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A new method for calculating the covariant derivative expansions is presented, particularly in

Abelian gauge theories, which can be used to find derivative expansions around nonvanishing

gauge field-strength tensors. We apply this method to find the O((8&F„,) ) terms of electron
determinants in quantum electrodynamics.

Recently there has been much effort to find a systemat-
ic way to calculate the derivative expansions, which play
an important role in finding low-energy effective-field
theories. ' In this expansion the highly nonlocal quanti-

ty, the effective action, can be written as an infinite sum of
local functions of basic fields and their derivatives. In this
paper we present a new method for calculating derivative
expansions, which is applicable to curved space-time. Al-
though our method can be generalized to higher loops, we
will limit our study to one-loop amplitudes.

For the one-loop effective action we use the heat-kernel
representation. A crucial point in our method is to repre-
sent the heat kernel by a flat normal-coordinate system
(FNCS). In a FNCS differential operators on a vector
bundle are expressed by a normal coordinate X and fiber
frames obtained by the parallel transportation from a base
point x. In a FNCS a differential operator behaves like a
covariant function as for x and a differential operator in a
flat space-time as for L In Ref. 7 we used a FNCS to cal-

culate asymptotic expansions for the heat kernel of gen-
eral minimal operators. The algorithm developed in Ref.
7 can be easily generalized to derivative expansions.

In this paper we illustrate our method by calculating
derivative expansions of electron determinants in QED.
In Abelian gauge theories like QED, our method has
another advantage. We can expand the effective action
around nonvanishing field strength. The previous methods
could not handle this case. In our method we can expand
the effective Lagrangian in the form

X,tt =XP(F,p) + r)i„F„,BrF,PJ ]" 'S"(F,p) +

where the Lk's denote some local functions of the field-
strength tensor F„„and the background gauge is as-
sumed. Lo was first calculated by Schwinger. Our aim
is to calculate the next term X~.

The one-loop effective action for the photon field is
given by the electron determinant

i8'(') =lndet( —iy„D"—m) = —,
' lndet( —D ——,

' rJ„,F"'+m ), (2)

where D" =ti" —ieA", F"'=i [D",D "], cr"'= , i [y",y'], and—m is the electron mass. We use the metric t)""=(I,
1, 1, —1) and our Dirac matrices satisfy [y",y "] = —2rl"'. In the proper-time heat-kernel method W ') can be written as

(&) ]
" driW ' = ——,

' Trexp[ —r( D+m —cr F/2)]—
I dz,

, 4d xtr[e ™(xIexp[ —r( D —o"F/2)] Ix)], —

where tr denotes the trace over the Dirac indices and g the proper-time cutoff.
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Now we briefly review a FNCS for general gauge
theories in flat space-time. First, we choose a base point
x in space-time and express position variable y as y =X
+x, where X can be regarded as a normal coordinate for
y. Consider a diA'erential operator of the form M(D„,p),
where p denotes an arbitrary tensor field. Let us define
D„(X) and p(X) such that

D „(X)=—T(x,y)D„(y) T(y, x),
y(X) = T(x,y—)y(y) T(y, x), (4)

where T(y, x) is a parallel-transportation matrix from x
to y satisfying

X D(y)T(y, x) =0=T(y,x)X D(y)

and T(x,x) 1. For most cases we can write

M(D„(y),y(y) ) =T(y, x)MT(x,y),

(x)X+I '''+nf P1'''Pn (7)

where 8„.. . ,„=cl,, cl, and a„.. . ,„p, . . . p„(x) is a
gauge-covariant tensor field. This representation of M is
useful to evaluate the heat kernel and the derivative ex-
pansions.

Now we return to QED. From Eq. (5) we can write

&x
I exp[ —z( D' —cr—F/2)] Ix)

=&0
I exp[ —z( D —cr —F/2) l I

0) . (8)

First, we should expand D —cr F—/2 in the form of (7).
Using Eq. (6), we find

where cl 8/8X„, X,,
. . . ,„X,, X,„, and the semi-

colons denote covariant diA'erentiations. Therefore, the
expansion of M has the general form

where M =M(D„,P). This implies

&y Ie ™Ix&=T(yx)&XIe ' I0&,

(xIe ' Ix&=&OIe ' IO&.
(5)

The next step is to expand D" and p in terms of X. It is
easy to find

—D —cr F/2= —(9 + 2 cr F+e1+e2+. . . ),
where

e = —iF,p; ( —, X'r2)~+ —,
' X'rlr~+ —, ia'PXr),

e = ——,'iF, . (X" 2)~+X' ri~+' 'SX )

F "~'»'

(9)

D" =8"—g 1 % F""
n. +n with 2)„=cl„——, iX F,„. Since we are interested in the

expansion around nontrivial F„„, in Eq. (9), e=——(ei
+ e2+ ' ' ) is regarded as a perturbation and we evaluate
Eq. (8) by expanding with e. For this purpose we will use

t
e 'H+'=

1 —„dz1e(z1)+ dz2„dz1e(z1)e(z2)+ . . e

where e(z) =e ' ee' . In our case H= —(S +cr F/2) and wecan find

n (z) =(e"'n) X (z) =[(1 e"')F 'n] +X—

( ) rcr F/2 —ra F12
pv P

where F means F„,as a matrix.
Fortunately an analytic expression for (X I exp( —zH) I

0) is known in the Abelian case:

(10)

(XIexp( —zH) IO)= exp[ ——,
' trln(zF) 'sin(zF)]exp[ ——,'X F cot(zF) X]exp( —,

'
zcr F).

(4~) '"
Equations (10) and (12) can be combined to yield

(0 I exp[ —z(H+ e)] I 0) = exp[ —
& trln(zF) ' sin(zF)]

(4~) 'z'

1+ dz1 e2(z1 ) +J dz2 dz1 ei (zi )ei (z2) + e x oe'

where f(X) = ——,
' X F cot(zF) X. To evaluate the various quantities in Eq. (13) at X=0, we use the formulas

sin(z1F) sin[(z2 —z)F]
I(z1,z2) =—X'(z1)X(z2)e I x-o = —2exp[i(z1 —z2)F] F sin(zF)

(x) sin(z1F)
J(z1 z2) =X(z1)&(z2)e~ I

x—-o = exp[i(zi 2z2+ z)F]
sin(zF)

(x) sin [(z2 —z)F]
I~ (z1, z2) =—&(z1)X(z2)e I x=o = —exp[i(2z1 —z2)F]

sin(zF)

L (z1, z2) —=2)(z1)23(zp)e '
I x-o = ——,

' exp[i(2z1 2z2+ z)F]—F
sin zF

(13)

(14)
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From Eqs. (9) and (14) we obtain

E2(z])e I x (]
= t'F

p (2I] J] +I] J] +I] g +II] cr] ) F pF I] I]

~](z])~](z2)eI' 'Ix-o= —F.p, ,F.,;.[l [I]'«p]V2 + 2 L12IP )+J] I]2J2 +J] J12II"

+I']2(J J2'+It2LP]2)+I] J 2KP](+I]2J'2KP" ]

+ —' it "(I'rKp]'2+ 2J'pI"" )+ —, it rp(2I "J '+J"I" )

+ —' ' " (I;"KP +2J;PI, )+ —' ' 'P(2I "J "+J, I" )

(is)

where the dotted indices must be symmetrized, cr]' =cr' (i]), cr2=cr' (i2), I]=I(z],i]), I2=I(i2, i2), I]2=I(z],i2),
and so on.

Next we must integrate Eq. (15) with respect to i] and i2 In w. eak-field cases where F„,/m =0, these integrations
are simple and the result agrees with the previous one. For general eases it is necessary to investigate some properties of
the field-strength tensor F,. F„„regarded as a matrix, satisfies F +2PF —0 =0, where
=

4 F„,F""=(B —E )/2, 0 =
4 F„„*F"'=E.8, and *F"'=—

2
c"" 'F)„,. The eigenvalues of F are f] ——2 i (%+X*)',

f2= 2 i(X —4*)—, a'nd their negative values, where A'=[2(P+iQ)]' . Note that + A and + 4* are nothing but the
four eigenvalues of cr" F/2. In integrating Eq. (15), we need

sin(if2)
exp(iiF) =

2 2 cos(if2)+i F +(f] f2) .f' f', —

A similar equation holds for sin(zF). Inserting these results into Eq. (14), we are able to integrate Eq. (15). On the oth-
er hand, as shown in Eq. (3), we should evaluate the trace of several quantities over Dirac indices. In our case, we need

exp( —,
'

zcr F) = cosh(zA')+ ti +(4' A*),
X*2—n2 sinh(zA)
~42 ~2 (i7)

where 0 =o"F/2. Note that 0 =2(P+iy59) with y5= iy'y y y—.
Using Eqs. (3) and (13)-(17),it is straightforward to calculate Xo and X] in Eq. (1). As for the integrations over i]

and z2 in Fq. (13),we can find these in closed forms and, after evaluating the trace, the results have the tensor structure

tr(x I exp[ —z( —D —cr"'F/2)]
I x& = cot(if])cot(if2)

4x
x [1+(F'F F~F F Y' +F'F,F F„Y2 +F'(F„F,F &Y3 )" + ' ' ' ]

where we have discarded total divergence terms, F]„ is the matrix form of the tensor F„„).. and ( & denote. s the trace
over the Lorentz indices. In Eq. (18), Y'~" and Y'~ (i,j,k =0, 1,2,3) are some functions of P, 9, and i, and summation
over E., j, and k is assumed. To reduce each term into this form, we used the Blanchl ldentlty and the relation
F +2PF —9 =0. Since the eH'ective action is invariant under F„,~ F„„Y]and Y2 van—ish when i+j +k is odd,
and Y3 also vanishes for odd i+j. In this paper we do not pursue the complete calculations, which will be considered
elsewhere.

Instead we specialize to the simpler cases: F(x) =]t](x)F and 9 0, where F is a constant tensor and (]) a scalar field.
Wh'en 9=0, one of f] and f2 is zero. Let f2=0 and f] =f. Note that f = —2P and F =f F. In these cases our calcu-
lations are relatively simple, but still need some tools which can do symbolic calculations. We used REDUCE and found,
for the higher-derivative part,

.~(]) i d4 2(~„)(~ )
" ds -,~2 it tY +3Y 4tY —3Y+3t—

~ o ~ (4~) 2z2 y-4 (i9)

where t = iif and Y=tanh—(t).
Now we study the consequences of the Bianchi identiy. In our cases, we may write, without loss of generality, the

field-strength tensors as

E =Eo((]y, 8 Bopz,

where Eo and 80 denote constants. Solving the Bianchi identity V B=0 and V x E = —8,B, we find

6,/=0 and Eo8 (])
= Bo&,cp. —

(20)

(2i)

Equation (19) holds for any field satisfying Eq. (21). Note that f =(Eo —Bo )]t] =E —B . Equation (21) has the two
interesting solutions: (i) 8 =B(x,y)z, E =0, and (ii) E =E(x,t)y, 8 =0.
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Now we consider the effective Lagrangian for the case (i). A general case is obtained by replacing B with —if F. rom
Eq. (19) we fin

„()) ) I
™dr, ,~~ —,A~) t

&e —ercg 2 J 0 (4~)'r'
4 + 4 + tY +3Y —4tY —3Y+3t (BB)
Y t Y4 g2

g 2=2, 3»(m'/&')+ —,
' B'&i(IB/m'I)+, &„Ba"»z(lB/~'ll)+

4n 2m

where we converted the proper-time cutoff' into a Pauli-Villars regulator mass, and

A)(b)- 1 ~ dt, b 4 4 4
(4')' "'

(22)

(b) - — ~
ib—1 1 ~ dt tY +3Y —4tY —3Y+3t

(4x)' b"' Y4

Note that A~(b) and A2(b) are positive quantities. Here we use on-shell renormalization. A one-loop counterterm in

this renormalization scheme and regularization method is known as'

g2 —' in( 2/A2)
2 (4x)' 3

Therefore the renormalized effective Lagrangian density becomes

X„.- ——,'B', —~, (~B/m'~)+ . +,B„Ba B[~,(~B/I'()+ . ]+
e 2m

For the weak field (b 0):

A (b)- —, b (1 ——, b +. ), A (b)= (1 ——„b + . ).1 4 2p

(4m) (4~) 15

For the strong field (b ~):

~ (b) 4 I 1„(b)+0(1) ~ (b) 1 1 dt tY +3Y —4tY —3Y+3t
3 (4~)' (4z)' b ~o Y4 b

(23)

(24)

(2S)

From Eq. (25) we can see that the higher-derivative
corrections are suppressed at the strong-field limit.
Indeed for large b, A2(b) = Cb ' for some constant C.
Our result given in Eq. (23) is the generalization of the
effective Lagrangian for constant electromagnetic fields
first obtained by Schwinger. In non-Abelian cases it is
dificult to evaluate the similar quantities except for the
field configurations restricted to the Abelian sector. Our

derivative expansions will be useful to study effective ac-
tions for field configurations which are slowly varying in
space-time around nonvanishing background fields.
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