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Operator approach to bosonic string: Multiloop calculation and b-ghost insertion
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We construct the g-loop X-string vertex using the Feynman-like rules in the operator formalism

with bosonized bc ghosts. The measure factor is analyzed in detail, which consists of the ghost g
vacuum and the contour integration associated with the b-ghost insertion. The general form of the

g vacuum is derived using the handle operators. The handle operator is formulated by the geometri-
cal quantities: period matrix, first Abelian integral, prime form, —differential, and Riemann con-

stant. Explicit results are given up to two-loop level. The contour integrations associated with the
ghost insertions can be performed explicitly in the one-loop case, in which we reproduce the well-

known formula of the one-loop N-tachyon amplitude.

I. INTRQDUCTIAN

The theory of strings has been intensively investigated,
since it is a candidate for a consistent formulation of
quantum gravity. However, there are still several points
which are not well understood when constructing the
quantum theory of strings. In order to improve our
comprehension of string theory, it is important to investi-
gate the structure of the multiloop amplitude from vari-
ous sides. One recent aspect which has revealed some
mathematical structure of the string amplitude is its deep
connection with the algebraic geometry. On the other
hand, from the physical point of view, string theory can
be understood as the theory of an infinite number of
fields, i.e., the dual resonance model. In the dual reso-
nance model we can construct the multiloop amplitude
by a simple operator algebra. Therefore, these two ap-
proaches may show us complementary aspects of string
theory.

In this paper we follow the idea of Feynman-like rules
as originally developed in the dual resonance model' to
analyze the multiloop amplitudes. The basic objects, i.e.,
the three-string vertex ' ' and the propagator, are comp-
leted by adding the ghost contribution to ensure the
Becchi-Rouet-Stora- Tyutin (BRST) in variance. ' The
case of the ¹tring vertices including the super-
string' ' and the diagrammatic approaches based on
the BRST invariance 6 were already considered. The
construction of the BRST-invariant multiloop amplitude
in such an approach has been investigated for both bo-
sonic and supersymmetric strings by many au-
thors. ' ' ' In a previous paper, using
Lovelace's and also Olive's parametrization, we presented
a formulation of these Feynman-like rules in the frame-
work of the operator approach. There, the factorization

properties and duality of the tree vertices were analyzed
by constructing the tree X-string vertex. It was shown
how the measure factor is generated from the contribu-
tion of the ghosts in a BRST-invariant way.

In our formulation, the bc ghosts are bosonized. Such
a formulation is necessary when generalizing our method
to the superstring case, especially for including the Ra-
mond sector. In the bosonized formulation, the b-ghost
insertions which is necessary to cancel the background
ghost charge, is made into the propagator together with a
contour integration. In this way, the analogy with the
algebraic geometrical approach becomes transparent,
where we have the b-ghost insertions together with Bel-
trami di6'erentials. The contour integration appearing
in the definition of our propagator should be performed
after the sewing process for constructing the amplitude is
completed. In this respect our formalism is di8'erent
from the one with nonbosonized ghosts. ' '

Here, our aim is to apply the above described formula-
tion to construct the multiloop X-string vertex. Vr'e shall
formulate the results of our approach in such a form that
they show a close correspondence with the expressions
obtained by the algebraic geometry approach. For
this construction we use Lovelace's parametrization,
since the BRST invariance of the loop amplitude holds
straightforwardly.

In Sec. II we give a brief description of the Feynman-
like rules. In Sec. III we construct the g-loop vacuum
and express it in terms of the period matrix, the first
Abelian integrals, the prime form, the g/2 differential
and the Riemann constants. In Sec. IV we analyze the
measure part arising from the ghost contribution in de-
tail, when the external legs are on shell. The integration
associated with the ghost insertion can be performed ex-
plicitly for the one-loop case (g =1), in which our result
reproduces the well-known formula.
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II. FEYNMAN-LIKE RULES AND MULTILOOP
STRING VERTICES 0 1

y( )=
() (2.4)

In this section we give the general construction of the
g-loop X-string vertex from the Feynman-like rules. Us-
ing the string-emission operator we derive the g-loop vac-
uum in terms of handle operators. For this end, we use
the result of the tree (2g+N)-string vertex (V'"' g+

given in our previous paper. The loops are constructed
by connecting pairwise 2g legs of the tree string vertex by
propagators. From the point of view of the Feynman-like
rules, this can be represented as

2g+N —2 3g+N —3

(v '-' ~= II II (v,'~P, )

The contour integration with respect to g is to be per-
formed around the propagator.

Then, the tree (2g+N)-string vertex (V'"' g
~

is
written as

2g+N —2 2g+N —3(v""' +
~

= II II (v, ~P;

d V2g+N

2g+N —3 dy.' ~tree( )
2&l

g
(Vtree, 2g +Nip ) (2.1) X ( cy tree, 2g +N I.

Y„(z)=
Zr Zr+1 Zr —1

(2.2)

with the convention r+3=r. Z„ is the Koba-Nielsen
variable of the corresponding external leg.

The propagator ~P) is defined with a b-ghost insertion
b(g) as

where
~ P; ) denotes the propagators and ( V, ~

the three-
string vertices. There are various ways to construct the
tree (2g +N)-string vertex, depending on the decomposi-
tion of the vertex into three-string vertices and propaga-
tors. Here, we choose the tree string vertex of the peri-
pheral type for the vertex (V'"" g

~, see Fig. 1. We
shall discuss in Sec. V about the independence of the way
of the construction of the tree vertex (V""' g

In Lovelace's parametrization, the three-string vertex
(V, ~

is defined with the projective transformation Y, (z)
associated with its legs (r) such as

0

X b "(Y, '(y; )) . (2.6)

The projective transformation Y;(z) of the (2g +N)
string vertex is defined by Eq. (2.2) with the convention
2g +N + r = r. The function F,""(y; ) is given by

~tree( )
K i 3 i i+2(.—z)(.—z )

Z1 Zi+2

The factor dV g+ in Eq. (2.5) is

2g +N
dz.

(2.7)

(2.&)

where ( V'"' g; Iy ) ~
is the b-ghost-inserted sym-

metric ¹tring vertex

( e)i' «ee 2g +&
I y I ~

—( ~ «ee, &g + iV~

2g+1V —3

X g [BY, '(y;)]

~P)= I (2.3)

where ~P) denotes the operator part of the propagator as
introduced in Ref. 32, x in Eq. (2.3) is the Chan variable
and the operator

~
P ) is given by the canonical form of

the Mobius transformation:

d V2g+X 1

2g +N
(z„—z„+,)

a Zbd c
dV, b (z, —z„)(zi, —z, )(z, —z, )

(2.8)

(2.9)

g-loop
Cn

~ ~ ~ ~ o)
2 2g 2g+1 2g+2

FIG. 1. The g-loop X-string vertex is represented in terms of
string-emission operator. By joining a pair of adjacent 1egs of
the tree (2g +N)-string vertex by a propagator we get a handle
operator. Thus, the g-loop vacuum ( 0 "'

~
is constructed by a

product of g handle operators. The operators giving the contri-
bution of the external legs ~A ) is obtained by multiplying N
string-emission operators.

ru" Iphys), = Iphys), and co"iP),„=iP),„. (2.10)

To evaluate the multiloop amplitude, we express the
operator part of the string vertex using the string-
emission operators:

where 2g+X+r =r. Since we are using Lovelace's pa-
rametrization, the tree vertex is symmetric up to a gauge
transformation co (Refs. 20 and 32). The gauge factor co
depends on the way of the construction of the tree ampli-
tude and is given by the projective transformation with
fixed points 0 and I. It may seem that the existence of
the gauge transformation ~ complicates the tree vertex.
However, this is not the case since the gauge transforma-
tion associated with each leg becomes the identity when
external legs are coupled with physical states, or when a
leg is sewn with the twisted propagator to make a loop,
i.e.,
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2g +N —3

&
cy tree, 2g+N. ( i

I

= O ~(i) ~(2) ~(2g) ~ b(B)(y )~(2g+ 1)~(2g+2). . . f(2g+N) ()AA) A) A2 Ap )B XL yi B& l B1B2 BN —1BN B
A i=1

(2.11)

In terms of the bosonized ghost o., the ghost part of the string-emission operator Ygh„, AB is defined as

B

o 2~i o 2+i {)I'„(z)

I (u)) —I'„(z)+{) o' ' —+Q ln — ln
" {){7(")(z)

Qal (~)ar (z)
r

+b n —+{?(n — (n(1 —wz)bn' '(z):: S, =D)
(A) 1

N W

(2.12)

[Our bosonization formula is b =e and c =e (Ref. 39). Since we discuss here the ghost contribution, we mainly give
explicit formulas only for the ghost part. The details of the matter part can be found in Ref. 31.] The superscript (r) la-
bels the external string while the indices A, B denote the internal strings. Q denotes the background ghost charge, and
here Q = —3. Each string-emission operator is defined such that when we multiply an arbitrary on-shell state onto the
external string (r) it reduces to the vertex operator for the emission of the corresponding state.

The g-loop vertex is obtained by multiplying g propagators with b-ghost insertions given in Eq. (2.3). This b-ghost in-
sertion can again be shifted to the internal string.

It is convenient to represent the loops using the handle operator de6ned as

(2.13)

where ( —1) =exp(~ia"o) which gives the proper spin structure for the ghost loop. Then, we can write the g-loop N-
string vertex (2.1) as (Fig. 1)

y 2g+N —3 dy g 2g+N —3(v''-'"l= fsr"-'"ii p *.&,""(s,) r( l() F'"'(s;) fl'"" ii ( b) sii ( b)sb ),s=1 i=1 ~l '
s=1 i =1

(2.14)

where I&N) denotes the contribution of the N external
strings defined by

p( )
ys 2s i ys 2s( —z )( —z

Z2s —1 Z2s
(2.18)

~(2g+1)~(2g+2). . . ~(2g+N) Io)B Blf I B
I B2 BN —1BN BN

and the & ng pI is the g-loop vacuum defined by

„&n' "'pI = „&oIn,„n„„n„
In Eq. (2.14), the factor dV '"p is

2g+N
dz

(2.15) or by

~)oop( )
ys 2s as 2s + i(» —z )(j& —z )

ys =
~2s ~2s +1

(2.19)

(2.16)

III. HANDLE OPERATOR AND g-LOOP VACUUM
OF THE GHOST

However, after the contour integration it turns out that
both choices give the same result.

de loop, N

dV Zg+N
(z„—z„+ i )

(2.17)

and F,'"P(y, ) is a c-number function originated from the
factor g(1 —g) in the propagator (2.3) which is used to
make the sth loop. Although the b-ghost insertion is
symmetric with respect to the propagator leg into which
it is made, the function E,' P(y, ) is not. Depending on
which leg the b ghost is inserted into, it is either given by

In this section we give a brief description of the handle
operator and the g-loop vacuum for the ghost part. Such
an operator and a vacuum were constructed and analyzed
in detail in Ref. 31 for the matter part (i.e., the coordi-
nate fields and the fermion fields) of the superstring. The
corresponding formulas for the ghosts can be obtained by
simply applying the same technique.

A. One-loop calculations and the handle operator

The operator part of the propagator is given by



OPERATOR APPROACH TO BOSONIC STRING: MULTILOOP. . . 425

L

r

ry(x) —y
& (,~

1
1

1

&BI y(x) ' y y
.:Ivac(2) &„, ,

(3.1)

where the vacuum is

lvac(2} &„=&(a("Io+a",(i+ g) lq =o &, Iq =o &,

Inserting the unit operator, the handle operator for the ghosts (2.13) is

(3.2)

(3.3)

with the unit operator

1EF g Q d&„dQ„exp —pc pc ()& 0 —+Q ln — ln(1 —yx)(jg (x)
dx 1

0 2'Pal 0 2&E
0

x la. ,ao&zF&a. —ao —Ql .

H«e a =i lnl&, (n&0) and the quantities with the caret are c numbers. The coherent states are defined as

(3.4)

a, la„,ao&=a„ la„,ao& and &a„,—ao —gla „=&a„,—ao —gla„,
ao a„,ao& =aola, ao& and &a„,—ao —glao=&a„, —ao —gla

for n ~ 1. When the fields (T( '(z) and a' '(z) act on these states, they are converted into the c-number fields o (z).
The integration of the nonzero modes is a Gaussian which can be evaluated straightforwardly and leads to the follow-

ing expression for the handle operator:

0 h„, „c= q =0 5(a' o
—a' '+ Q)(detC' '"~)

C

X g:exp i~k(k+Q)B

+2m. ik —+ c . 8, a —+Q lnQ dz (A) 1 1

2 o 2+i Z Z
y(r(z), z, )+Ra("(z)p(z, z, )

+f f —8 ' '( )(3 ' '(y)l
0 2+i 02+i 2 X—

+ B (A)
X

xa
y

+Q ln
1

x

+Q ln — ln
1

3'
E(I (x), r(y) )

x

+()cr(c'(x)a, o' "' — +Q ln
y

—g f, .g, a( ' —+gln-dZ 1

o 2+i Z Z

lnyE(x, I (y))

X in ~ Q ( T"+'I (z), T 'I (0), T"(0),r(0) )&arTr(z)

+Ocr"(z) ln Q (T"(z),T 'r(0), T"(0),I (0)): q =0
n=0 A

(3.5}

where T(z) is defined by

T = r,yrr„-', (3.6}
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which gives the Mobius transformation generating the Schottky group of the one-loop case. %'e denote the Axed points
of the projective transformation T(z) by g and ii where g= T (U) and i) = T (u).

Recall that the matrixes Y„and Y, are the projective transformations of the two string-emission operators which
were glued to form the handle operator. The factor detC' ""~is Q„ i (1—K") with K being the multiplier of the trans-
formation T(z) (Ref. 31).

In Eq. (3.5) the summation over the loop momentum (zo of the handle operator is replaced by the summation over k
with k =ao —a 0. The quantities B, P(z, zo), and E(x,y) are the period matrix, the first Abelian integral, and the prime
form for the one-loop case, respectively:

1
oo

B = ln Q (T +'(a), T(b), T (a), b),
2&l k

(3.7)

1
oo

P(z, zo) = ln g (T"(z),T(a), T"(zo),a),
2&l

(3.8)

E(x,y)=(x —y) g (T (x),y, T"(y),x) .
n=1

Then, summing over the loop momentum, we obtain

n = q =0 S(~'"'—~'"+Q)(detc' "' )-'
C

0
X:8 0 B f c . ao'c'(z)(I)(z, z, )+a, o'" —' +Q in — p(I (z),zo) +Qb,

o 2wi Z Z

(3.9)

X exP $ c $ o
y —ao'o'(x)ao'c'(y) ln

o 2vri o 2~i 2 X

+ C)~ CT
1 (g) 1

X
X

+Q ln
1 1+Q ln

X ln E(I (x), I (y) )
X

+ao'c'(x)a 1+Q ln
3'

lnyE(x, I (y)) .

+Qfo . 8, o —+Q ln
dz (g) 1 1

o 2~i Z

1
ln —S1

+()rrr r(z))rrSr(z): q, =0)

(3.10)

where we have introduced the quantities

,'(B +1), —

1S, (z) =
(3.1 1)

(3.12)

The quantity b, is known as the Riemann constant and Si(z) can be identified with the half diff'erential with no zeros or
poles in the fundamental region for the genus-one surface. ' ' For details see Appendix A. Hence, each term in the
handle operator has a geometrical meaning.

Multiplying the vacuum to the handle operator from the left, we can immediately derive the g-loop vacuum for the
one-loop order, c(nsho, '("l =

~ (0I&shod(, gc.

0
(0'„';;,~l =(detC' '"") '( —Ql:8 0 B fo (3o(z)(t)(z, zo)+Qb,

X exp —f g, . (3o.(x)()o(y) In ' +Q, ao (z) inS, (z)
1 dx E(x,y) dZ

2 02wi o 2mi X o 2mi

(3.13)
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B. Multiloop calculations and the g-loop vacuum

The g-loop vacuum is obtained by contracting g of the handle operators as Eq. (2.16) indicates. To sew two adjacent
handle operators we use the coherent state method by inserting the unit operator (3.4) as explained in Appendix B. The
result can be expressed as

dz
t

&&;h'..", I=(de«'"") '& —Qgl:~ 0 &„. f c, '.a~(z)y;""(z,zo)+Qb.

1 dx dy Eg "'p(x )X exp —tt) c . f c . t)tT(x)t)cT(y) ln
2 o 2mi o 2+i X

+Q f c Bo(z) lnSg(z)
o 2mi

(3.14)

where Bg "'p is the period matrix, g "'p(z, zo) the first
Abelian integral, and F ' p(x, y) the prime form in the
Schottky parametrization. These terms in the exponent
are obtained by the same methods as applied for the case
of the g-loop vacuum of the matter part of the super-
string. The new terms characteristic for the contribu-
tion of the ghosts are collected into the two terms pro-
portional to the background ghost charge Q as in Eq.
(3.14). The explicit form of S (z) and b are given in Ap-
pendix B for the two-loop case. Unlike in the one-loop
case, it is not easy to prove explicitly that they are the
vector of Riemann constants and the g/2 differential for
the multiloop case.

IV. THE MEASURE AND THE MULTILOOP STRING
AMPLITUDE

The operator part derived above can be identified with
the g vacuum. According to Feynman-like rules, the g-
loop ¹tring vertex has (3g —3+%) b-ghost insertions.
The number of the inserted b ghosts, which corresponds
to the number of propagators, is the correct number of
b-ghost insertions to get the nonzero result. In our for-
malism the b-ghost insertion is performed together with a
contour integral accompanied by the function I'. This
has an analogue in the path-integral approach, where we
insert a b ghost together with a Beltrami differential and
integrate over the insertion point.

In the following, we consider the full expression of the

Y' ",'«„~cY' h„, ~c ( I 1;ghost & „ I
matter & „)

X IO;ghost&, e lo&,

=c' '(z„)V'",'„„~(z„)IO;ghost& s IO&~, (4.1)

where IO;ghost& and IO& are the SL(2, C)-invariant vacua
for the ghost and the matter, respectively. V",«„z
denotes the on-shell vertex operator constructed with the
field I' '(z) creating the physical state lmatter&„. Thus,
the on-shell amplitude is obtained by choosing the tree
part IA & of Eq. (2.15) as

2g +N
IA&& — g [c(&)(z ) y(rt ( ))

r =2g+ j

X 0;ghost& g IO&~ .

Then, the resulting amplitude is

(4.2)

g-loop ¹tring vertex in Eq. (2.14). For this we shall
combine the operator part calculated above and the
remaining c-number part. The result is presented in a
form that the above described analogy may become trans-
parent.

For this end we first put the external ghost string
legs on the mass shell. This is done by saturating the
external strings by physical states

l phys) —= ii„ l
matter &„

S I 1;ghost&„ in the g-loop X-string vertex (2.14), where

I 1;ghost & denotes the ghost-number one state.
We first note that

2g +N
(v "'

lph s)= J dM "' ' (o "' ~ v'"' 0matter g g matter
r =2g+1

where we have included the ghost operator part into the measure dM "'P as

2g +N —3 dy; g dydig loop, K dyg 1 p, Noo~ f ' Ftree( ) ~ (t) ~loop(y
27Tl ) 2&l

g 2g+N —3 2g+N
X Ah", ,'t b y, b y; c z, 0;ghost

5=1 i =1 r =2g+1

(4.3)

(4.4)
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with d Vg "'p' given in Eq. (2.17). We analyze this measure in the following. The matrix element of the matter part
( Qg,'«',P„~ +2g+2g+, V'",'«„ i 0) is analyzed in Appendix C.

It is easy to show using Eq. (3.14) that the ghost operator part in Eq. (4.4) is

(
g 2g+N —3 2g+N

Qz„';;c ii b(y, ) ii b(y;) ii c(z, ) 0)
s=1 i =1 r =2g+1

0
=(detCg "'

) '8
0 8„"' g p, "'p(z„,zo) —g g "'p(y„zo) —g ()(g p(y, ,zo)+Qb,

r s l

g E(y„y, ) /E(y„y;) PE(y;,yJ) g E( „, , ) g& (y, ) g& (y;)
s &t s, l i (j r(q s

n E(y, '. ) rr E(y
s, r l, r r

(4.5)

This should be compared to the expression of the ghost correlation function. '" We expect that the quantities 6 and
S (z) can be identified with the vector of Riemann constants and the g/2 differentials, respectively, given in the
Schottky parametrization. Then, our g-loop vacuum (0 ' 'pi can be identified with the g vacuum for the ghost.

The contour integration related with the external legs in Eq. (4.4) can be performed, since the analytic structure with
respect to y, is simple for the case where i is running from 2g —1 to 2g +X—3. In that case, the integrand has only
poles at z„with r )2g +2. Thus, the contour integration dy; in Eq. (4.4) for these variables gives

2g+N —3 dy. g 2g+N —3 2g+X
. y "'(y; ) O,' ':;,' ii b (y, ) / b (y, ) ii ( „) 0)

r =2g+1

2g+N
(zj —zi. +1)

g 2g 2

o',„':;,' ii b(y, ) ii b(y, ) ( „,) o)
s =1 j=1

j=2g+1

Z2g+1 Z1

Here, the convention Z2g+1v+„=z„ is understood. Therefore, the measure (4.4) leads to

2g +N 2g —2 dg. g dy g 2g —2dM''-'" dv'"" /=d, ii g F"'(y;) ii y .. y,""(y,) o', ';,' / b(y, ) ii b(y, ) (, ) ol,

(4.6)

with d V '"P being

2g

Zs
dx,

d Vg looP s=1

, =i x, (1—x, )

1

2g

(Z2 +1 Zl ) g (Z„Z„+1)

(4.7)

(4.8)

We now change the integration variables related with the loop configuration in Eq. (4.8) into the fixed points and the
multipliers of the projective transformation associated with each handle. As defined in Eq. (3.6) for the handle opera-
tor, for the vth handle the projective transformation T is

T.= ~2.XI ~2.'-1=
Z2v Z2v —1 Z2 2

Z2v Z2v+ 1 Y2„(Xv )

Y2, (x„)
Z2v 1

(4.9)

Hence, one set of fixed points is given by g =z2 . Let us denote the other set of fixed points by g . Then, the multiplier
K is defined by

K = (T,(z), 2),z, g )=—(Z2 +],g, z2 1,g )

=( Z2, , r]„Y 2(x ), g ) .

(4.10)

(4.11)

From (4.11), x may be solved in terms of K and Y2 ', (g ). Then, we use (4.10) to express Y2„' 1(g ) in terms of K,
and Y2 ', (z2, ). The result reads

X
Kv (Z2v —1» 2v+1» 2v» 2v —2 )

1 —x.
(4.12)
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Using (4.10) and (4.12) the integration variables may be changed from (x,z2, 1) to (K„,g ). As a result we find that

g dx ~dz2~ 1 dz2~

x(1—x)
dK„d g,d 2) (z2„,—21,)(z2, —z2~+, )

K, (g —2l, )(z2 +, —
g )

(4.13)

Thus,

dK~dg~d21~ (z2~ 1
—2)~)(z2~ 1

—z2~+1) 1
dVg '"P= g dV, b,K, (g —

2) )(z2 +, —g )
Z2g+1 Zl gg Zt Zt+1

(4.14)

Hence, our final form of the g-loop 5-string vertex is given by

2g +N 2g —2 dy; g dy,(Vg"'p lphys)= f dV "' g fd, Q f .F"'(y;) + f .F,"' (y, )
=2 +1 i =1 27Tl s =1 2&l

g 2g 2

X Ah", ,'tP b y, b y; c z2g+1) 0
s=1 i=1

2g+X
g loop (r)

+matter matter
r =2g+1

(4.15)

One-loop case

In the one-loop case we can further perform the contour integration rather straightforwardly, which gives the well-
known modular-invariant result from our general formula. For this end we have to evaluate the ghost operator part so
that one can see the pole structure of the amplitude. It is convenient to use the following formula which is equivalent to
Eq. (3.13):

2(n' ""=(detc' '"') 'exp —'
Q —' Q'B ( —Qlaghost B f, "'.a~(z)(t(z, z, )

o 2~i

XexP —f c . f c .ao.(x)acr(y) ln
dx dy E( yx)

2 02mi o 2mi x —y
ao (z) ln(z —g)(z —

2) )
Q dz
2 o 2ni

(4.16)

where we have used the relations of the 8 functions. ' Then, from Eq. (4.5) we get

(0'h,",, lb(y)c(z3)lo) =(detC' '"
) 'exp — Q — Q B

(Bly(Z3&y))
( g)( )

& (y, z, ) (y —g)(y —
2) )

—Q/2

(4.17)

E(Z3,y ) =

with

2 .
'1

2

[ay(y)ay(z, )]'"a, (Blo)
. 2 .

where the prime form is given as
1

2

(Blg(Z3,y))
(4.18)

(0,'„",,', lb(y) ( )Io)

(Z3 —
2) )(Z3 —g)(g —

2) )= ( d tC I loop )2

(y —
2) )'(y —g)'

(4.20)

F'"P(y ) ( rl' '"
l
b (y )c (z3 ) l

0 )

Using this, the contour integration in Eq. (4.15) can be
performed:

2a, (Blo)=a,a, (Blz)

Therefore, we get

z=0
=2mK' (detC' '"p)

(4.19)

(z3 —
21 )(z3 — )

tC1 loop)2 (4 21)
K (2) —g)

where the same result is obtained whether we use (2.18)
or (2.19) for F'"P(y ).
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On the other hand, Eq. (4.14) reads

N+2
dz.

Jopp N dx f 1 1

x(1—x ) dV, b, (z3 —zi)(zi —z2)(z2 —z3)
N+1= „nd"
p 3

(4.22)

where we have used

d 'g d g dz pg + ~
dV, ~,

=
(g q)(q zing+~)(zqg+iv g)

(4.23)

Consequently, we find that

dK N+2
dM 1 looP, X— ~ d (d tCi looP)2

2g +N 9 2g+ X(z — )(z —g)

By making use of the projective invariance we may
choose that

I=O, g= ~, z2g+& —1 . (4.25)

Then, Eq. (4.24) reproduces the well-known formula for
the measure of the one-loop N-tachyon vertex. The in-
tegrand is given by Eq. (C6) in Appendix C.

V. DISCUSSION

In this paper we have constructed the g-loop X-string
vertex in the operator formalism applying the Feynman-
like rules. For this construction we used the tree vertex
of the peripheral type and sewed g pairs of external legs
by propagators. The measure dM "' ' was analyzed in
detail which includes the ghost contribution. The ghost
operator part in the bosonized form leads us to the ghost
g vacuum.

The building element of our multiloop vertex is the
handle operator represented entirely in terms of geome-
trical quantities, i.e., first Abelian integral, period matrix,
prime form, Riemann constant, and —, differential as in

Eq. (3.10). Then, the g vacuum was generated simply by
joining g handle operators. With this ghost g vacuum,
any ghost correlation function can be easily written
down, see Eq. (4.5), as in the case of the matter part. '

The new terms characteristic to the ghost case are col-
lected into the quantities 6 and Sg, which should be
identified with the vector of Riemann constants and the

g /2 differential, respectively.
This identification has been proven in Appendix A for

the one-loop case. We also have given there formulas of

S2 and b for the two-loop case. This construction of the
ghost g vacuum seems to give us the recursive construc-
tion of the g /2 differential out of the (g —1)/2-
differential in the Schottky parametrization. However,
for the expressions of the two-loop case it is not easy to
prove the identification explicitly.

Our three-string vertex is formulated in Lovelace's pa-
rametrization. Thus, the BRST invariance of our g-loop
vertex is seen from the fact that both the three-string ver-
tex and the propagator are BRST invariant. Since the
propagator is BRST invariant up to a total derivative, the
resulting N-string g-loop vertex is also BRST invariant up
to a total derivative with respect to the Chan variables.
On the other hand, the BRST invariance is broken when
using Olive's parametrization since then the integration
over the Chan variable is performed after identifying the
Chan variables of the propagator with the ones of the
three-string vertex. Indeed, if we use the Olive vertex, we
obtain the extra factor ii (1 E, )

—' in dV "'p in Eq.
(4.14), which confirms previous results on this prob-
lem '"44

Since the tree ¹tring vertex satisfies duality, we ex-
pect that the multiloop vertex obtained from a tree
(Zg +N)-string vertex by connecting 2g legs with propa-
gators does not depend on the way it has been construct-
ed from three-string vertices and propagators. One way
to prove this may be the explicit calculation. However,
this can be also understood as follows: Since the BRST
invariance holds, we can prove the no-ghost theorem us-
ing the results given by Freeman and Olive. ' Then,
into each handle operator we can insert the projection
operator onto the physical states. After inserting the
projection operator, we can use the duality properties of
the tree amplitude to show that the multiloop vertex does
not depend on whether we use the tree vertex of the peri-
pheral type or not.

In the operator formalism the factorization property is
manifest by the way of construction which is not easy to
see in the algebraic geometry approach. The modular in-
variance of the multiloop amplitude, however, has to be
shown separately. Our idea to achieve this is to complete
the above discussed identifications of the vector of
Riemann constants and of the g/2 differentials. Then, we
can apply the results on the modular invariance obtained
from the geometrical approach to show the modular in-
variance. As for the one-loop case, we have shown the
complete agreement with the well-known result and thus
the modular invariance is manifest. The higher-loop case
is now under investigation.

The Feynman-like diagram approach does not deter-
mine the integration region over the moduli, i.e., the fixed
points and the multipliers associated with the generators
T„(z) of the Schottky group corresponding to the g-loop
amplitude, and the Koba-Nielsen points associated with
the external legs. We have to determine the integration
domain by some other criterium so that it covers the fun-
damental region only once.

Note added. After finishing this paper we became
aware of the work of Cristofano, Mosto, Nicodemi, and
Pet torino and DiVecchia et al. where also the
differential 5 (z) was calculated.
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APPENDiX A

r

dz i 1

277l Z
E

1 ~ 1
. ln(z, rl, zo, g)

Z 2' l

1
ln( —1)=—,'(B +1) (modJ),

2&l

where we used the formulas

(A2)

We shall prove that the quantities b, and S, (z) in Eqs.
(3.11) and (3.12) can be identified with the Riemann con-
stant and the half differential, respectively.

Identification of the Riemann constant. The vector of
Riemann constants ' is written in general as

,'B„„+ill„—(z„zo)
—g f, dP (z)P„(z,z ) (modJ), (Al)

V

where z& is the starting point of the integration around
the a cycle a„, and (modJ) means that b,„is an element
in the Jacobian; i.e., it is defined up to the lattice vector
m„+ g B„n„,where m„and n„are integers. Note that
the A„have no dependence on z& and negative sign com-
pared to the standard definition. For the one-loop case
we can easily evaluate this quantity:

8
b, =—+P(z„zo)

1
&Bg (z)=, +Bg '(g) .

1

z —g '(g)
(AS)

(2) S, (z) has no zeros and no poles in the fundamental
region.

(3) Si(z) is single valued around the a cycle and mul-
tivalued around the b cycle:

1 1BT(z)= e xp(2m. ib, ) .T z- z
(A6)

Conversely, these properties determine S, (z) up to a con-
stant, and it may be identified with the half differential:

S, (z) =exp —f, d P(y ) lnE (y, z) (A7)

where the contour is along the a cycle. In fact, following
this definition, by taking the contour around the fixed
point g in the Schottky parametrization, we can explicitly
show that

Si(z) =f (K) 1

z f (K) = + (1 —K")
n=1

(A8)

where K is the multiplier of the projective transformation
T(z). Hence, in the one-loop case, our Si(z) is equal to
the half differential S, (z) up to a constant factor f (K).

APPENDIX B

properties.
(1) Si(z) is a half differential on the covering space of

the Riemann surface, i.e., for an arbitrary projective
transformation g (z) we get

dz 1
ln(z b) = —ln-a —b

2vri z —a a —
z&

dz
2~i z —a

1
ln(z b) = —ln(—a b), —

when the contour encircles only the point b, and

(A3)

(A4)

Two-loop handle operator. Here, we give the result of
the two-loop calculation. The two-loop handle operator
Q "' can be constructed by joining two handle opera-
tors given in Eq. (3.10):

AC AE ~EF+FC
2 loop (1) (2)

when the contour encircles both points a and b. Then,
we can identify our b, in Eq. (3.11) with the Riemann con-
stant 5 for the one-loop case.

Identifi'cation of the half differential It is easily s. hown
that the function S,(z) = 1/(z —g) has the following

where the superscripts (1) and (2) of the one-loop handle
operators distinguish the loops. We also distinguish the
geometrical objects by a superscript (p) or by a subscript
p (lM=1, 2) and therefore the handle operator for the pth
handle is

=0 ~ ~"o
—a + detC

0
X:g

X exp

r r

B'~' g, "'. a~' '(z)p'~'(z, z, )+a, ~'"' —' +Qln —'
o 277 z z

I

r

—a~'c'(x)ao'c'( ) ln
o 2m.i o 2mi 2

+—a„o'"' —+Q ln — 8 o'"'
2 x

y'"'(1(z), z ) +Qh'"'

+Q ln
1
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+Bo' '(x )B o' "' —+Q ln — lnyE'"'(x, I (y ) )

—Qgc . (), o'"' —+gln-
o 2~i z z

x(n(( —zS„)+Be' '(z)ln(z —S„):q =0) (82)

The generator of the Schottky group for each handle operator is given by the projective transformation denoted by
T„(z), and the two fixed points of each T„(z) are denoted by g„and i), respectively. Then the two-loop handle opera-
tor is obtained by performing the Gaussian integration appearing in the unit operator in the same way as in the case of
the matter part. ' The result is

fez loop —
q =0 5(~ A (zc +2Q)(detC2 loop)

—1

C

0
X:6 0 8„, f c . Bo' '(z)(t(,(z, zo)+8, o'"' —+Q ln — (t(„(I (z),zo) .+Qb,

z

Xexp fc . (t)c . ,'Bo'—'(x)Bo' '(y)ln
o 2+i o 2+i x —y

~( )

2 x

in y E(r(x), r(, ))x —y

1
lnyE(x, I (y)) .

y

+Q ln
1

x
L

xa, ~( ' —+gln—I

Xa~("(x)a ~("' —+g in
1

y
T T

+Qf c . (), cr —+gin
dz ~g) 1

o2 Z
(n Sz — +der' '(z)(nS2(z): q =0)

1 1Z''Z
(83)

The quantities defCz ( p, ()I( (z, zo) (v= 1,2), and Ez '""(x,y) are the determinant factor, the first Abelian integrals, and
the prime form for two loop, re"pectively. They are the same as the ones which appeared in the calculation of the
matter part. '

The quantities b, and Sz(z) for the two-loop handle operator are

5(=—,'B)(+—,(+P((zo, I (0))+ ln
1

1bz= —,'Bzz+ —,'+pz(zo, I (0))+ „ ln

ki
—4

ni —4

kz
—4(

1/2
T „(kl) i)l T „(kl) kl

1/2
T. , (k) —

nz T,(k)—4
(92) lz T (92) kz

T.„(k()—4
T (rIi) —

gz

T. (4)—ki

T.„(z)z)—4

(84)

and

(Sz(z)) = 4—
k(

(z —g()(z —gz)
g (T „( ), , T (g, ), g, ) + (T ( ), , T, (g, ), g, )

X + (T (z),z, T (gz), g'&) + (T (z),z, T (g(), g() .

(85)

The suKx a;,. has to be understood such that the matrix T is a product starting with T; and ending with T~: for ex-
zJ

ample,
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T(g —T] T2 T] Tz ' ' T2 T] with m]em~el]&0 z

or

T =T] with m&0 . (86)

The suNx +22 has to be understood in the corresponding way.
In genera1, we have a factor

exp(Q. Xconst)

in Eq. (83). However, this constant can be absorbed into the normalization factor of the differential S2(z). 8y imposing
such a factor not to appear in Eq. (83), the normalization of the differential S2(z) in Eq. (85) has been determined.

APPENDIX C

Evaluation of the matter part Whe.n the external string is saturated by the tachyon state, the string-emission opera-
tor is reduced to the tachyon vertex operator, Vm,'«„=.exp[p„X(z„)]:,where p„ is the momentum of the rth tachyon.
Therefore, the g-loop X-tachyon amplitude is given by

2g +N 2g+N(vz'-e
l tt (lp, &,(el(gh»(&, )= f dMz""" ()',",,',e rI:ezp[px(z)]: Ol .

p'=2g+ 1 r =2g+1
(Cl)

To evaluate the integrand of the right-hand side, we insert the unit operator of the matter part3' between ( Qs,]0«',],'~ and
Q:exp[p„X(z„)]:~0). Then, the integrand can be expressed as

(
2g +N

()z"„;e rt:e,zp[p, x(z, )]: o)
r =2g+1

=(detC "'
)

' g (z, —z, )
' '

s &t

g oo

X 0 dk dQ „*d&„exp ink„8g "' k +2mik z z "' z, zo
v=1 n =1 0 27Tl

+—'y, "
. y. "y.~x(.)~~(, ) i.

0 2~i 0 2~i ~ —y

. [)» X — ln(1 —xy)BX'(y)
dx dg ~ 1

o 2m'i o 2' x

+f, ".a. 2 —'
02m m

X)n(1 —ez, )p, Xp,), (c2)
S t

and after the integration over the nonzero modes da „*da„,this becomes

(detC "'
)

' + (z, —z, )
' ' I + dk exp i~k„B„,'"t'k, 2mik gp, P—"' (z„z )

s (t

+ happ, ln
s(t

Es "'~(z„z, )

Zt
(C3)
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The integration over the zero mode dk leads us to the final form

2g+N
Q,"„;, Q: p[p, X(*,)t: 0)

s =2g+1

=(detCs "'") '(detB '"
)

2g+1~S &f ~2g+N

E '"(z z)2g +N
(z, —z, )

' 'exp — g p p, ln
s, t =2g+1

+ g p, P„"' (z„zo) (2B„) ' g p, Pg "' (z„zo) (C4)

In case of the one-loop diagram (g = 1), this leads to

s s

with

a

N+2 1Il',.'tP g:expIp, X(z, ) I: 0
s =3

r =3

oo

1 —Z™
~r

1

in%

d/2

exp g p,p, In/„,
r &s

(C5)

Qz„z,

[1n(z, lz„)]
exp E(z„z, ) .

2 in%
(C6)

In deriving these equations we have repeatedly used the momentum conservation, g, p, =0.
The formula above is for the open string. When we consider the case of the closed string, we have to include the con-

tribution from the right movers before performing the integration over the zero modes. Then, our formula produces
the well-known result of the matter part of the closed string as shown in Ref. 31. Then, with the formula for the one-
loop closed string, using the result of the measure Eq. (4.24), we get the modular-invariant one-loop X-tachyon ampli-
tudes.

C. Lovelace, Phys. Lett. 32B, 490 (1970);32B, 703 (1970).
2D. I. Olive, Nuovo Cimento 3A, 399 (1971).
V. Alessandrini, Nuovo Cimento 2A, 321 (1971).

4V. Alessandrini and D. Amati, Nuovo Cimento 4A, 793 (1971}.
5S. Sciuto, Lett. Nuovo Cimento 2, 411 (1969).
L. Caneschi, A. Schwimmer, and G. Veneziano, Phys. Lett.

30B, 356 (1969)~

7A. Neveu and P. C. West, Phys. Lett. 168B, 192 (1986); Nucl.
Phys. B278, 601 (1986).

8P. DiVecchia, R. Nakayama, J. L. Petersen, and S. Sciuto,
Nucl. Phys. B282, 103 (1987).

9U. Carow-Watamura and S. Watamura, Nucl. Phys. B288, 500
(1987).

' U. Carow-Watamura and S. Watamura, Nucl. Phys. B301,
132 (1988).

A. D'Adda, M. A. Rego Monteiro, and S. Sciuto, Nucl. Phys.
B294, 573 (1987).

'2U. Carow-Watamura and S. Watamura, Nucl. Phys. B302,
149 (1988).

' U. Carow-Watamura and S. Watamura, Nucl. Phys. B308,
149 (1988).

' A. Clarizia and F. Pezzella, Nucl. Phys. B298, 636 (1988);
B301,499 (1988).

'5P. DiVecchia, R. Nakayama, J. L. Petersen, J. Sidenius, and S.
Sciuto, Phys. Lett. B 182, 164 (1986); Nucl. Phys. B287, 621
(1987).
P. DiVecchia, K. Hornfeck, and M. Yu, Phys. Lett. B 195,
557(1987).

'

' P. DiVecchia, M. Frau, A. Lerda, and S. Sciuto, Phys. Lett. 8
199, 49 (1987).

M. A. Rego Monteiro, Phys. Lett. 8 203, 381 (1988).
' M. D. Freeman and P. West, Phys. Lett. 8 205, 513 (1988).

P. DiVecchia, M. Frau, A. Lerda, and S. Sciuto, Nucl. Phys.
B298, 527 (1988).
P. DiVecchia, K. Hornfeck, M. Frau, A. Lerda, and S. Sciuto,
Phys. Lett. 8 206, 643 (1988).
J. L. Petersen and J. R. Sidenius, Nucl. Phys. B301, 247
(1988).
A. LeClair, Nucl. Phys. B297, 603 (1988).
A. LeClair, M. E. Peskin, and C. R. Preitschopf, Nucl. Phys.
B317,411 (1989);B317,464 (1989).

25A. Neveu and P. C. West, Phys. Lett. 8 193, 187 (1987).
A. Neveu and P. C. West, Commun. Math. Phys. 114, 513
(1988).
P. DiVecchia, K. Hornfeck, M. Frau, A. Lerda, and S. Sciuto,
Phys. Lett. B 205, 250 (1988); 211, 301 (1988).
J. L. Petersen, J. R. Sidenius, and A. K. Tollsten, Phys. Lett.
8 213, 30 (1988).
J. L. Petersen, K. O. Roland, and J. R. Sidenius, Phys. Lett. B
205, 262 (1988);H. Konno, Phys. Lett. B 212, 165 (1988).

T. Kobayashi, H. Konno, and T. Suzuki, Phys. Lett. B 211, 86
(1988); Phys. Rev. D 38, 1150 (1988); H. Konno, Phys. Lett. B
212, 165 (1988).

~U. Carow-Watamura, Z. F. Ezawa, and S. Watamura, Nucl.

Phys. B315, 166 (1989).
U. Carow-Watamura, Z. F. Ezawa, and S. Watamura, Nucl.
Phys. B319, 187 (1989).
S. Saito, Phys. Rev. D 36, 1819 (1987); 37, 990 (1988};Phys.
Rev. Lett. 59, 1798 (1987)~

N. Ishibashi, Y. Matsuo, and H. Ooguri, Mod. Phys. Lett. A



OPERATOR APPROACH TO BOSONIC STRING: MULTILOOP. . . 435

2, 119 (1987).
L. Alvarez-Gaume, C. Gomez, and C. Reina, Phys. Lett. B
178, 390 (1987).
C. Vafa, Phys. Lett. B 190, 47 (1987).
N. Kmvamoto, Y. Namikawa, A. Tsuchiya, and Y. Yamada,
Commun. Math. Phys. 116, 247 (1988).
L. Alvarez-Gaume, C. Gomez, G. Moore, and C. Vafa, Nucl.
Phys. B303, 455 (1988).
D. Friedan, E. Martinec, and S. Shenker, Phys. Lett. 160B, 55
(1985);Nucl. Phys. B271, 93 (1986).

4oJ. Fay, Theta Functions on Riemann Surfaces iSpringer, Ber-
lin, 1973)~

4~D. Mumford, Tata Lectures on Theta (Birkhauser, Boston,

1983),Vols. I and II.
42E. Verlinde and H. Verlinde, Phys. Lett. B 192, 95 (1987);

Nucl. Phys. B288, 357 (1988).
43H. Nohara, Report No. UT Komaba 88-2, 1988 (unpub-

lished).
44E. Cremmer, Nucl. Phys. B31,477 (1971).
45M. D. Freeman and D. I. Olive, Phys. Lett. B 175, 151 (1986).

M. D. Freeman and D. I. Olive, Phys. Lett. B 175, 155 (1986).
47G. Cristofano, R. Musto, F. Nicodemi, and R. Pettorino,

Phys. Lett. B 217, 59 (1989).
P. DiVecchia, F. Pezzella, M. Frau, K. Hornfeck, A. Lerda,
and S. Sciuto, Report No. Nordita 88/47P, 1988 (unpub-
lished).


