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Application of a generalized Feynman-Hellmann theorem to bound-state energy levels
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We derive a generalization of the Feynman-Hellmann theorem and use it to describe how the en-
ergy of a bound state changes with the change in mass of one of the constituent particles.
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There are certain relativistic wave equations, such as
the Klein-Gordon equation, which are not of the form of
Eq. (1), so that the FH theorem does not directly apply.
However, we shall generalize the FH theorem to a form
which can apply to the Klein-Gordon equation and a
class of other relativistic wave equations.

We consider a wave equation of the form

F(E,A. )/=0, (3)

where P is the wave function of a bound state with energy
E, which depends on the parameter A, . Then we can write

Quigg and Rosner' have applied a theorem of Feyn-
man and Hellmann (FH) to the energy levels of bound
states in a potential. Specifically, Quigg and Rosner used
the FH theorem to show that the larger the reduced mass
of two nonrelativistic particles bound in a potential, the
lower a specified bound state lies in that potential. In this
paper, we use a generalized FH theorem to show that the
energy levels (excluding the rest energy) of bound states
decrease with increasing mass of any constituent particle
for certain relativistic wave equations. We also show that
this result is not necessarily true for all wave equations
incorporating relativistic kinematics.

The motivation of Quigg and Rosner was to obtain re-
sults for quarkonium which depend on quark masses but
not on the functional form of the potential between the
quark and antiquark. Subsequently, other authors ap-
plied the theorem to obtain inequalities among quark and
hadron masses. Our motivation is similar to that of pre-
vious authors, but we do not wish to restrict ourselves to
the nonrelativistic Schrodinger equation or to bound
states of only two particles.

The Feynman-Hellmann theorem states that if the
Hamiltonian of a system is H(A, ), where A. is a parameter,
and the wave equation for a bound state is

H(A, )f(A, ) =E(k)tij(A, ),
where E is the energy and it is a normalized wave func-
tion, then

If F has the property that

then, in view of Eq. (3), Eq. (4) becomes

BF BE BF
BE a~ BX

or

(6)

&0.BE

Bm;
(7)

It follows from the FH theorem [Eq. (2)] that the in-
equality (7) holds for the n-body Schrodinger equation,
provided that the potential does not depend on the con-
stituent masses. We do not present the proof, as it is a
straightforward generalization of that given in Quigg and
Rosner. ' We assume in what follows that all potentials
are independent of masses.

Let us now apply Eq. (2) to a particle of mass m satisfy-
ing the Dirac equation with a potential 5 which trans-
forms like a Lorentz scalar and a potential V which trans-
forms like the zeroth component of a Lorentz four-
vector. The equation is of the form (fi=c =1)

If F=H E, then —Eq. (6) reduces to the form given in
Eq. (2), provided (P~g) =1, as we shall require. Equa-
tion (6) is our generalization of the FH theorem. We
have not seen it elsewhere in the literature, although it is
related to ideas presented in papers by Klein and Rafel-
ski and by Epstein.

In applying Eqs. (2) and (6) to determine how the ener-
gy of a bound state varies with the mass of one of its con-
stituent particles, we shall take E to be the total energy
including the rest energy and require that E)0. We
define e to be E=E—g; m;, where m, are the masses of
the constituents. The statement that as the mass m; of
any constituent increases, the bound state lies lower in
the potential means that

[a p+ f3(m+S)]g=(E —V)g,

+(Q F ~)=0. (4)
where ct and p are Dirac matrices and p= iV Using- .
Eq. (2), we obtain
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But for a normalized bound state, we have &glPlg) (1,
so that we obtain

&1.BE
Bm

(10)

Then Eq. (7) holds, just as with the nonrelativistic
Schrodinger equation.

We next consider the n-body spinless Salpeter equa-
tion, given by

g [(p;+m; )'~ + V]/=ED .

The generalization to a bound state of n Dirac particles
bound in potentials V and S is straightforward if the wave
equation is of the form

g [a p +P (m +S )]g={E—V)g .

of equal mass.
Let us next consider a simple way to introduce relativ-

istic kinematics into the Schrodinger equation. We re-
strict ourselves here to the one-body case, which is
suf5cient to demonstrate that, for the prescription given
below, the quantity Be/Bm is not necessarily negative.
We write the Schrodinger equation in the form

(p +2mV)g=k f, (17)

E=(m'+ k')'" (18)

The eigenvalue k may be either positive or negative, but
must satisfy the inequality k & —m so that E & 0. Note
that if lk l is much smaller than m, Eq. (18) reduces to
the usual nonrelativistic expression for the energy:
@=k /{2m). Using Eq. (6), we obtain, from Eqs. (17) and
(18),

where k is the momentum-squared eigenvalue, and let E
be given by

Again using Eq. (2), we obtain

BE =m, &@l(p, +m, ) '~2lg) (1,
1

(12)

BZ m+&qlVlq)
Bm E (19)

because p, is a positive-definite operator (in momentum
space p, is a positive multiplicative operator). It follows
that the inequality (7) again holds.

We now turn to the Klein-Gordon equation, which we
write in the form

[p +(m+S) —(E —V) ]/=0 .

Using Eq. (6), we obtain

BE m+&@lsl@&
Bm E &yl Vlq)—

(13)

It is not obvious in this case whether BE/Bm is greater or
less than 1. However, we can show in the case V=O,
that the inequalities (10) and (7) hold.

The proof is as follows. Because p is a positive-
definite operator, we see from Eq. (13) that if V =0, we
have

E'& &ql(m+s)'lq) . (15)

Now a theorem tells us that for a Hermitian operator U,
we have

&&IU'I@& ~(&@IUly&)'.

Therefore, we obtain

(m+ & @lsl y) )'&
& @l(m+s)'l1t ) .

Setting V=O in Eq. (14) and using (15) and (16), we ob-
tain the inequality (10). Then the inequality (7) follows
immediately from the definition of e. An analogous proof
follows for the Klein-Gordon equation for two particles

We can use Eq. (19) to show explicitly that potentials ex-
ist for which the inequalities (7) and (10) are violated.
For example, for a potential of the form V=ar, we can
evaluate E and &gl Vlf) analytically for a given energy
level to show that (7) and (10) do not hold for sufficiently
large am . Alternatively, we can make use of the scaling
properties of the Schrodinger equation with a power-law
potential. ' These properties enable us to show directly
that if E is given by Eq. (18) and if

V=ar, ab & 0,

then, for a given m and b, we can choose a so that the
inequalities (7) and (10) do not hold for some energy lev-
els. Of course, the inequalities hold if E is given by the
usual nonrelativistic expression E=m+k /(2m).

In conclusion, we have applied a generalized
Feynman-Hellmann theorem to the problem of particles
bound in a potential which is independent of the constitu-
ent masses. We have shown that for the nonrelativistic
Schrodinger equation and for some, but not all, relativis-
tic wave equations, a bound-state energy e (excluding the
rest energy) decreases as the mass of any constituent par-
ticle increases. If e increases as a constituent mass in-
creases, then of course the total energy E (including the
rest energy) will also increase. However, if e decreases as
a constituent mass increases, we cannot say in general
whether the total energy E increases or decreases.
%'hether BE/Bm; is greater or less than zero depends on
the form of the potential as well as on the wave equation.
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