"(X')5- ] .

(3.4)

(3.5)

The left-hand side is independent of 5 and so is the fac-
tor Q, —A, *) on the right-hand side. This requires that
the term in square brackets is also independent of 5 (to
the leading order). One can, therefore, express Eq. (3.5)
as

2y (&')
&(~)=&(&*+5)+exp fi.*+s f3(A, ')

IC(A, )+Z'iq'(I, *)= —4C(A. —A, *)

Now, from Eq. (2.16) it follows that

(3.6)

2y (A,")
~&"+s P(A,

"
)

, (3.2)
(3.7)

Equations (2.17), (3.6), and (3.7) then imply that, for—n (a( —n+1, n=0, &, . . . ,

where 5 is an arbitrarily small but positive number. An
approximate evaluation of the right-hand side of Eq. (3.1)
depends on the value of n. We shall consider two distinct
cases: (I) n = 1 and (II) n ~ 2.

(A) Case I: n = 1. We shall assume that y (A, ) is a
smooth function of A, at A, =A,*. We may then approxi-
mate

1 P(A) d
8y (A) dA,

= C(A, —k" )

+terms of order (A, —A, *) +' . (A, —A, *) +"

and, for 2&a&0,

Thus,

8 dA, 4
——f3(A, ) =C(A, —A, *) +— (A, —A, *)

+higher-order terms,
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while, for o. ~ 2,

1 P(A, )dk(A, )

8 dA,

(A, *)
(X—

A, *)
4

+terms of order (A, —A, *) . (A, —A, *)( )

+C(A, —A, *) + (3.8)

[The terms in Eq. (3.8), not explicitly calculated, are not
needed in future discussions. ]

The above expression shows that if a=2y (A, )/a is
negative, the coefficient of (04) in fact blows up as
A, ~A.*. Thus, the trace anomaly instead of vanishing at a
fixed point, in fact, blows up near A. =A, ' (assuming that
( 04 ) is smooth near A, =A, *). In this connection see
Sec. IV). Moreover, the dominant behavior of the trace
anomaly is, in the case a ( 1, solely determined by
a=2y (A, *)/a and does not depend on, say, extra anom-
alous dimensions.

(B) Case II: n )2. This case can be dealt with in a
similar manner. We sketch the derivation, stating the ap-
proximations made:

f 2y (A,") i 2y (A,*)
1

+s p( jL ) fi. +s g(g g*)n n + 1 (g' ge )n
—i

2y (I,')Z', 4'(A. ') i 2y (A,")
exp — „dA,

"
i.*+s p( A,

'
) i.'+ s p( k" )

(3.9)

2y (A. ')ZI4'(A, ')

i.*+s p( A,
'

)

1 A
exp expge )n

—i p
( 1)5n

—i

2y (A.*)
i.*+s a ( n —1)5"

CX 1
, exp

(gi ge )n
—1

A change of variables —1/(n —1)(A,' —A,*)" '=g gives

aZ Ii,'(X' )exp e &dg
(n —1)5" ' ~*+s

= —Z'i4 (A, ')exp
1 )5n

—1

1
exp a

(n —1)(A,—A, *)"
CX—exp

(n —1)5"

and thus

K(A, )+ZI"(X')=Z', "(A,*)exp — exp +K(A,*+5)
(n —1) (A, —A,*)" ' (n —1)5"

(3.10)

A 1=exp
(n —1) (k —X*)"—' ZI4'(A, *)exp +K(A, '+5)exp

(n —1)5" n —1 (A, —A, ')"

As in the earlier case, the term in square brackets must be independent of 5 (to the leading order) and thus

(3.1 1)

E(A, )+ZI4'(A, *)= —4C'exp
n —I (g $4)fl i (3.12)

This, as before, yields

1 P(A) d, a
K(A, ) =C'exp o;(0

8 y (A, ) dA, (n —1)(A,—A, *)"

1 )'i4(~')
(A, —A, *)+ . , a) 0 .

4

(3.13a)

(3.13b)

Again if a=2y (A, *)/a is negative the coefficient of (04) in the expression for 8"„diverges exponentially as A~k*
(from above). Thus, in this case also the trace anomaly blows up as A, ~A, . The behavior of the trace anomaly is again
solely determined by y (A, *) and a. On the other hand, if a )0, Eq. (3.13b) yields the correct behavior of the anomaly
coe%cient near A, =A, *.
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IV. SCALING EQUATION

Consider, for simplicity, a multiplicatively renormalizable operator 0, having anomalous dimension yo. The scaling
equation derived from RG equation and dimensional analysis reads'

—P(A, ) +m(1 —y ) +n(1+y) —4+yo I o"'(p),p2, . . . ,p„,k, , m, p)=0 .
a a

Bm
(4.1)

It is usually assumed that at the fixed point P(A, ')=0
and hence the second term can be dropped when A, is in
the neighborhood of X . This leads, in the massless limit,
to

+n(1+y) —4+y()

XI ()")(p„.. . ,p„,A, *,O,p) =0 . (4.2)

The above equation would imply that, in the large
momentum limit, I []"' scales by the scaling dimension

n(1—+y) +4—
yo at the fixed point.

In this section, we wish to present an example of a case
where the P(A, )(B/BA, ) term cannot be dropped and in-
stead leads to a nontrivial contribution and a diferent
scaling dimension as compared to that in Eq. (4.2). Con-
sider 0 =8"„. 0 is a finite operator and hence go=0. For
simplicity, consider the massless case. Then (03 ) =0.
Further, for concreteness, consider the possibility n = 1 in
Eq. (3.1) and let y (A, ')&0. Then the leading behavior
of I 0 near A, =X* is given solely by the term proportional
to (O~ ) (provided it does not vanish):

=C(A, —A, *) I (o)(p„p„.. . ,p„,i,*,)Li), a(0 (4.3)

assuming that I o are smooth functions of A, near X=A,
*

(a comment about this is made later). Then one has, from
Eq. (4.1),

havior near A, =A, ' such as, for example, to cancel the
singular behavior of the anomaly coefficient —

—,'[P(A, )/

y (A, )](d/dA, )K(A, ) our conclusion would not be valid.
It is normally assumed that, for any operator 0, I [o' has
a smooth behavior near a fixed point. But this cannot be
expected of 0"„because it contains a [g(e)/(1 —n)]B P
term which has been constructed in a nontrivial manner
in perturbation series. (8 ) explicitly contains IC(A, )

which has been chosen to satisfy a differential condition
of Eq. (2.17). This is the justification for allowing I o' to
possess a nontrivial behavior near A, =A,*, while I [o'

1

(i= 1,2,3,4) have been assumed to be smooth and nonvan-

ishing near A, =A,*.
A similar conclusion holds in the cases n ~2 and a(0

as is verified easily.

V. ALTERNATE DERIVATION OF THK SCALING
DIMENSION OF I ~o i

In the preceding section we showed that the scaling di-
mension for I o' differs from that naively expected. In
this section, we shall present an alternative but extremely
straightforward derivation of these results.

From Eq. (2.11) we have, for mo =0,

I (o )(e'p;, A, ,)M)
= r(o '(e'p;, A, , )u)() i (~) ()

1+y — r(o)(e'p;, A, ,p)
p(&)

gp;, —P(A, ) +n(l+y) —4
i=i ~ plv

xr,'"'(p, , . . . ,p„,x, l )=0.
Now the term

= —a (A, —A, *)Ca(A, —A.*) 'I'"'
4

= —2y (A, *)C(A.—A, ') I (o'

= —2y (A,*)r'o '(P „.. . ,P„,A, , )M)

(4 4)

(4.5)

1 P(A) d &(A)r(o'e'p, , , A, p) . ,

~m

(5.1)

We want to see the behavior of I (o )
(p, , A, ,p ) under

small rescaling ofp,. when A, =A, *.
If y (A, *))0, coefficient of I (o' in Eq. (5.1) is relative-

1

ly small and that of I (o' is approximately —[1+y(k*)],
a finite number while that of I [o ' is large. Hence, provid-

4

ed that I o
' is not zero or negligible,

4

contributes nontrivially to the equation, leading to the
diFerent scaling dimension 2y (A, *) n(1+y)+—4.

In the above discussion, we have seen that I 0"' has a
nontrivial behavior near the fixed point if e (0. This ob-
servation, based on Eq. (4.3), relies on the fact I (o' is a

smooth function near X=X*. If I z' had a nontrivial be-
4

8y A, dA,

(5.2)

Now 04=8 P is a multiplicatively renormalizable opera-
tor with anomalous dimension yo =2@ . Hence, '

4
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I ~o'(e'p, , A, ,p)=exp I dt'I [2y (A(t'))] —ny(A(t'))I
0

For A, =A,
* and t small this becomes

=exp(I4+2y (A, ) n—[l+y(A, *)]It)I'o'(p;, A, ,p) .
$ n loops

This implies

I ~o'(e'p;, A.,p)=exp([4+2y (A, ) n[—l+y(A, *)]Jt)
X I ~o '(p;, A, ,p ), (& 4)

FIG. 1. Diagram contributing to Z in the n-loop approxi-
mation in the large-N limit.

giving rise to the same anomalous dimension as in Sec.
IV. It is, however, important to note that in Sec. IV, the
term 2y (k*) arose out of the coeKcient of I o through

4

the term P(A, )(c)/BA, )I O; while in Eq. (5.4), it arises as the
anomalous dimension of 04.

VI. y (A,*)IN THE LARGE-%LIMIT

Certain interesting observations made in Secs. III, IV,
and V were dependent on the sign of y (A.*). As the
nonzero fixed points of A,P theory are not known, and
knowledge of y (A, ') would require an exact calculation,
no definite conclusions about sign of y (A, ') can be stat-
ed. However, it is possible to obtain y (A, ) in a related
O(N)-invariant P theory, at least in the large-S limit
(keeping A,X fixed). In this case, it turns out, as outlined
below, that y receives contributions only in O(A, ) and
the result is indeed positive for A,*)0. [A,

* must be posi-
tive for H(A, *) to have a lower bound. ]

It is possible to show, by an analysis of graphs that the
only graphs that make leading contributions to y (A, ) in

each order are of the kind shown in Fig. 1 together with
the counterterm graphs that correspond to subtractions
of this graph. This set of graphs can be easily summed'
to give the result (here a is the loop expansion parame-
ter):

Z = m g z[ "~g"
rn ~ m

1 XA,
y (A, )=

z +nonleading terms .
16~

(6.I)

For A, =A,*)0, y (A,*))0 in the limit XA, fixed and
+~ oo.

with z'"'(e)=A„/e" giving only an e " term contribu-
tion to z'"'(e). Thus, the simple pole contribution comes
only in one-loop order and hence y~(A, ) receives a contri-
bution only from the one-loop approximation. The result
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