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Temperature inversion symmetry in the Casimir effect
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The finite-temperature Casimir effect between parallel plates has a simple symmetry under tem-
perature inversion. With symmetric boundary conditions the ordinary, zero-temperature Casimir
energy is directly related to the Stefan-Boltzmann energy of thermal radiation. This symmetry
holds for both boson and fermion fields.

Quantum fiuctuations in the presence of confining
boundaries give a volume-dependent vacuum energy.
This is the effect first found by Casimir' in the simplest
geometry of an electromagnetic field between two parallel
plates.

Because of the special geometry of this particular case,
there is a simple symmetry in the case of finite tempera-
tures. It can be used to relate directly the zero-
temperature Casimir energy to the energy density of free
blackbody radiation in the absence of any confining obs-
tacles as also recently pointed out by Ford. In a some-
what different context, it was previously used as a start-
ing point for the investigation of symmetry breaking in
quantum field theories in spacetimes with at least one
compactified spatial dimension.

By its very existence, the Casimir energy is intimately
related to the boundary conditions of the confined field.
We will show that it is only for boson fields with sym-
metric and fermion fields with antisymmetric boundary
conditions that the symmetry obtains. It is then a result
of the invariance under the exchange of spatial and
imaginary-time directions in the partition function. Ig-
noring the boundary conditions, the whole symmetry
boils down to the physical equivalence between the free
energy of the finite-temperature Casimir effect and the
free energy of blackbody radiation between parallel
plates.

This temperature inversion symmetry can be seen al-
ready in the generic paper by Brown and Maclay who
calculated the finite-temperature Casimir energy of an
electromagnetic field between two parallel plates. Rather
than the free energy per unit plate area F(T,L) where L
is the plate separation and T the temperature, it is con-
venient to introduce the dimensionless function f=L F
which can only be a function of the dimensionless vari-
able g=LT in units where Boltzmann's constant k = l.
They found that it can be written as a sum of three terms,
f(g) =f0+f (g)+fr(g), in a slightly different notation.
Here fo= —m. /720 is the conventional Casimir energy
and f (g) = —(m /45 + is the Stefan-Boltzmann expres-
sion for the free energy of blackbody radiation. The non-
trivial temperature dependence is contained in the func-
tion

1 (2g)
4 = [m +(2gn) ]

Brown and Maclay noticed that this function has the
property

f(g)=(2$) f (2)

which is a relation between the functional values at low
and high temperatures for a given plate separation I..

Now it can easily be seen that the three contributions
to the free energy can be combined into the compact ex-
pression

fo(g)=(2$) f„ jT2

720
(4)

which is just the original Casimir energy.
Recently, the Casimir free energy of massless fermions

confined between two parallel plates has been calculated.
The Auctuating Dirac field satisfies the MIT boundary
condition ipig=g on the plates. One then finds that the
dimensionless free energy can be written as the double
sum

2e 4

f(g)=—,g'( —1)
8m-' „[m'+ (2gn)']'

which again can be seen to satisfy the functional relation-
ship (2) implying symmetry under temperature inversion.

At very high temperatures where the presence of the
confining plates is no longer felt, the fermionic free ener-

gy attains the well-known value —„' of the corresponding
free energy of thermal photon radiation. The tempera-
ture inversion symmetry then gives the same ratio be-
tween the Casimir energies of the two fields between
parallel plates at zero temperature. This agrees with a
previous result by Johnson.

16m. [m +(2/n ) ]

where the sum m, n extends over all positive and negative
integers except for m =n =0. It is obvious that this new
function has the same symmetry under temperature in-
version as Brown and Maclay found in the partial free en-
ergy fr(g). In fact, from the thermal radiation free ener-

gy f„=—(m. /45)g we obtain, in the zero-temperature
limit,
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The origin of the symmetry is Inost asily seen after a
%'ick rotation to imaginary time ~=it. Boson fields at
finite temperature p= I/T will then be periodic in the r
direction with period p. Symmetric boundary conditions
on the plates then also imply periodicity in the z direction
normal to the plates with period 2L. Since the fields
move unconstrained in the two transverse directions, we
will then have a symmetry in the exchange of p with 2L;
i.e., the sealed free energy will be just a function of the di-
mensionless variable 2L /P=2$.

Fermions will be antisymmetric in the ~ direction with
the same period p. Using the MIT boundary condition,
one has also efFectively antisymmetry in the z direction
with period 2L. The same temperature inversion symme-
try then follows as is most simply seen using functional
methods. The full partition function is then just given
by the determinant of the Euclideanized Dirac operator
which is symmetric under the exchange p~2L.

The double sums in free energies (3) and (5) are both of
the form

contribution of two such fields, one satisfying the Dirich-
let boundary condition /=0 and the other satisfying the
Neumann boundary condition B,/=0 on both plates, one
obtains' exactly the electromagnetic result (7). On the
other hand, a scalar field which satisfies a Dirchlet condi-
tion on one plate and a Neumann condition on the other
plate has a free energy given as

f(g)=— 1 1

32zr' 'z~
(9)

As expected, this is not symmetric under temperature in-
version.

Instead of the MIT boundary condition for fermions
which resulted in the symmetric free energy (8), one can
also consider other boundary conditions. From the re-
quirements of supersymmetry Igarashi" has derived a
new set of boundary conditions for a Majorana field be-
tween two plates which can be seen to require the field to
by symmetric in the z direction with period 2L, . One
would then not expect symmetry under temperature in-
version in the corresponding free energy. An explicit cal-
culation' gives in fact

which define Epstein zeta functions for difFerent choices
of indices u and U. One can then write the electromagnet-
ic free energy (3} in the more compact form

f(g)= 1 1

zo 2
( l0)

while the Dirac free energy (5) becomes

f(g)= 1 1

Sm zz

Both of these have temperature inversion symmetry.
It should also result for other massless fields with sym-

metric boundary conditions. For instance, Tadaki and
Takagi have calculated the Casimir free energies of sca-
lar fields between parallel plates. Adding together the

which clearly reveals this asymmetry.
The symmetry obviously shows up also in higher di-

mensions. In a D-dimensional spacetime with D ) 2 and
still only one compactified spatial dimension, it can again
be expressed in a functional way as in (2} when the ex-
ponent 4 is changed to D. When D =2, i.e., in one space
dimension, the symmetry manifests itself most directly in
the partition function and not in the free energy. In fact,
it is now enlarged to a much higher symmetry due to the
conformal invariance of two-dimensional, massless quan-
tum field theories. This higher symmetry is modular in-
variance and plays an important role in quantum theories
of strings' and critical phenomena in two dimensions. '
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