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A gauge-invariant, nonperturbative approach to quark confinement and chiral-symmetry break-
ing in the context of the Schwinger-Dyson equations and corresponding Slavnov-Taylor identities is
presented. Making only one widely accepted assumption that the full gluon propagator becomes an
infrared singularity like q at small momenta, we obtain a nonperturbative, gauge-invariant,
infrared-finite quark propagator, which has no pole (confinement-type solution) and implies chiral-
symmetry breaking (dynamical quark mass generation), so that we establish a close connection be-
tween these nonperturbative phenomena. We discover that the ghost degrees of freedom play an
essential role in the dynamics of chiral-symmetry breaking, but nevertheless the quark propagator
we got was free of ghost complications. In addition to the infrared-finite solution, we find also two
infrared-vanishing (after the removal of the infrared regulation parameter) solutions for the quark
propagator. For the dynamical (nonperturbative) quark mass we derive the expression which exhib-
its an essential singularity in the coupling constant in accordance with renormalization-group solu-
tions in the infrared region.

I. INTRODUCTION

It is well known that the infrared region is responsible
for nonperturbative effects in quantum chromodynamics
(QCD). The most important nonperturbative problems in
QCD are quark confinement' and chiral-symmetry break-
ing (CSB). Apparently, there is a close connection be-
tween these nonperturbative phenomena, Refs. 5—7 (see
also, Ref. 14). One of the efFective and adequate methods
to studying these hypotheses is to investigate infrared
singularities, the analytic structure, and asymptotic prop-
erties of the Schwinger-Dyson (SD) equations for the
quark propagator with the help of the corresponding
Slavnov-Taylor (ST) identities. ' A popular approach
to the dynamics of chiral-symmetry breaking is to write
down a gap equation in some approximation (see, for ex-
ample, Refs. 3, 4, and 7), but the SD equation for the
quark proper self-energy X(p) is the gap equation rewrit-
ten in a different notation.

In these investigations which have been performed in
various gauges (covariant and noncovariant), dimensions,
and other different approximations, confinement was im-
plemented by assuming that the full gluon propagator be-
comes an infrared singularity such as (q )= at small mo-
menta, providing a linearly rising quark-antiquark
potential at large distances in the nonrelativistic limit.
The cluster property of the Wightman functions in QCD
fail "and this makes it possible to admit such singular be-
havior for the full gluon propagator in the infrared re-
gion. For this case one needs to introduce a small in-
frared regulation parameter e in order to define exactly
initial SD equations in the infrared region [postponing to
Sec. II the precise definition of the distribution (q ) in
n dimensions]. Because of this, the quark propagator and
other Green's functions become dependent in general on

M= —8 '( —p =0)=[iS(0)] (3)

so that one needs to find regular solutions for the finite-
quark propagator (1) in the infrared limit.

the infrared regulation parameter e, which is to be set to
zero at the end of computing (e—+0). Evidently, there
are only two different types in the behavior of the quark
propagator with respect to e in the a~0+ limit. If the
quark propagator does not depend on the e parameter in
the e~O limit then one obtains the infrared-finite quark
propagator. In this case quark confinement is understood
as the disappearance of the quark propagator pole at the
point p =I where m is a quark mass. A quark propa-
gator may or may not be an entire function, but in any
case the pole of the first order disappears. On the other
hand, a quark propagator can vanish after the removal
(e —+0+ ) of the infrared regulation parameter e. The van-
ishing quark propagator is also a direct manifestation of
the quark confinement.

Using the usual decomposition of the quark propagator

iS(p)=PA (
——p )+8(—p ),

CSB can be implemented as satisfying the condition

IS(p), )', I+=2i3'sB( p )&0

so that the ys invariance of the quark propagator (1) is
broken. This condition leads to the zero-mass boson
(Goldstone state) in the liavor axial-vector Ward-
Takahasi-Fradkin identity. On the other hand, the quark
must have a nonzero mass (nonperturbative) even if the
bare mass of a quark is equal to zero (dynamical quark
mass generation). For the quark propagator (1) which
has no pole (for example, entire function) nonperturbative
(effective) mass M is defined ass
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Confirmation of the quark confinement and CSB hy-
potheses on the basis of the infrared structure investiga-
tions of the SD equations and corresponding ST identities
in an arbitrary covariant gauge is an extremely difficult
problem because of the unknown ghost contributions in
this gauge. Our primary aim in this paper is to propose
and develop a general, gauge-invariant approach to the
extraction of the infrared-finite Green's functions in
QCD. Infrared finiteness of the Green's functions means
that they do not depend on the infrared regular parame-
ter e in the @~0+ limit. We will show that for the co-
variant gauges the complications due to ghost contribu-
tions can be considerable in our approach. Moreover, it
is the consideration of ghost degrees of freedom that
makes it possible to obtain the infrared-finite, gauge-
invariant quark propagator which has no pole
(confinement-type solution) and implies dynamical
chiral-symmetry breaking (dynamical quark mass genera-
tion). For the dynamical (nonperturbative) quark mass
we obtain the expression which exhibits an essential
singularity in the coupling constant in accordance with
renormalization-group solutions in the infrared region.
In addition to the infrared-finite solution we discover two
infrared-vanishing solutions for the quark propagator in
the infrared region. Thus, we find three and only three
confinement-type solutions for the quark propagator and
clearly establish a close connection between quark
confinement and CSB.

To recapitulate, the plan of this paper is as follows. In
Secs. II and III we examine the covariant gauge quark
and ghost propagators in the infrared region. The ST
identity in the infrared region is investigated in Sec. IV.
Conditions of cancellation of the infrared divergences in
the quark, ghost SD equations, and ST identity are ob-
tained in Secs. II, III, and IV, respectively. In Sec. IV
finally we obtain three different systems (containing the
quark SD equation and corresponding ST identity in each
case), describing the quark propagator in the infrared re-
gion. In Sec. V we solve explicitly the SD equation with
a corresponding ST identity for the infrared-finite quark
propagator and in Sec. VI we apply an efFective potential
in order to determine completely this solution. We also
derive the nonperturbative (effective) quark mass. Finally
we summarize our results in Sec. VII ~

II. THE SD EQUATION
FOR THE QUARK PROPAGATOR

where CF is the eigenvalue of the quadratic Casimir
operator in the fundamental representation [for SU(N) in
general, Cz = ( N —I ) /2N = ~, N = 3 t and

D„,(q) = i —g„—~p~v
, d( —q', a)+a ',

(6)

where a is a gauge-fixing parameter (a =0, Landau
gauge).

Assuming that, in the infrared region,

2

d( —q, a)= +/3(a)+O(q ), q ~0,
g

(7)

where p is the mass parameter characterizing the scale of
confinement, we obtain the generally accepted form of
the infrared singular asymptotics for the full gluon propa-

8 —23, 25

D„(q)—(q ), q ~0.
In order to define exactly an initial SD equation (4) in

the infrared region (at small momenta) let us apply the
gauge-invariant dimensional regularization method in the
limit n =4+2@, e —+0+. Here and below e is a small in-
frared regulation parameter which is to be set to zero at
the end of computing. In what follows we consider the
SD equations and corresponding quark-gluon ST identity
(see below) in Euclidean space (d "quid"qE, q ~—qz,
p ~—p&, but for simplicity Euclidean subscript E will
be omitted).

Let us use in the sense of distribution theory the rela-
tion

2

(q )
'= 6'(q)+(q')+'+0(e), a~0+

So '(p)= —i(P —mo)

with mo a bare quark mass. I „(p,q) is a corresponding
quark-gluon proper vertex function.

The full gluon propagator in an arbitrary covariant
gauge is

Let us consider the exact, unrenormalized SD equation
for the quark propagator in momentum space (see Fig. 1):

which implies that the full gluon propagator (6) in the in-
frared region behaves as

S '(p)=SO '(p)
D„(q)=e 'D„,(q), @~0+ (10)

(—-~s

+g CF I„pqs p —qX „p, 4g

(2')"

tI

FIG. 1. The quark SD equation.

in the e~0+ limit and D„(q) exists as E~O+. Here and
below (q )+" (n =1,2) are the functionals acting on the
main (test) functions according to the standard formu-
las. These formulas play no role in future analysis and
therefore we will not write them down explicitly.

Substituting (7)—(9) into the SD equation (4) we obtain
the quark propagator expansion in the infrared region (in
Euclidean space):
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n

S '(p)=S~ '(p)+ —g I „(p,O)S(p)y„+CF g i I I-„(p,q)S(p —q)y, [p (q )+'+P(a)]D„','(q)
E (2n. )"

dnd q 9'p9'&

where g =CF ,'g p—rr(2n) and D„''(q) is a free gluon

propagator (a =0).
In order to extract the finite Green's functions in the

infrared region [and in accordance with (10)] it is
su5cient and necessary to represent the quark-gluon ver-
tex function I"„(p,q) (including zero momentum transfer)
and the quark propagator S(p) as

I „(p,q) = e 1"„(p,q), @~0+

S(p)=E"S(p), ~~0, e —+0+,

for zero momentum transfer (q =0)

I „(p,O) =el"„(p,O), e~O+, (16')

is not trivial, because in this case the solution for the
infrared-finite quark propagator S (p) in (14) can never be
reduced to the free quark propagator So(p).

The information about the quark-gluon vertex function
at zero momentum transfer (q =0) can be provided by
the ST identity, which contains unknown ghost contri-
butions in the covariant gauge. For this reason let us
consider in the next section the SD equation for the ghost
self-energy.

respectively. Here I „(p,q) and S(p) are the finite
Green's functions and therefore do not depend on the e
parameter in the @~0+ limit. In this paper we regard
the infrared-finite Green's functions I „(p,q), G„(k,q),
G(k), and b(k ) (see below) as regular functions of the
arguments k and q, respectively. Singular dependence
leads to more complicated SD equations and requires spe-
cial treatment.

It is easy to see that K & 0 corresponds to the vanishing
quark propagator after the removal (e —+0+) of the in-
frared regulation parameter and v=0 corresponds to the
infrared-finite quark propagator. Let us point out that
here and below 5 and ~ are real numbers.

From (11) and taking into account (12) and (13) one
has, as @~0+ for the case ~=0 (S:—S),

III. THE SD EQUATION FOR THE GHOST
SELF-ENERGY

The ghost self-energy b( —k ) also obeys a simple SD
equation (see Fig. 2):

qik b( —k )=C„g j G„(k,q)G(k q)~„(q)—,

(17)

where Cz is the eigenvalue of the quadratic Casimir
operator in the adjoint representation [for SU(X), in gen-
eral, C„=X= 3]. The ghost propagator is

S '(p)=S '(p)+g I „(p,O)S(p)y

and, for the case ~&0,

(14)
G(k)=

k [1+b(—k )]
(18)

S '(p)=g 1„(p,O)S(p)y„,

respectively, if and only if (iff) a cancellation of the in-
frared divergences takes place:

—1+5+2~=0 . (16)

This is a quark convergence condition. Because of (16)
gauge-dependent terms in the SD equation (11) become
e-order terms. For this reason these noninvariant terms
vanish in the e~O limit and we obtain (14) and (15) as
the infrared content of the quark SD equations for the
cases ~=0 and x) 0, respectively. For the infrared-finite
quark propagator (1~=0) the corresponding quark-gluon
vertex function I „(p,q) behaves as e in the @~0+ limit
(5=1). As will be shown such behavior, in particular,

G„(k,q)=k Gi„(k,q) (19)

FIG. 2. The ghost self-energy SD equation.

is the ghost-gluon vertex function (G&„——g&„ in perturba-
tion theory).

Substituting (7)—(9) into (17) we obtain the ghost self-
energy expansion in the infrared region (in Euclidean
space)
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dn
i—k'b(k')= —g 2iG„(k,O)G(k)k„+C„g'i J G„(k,q)G(k —q)(k q—)~„''(q)[p'(q')+'+p(a)]

d tl

+aC„g I G„(kq)G(k —q)(k —q)
" +O(e), v~0+,

(2m )" " q4
(20)

b(k )=e b(k ), a~0+

and the ghost-gluon vertex function

(21)

G„(k,q)=e~G (k, q), e~O (22)

respectively, where b(k ) and G„(k,q) by definition are
finite and do not depend on the e parameter in the t ~0+
limit. According to (18) the finite ghost propagator is
defined as

G(k)=e G(k), a~0+,
where

(23)

where g, =(C„ICF )g
Similar to (10), (12), and (13) let us introduce the finite

ghost self-energy

IV. THE ST IDENTITIES IN THE INFRARED REGION

Let us consider the ST identity for the quark-gluon
vertex function I „(p,q):

ik—„I„(p,k)[1+b (
—k )]

= [1 B(p, k—)]S '(p +k) —S '(p)[1 —B (p, k) ],
(30)

where b ( —k ) is the ghost self-energy and B (p, k) is the
ghost-quark scattering kernel ' ' (a skeleton expansion
of this kernel is shown in Fig. 3). From (30) one recovers
the standard QED-type Ward-Takahashi-Fradkin identi-
ty in the b =B =0 limit.

In the Landau gauge (a =0) Taylor has shown that—v, v&0,
0, v~0. (24)

B(p,O)=0 . (31)

Here and below v, P, and a are real numbers.
Substituting (21)—(23) into (20) we obtain, as e—+0+,

ik b(k )—=g, G (k, O)G(k)k„ (25)

as the infrared content of the ghost self-energy SD equa-
tion, iA a cancellation of the infrared divergences takes
place in the @~0+ limit

—I+P+a —v=O. (26)

G„(k,O)=k„( —k')R(k'), lR(o)l & ~, (27)

where R (0) exists as e—+0+, for the case v(0 we can
solve the SD equation (25) in the k =0 limit:

This is the ghost self-energy convergence condition.
Similar to a quark case, because of this condition gauge-
dependent terms in the ghost self-energy expansion (20)
are the terms of e order [O(e)] and therefore vanish in
the @~0+ limit. Thus, the finite ghost self-energy (25)
does not depend on the gauge-fixing parameter a in the
explicit form.

Defining (in Euclidean space)

In the framework of our approach to the extraction of
the infrared-finite Green's functions the terms, depending
explicitly on a gauge-fixing parameter a (a terms) and
violating Taylor's condition (31) are the terms of e order
[O(e)]. For this reason they are vanishing in the @~0+
limit and therefore the Taylor condition (31) holds in our
approach.

In order to check this explicit1y it is sufficient to inves-
tigate the first term B,(p, k) of the B(p, k) skeleton ex-
pansion (Fig. 3):

B,(p, k)= —
—,'g'C~ I S(p+q)1,(p+q, q)

X G„(k —
q,

—q)G (k q)D„(q), —

(32)

where Cz is the quadratic Casimir operator in the adjoint
representation. With the help of (7)—(9), similar to (11)
and (20), we obtain (in Euclidean space)

b+(0) =+g, +R(0)=+b(0)

and, for the case v =0,

(28)
S(p

b+(0) = —
—,'++—'+g )R (0), (29)

respectively. It is easy to see that the full ghost propaga-
tor coincides with the free ghost propagator when v) 0.

FIG. 3. Skeleton expansion for the ghost-quark scattering
kernel.
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B,(p, k) = —
—,'g, —S (p)I „(p,o)G (k, o)G (k)

C n

+g i j S(p+q)l, (p+q, q)G„(k —q, —q)G(k)[iM (q )+'+P(a)]D„','(q)
(2~)"

+ag S(p +q)I,(p +q, q)G„(k —q, —q)G (k —q) +0(e), e~o+ .
2CF dq 9'p9'~

(2m)"

Bi(p, k) = —
—,'g iS(p)l „(p,o)G„(k,o)G(k), (34)

iff a cancellation of the infrared divergences takes place
in the e—+0+ limit:

Proceeding to the finite functions, which were defined
by the relations (12), (13), and (21)—(23) we obtain
(Bi =—Bi)

gences again coincides with (35), so that Taylor's result
(31) takes place in our approach and (35) is the ST identi-
ty convergence condition.

Proceeding to the finite Green's functions in the ST
identity (30) and taking into account the convergence
conditions (16), (26), and (35) we obtain (B =B )

ik„I „(p,k)[~' +b(-—k')]
y = —I+I~+6+P+a=o . (35) = [1 B(p, k)]S—'(p +k) —S '(p)[1 B(p, k—)] .

B,(p, k) = —
—,
' iS(p) I „(p,o)k„b (k ) . (36)

Taking into account that b(k ) is finite at zero momen-
tum k =0, Eq. (28), we conclude that the diagram for
the B, is of 0 (k). In the same way it is possible to show
that the second term B2 of the skeleton expansion for the
ghost-quark scattering kernel B(p, k) is of 0(k ) in the
arbitrary covariant gauge and the condition of a cancella-
tion of the infrared divergences coincides with (35) within
our approach. These arguments are valid term by term
in the skeleton expansion for the ghost-quark scattering
kernel. Thus, we have the estimation

B„(p,k) =0 (k"), k —+0+ (37)

and the condition of cancellation of the infrared diver-

Similar to the quark (16) and the ghost (26) conditions
of cancellation of the infrared divergences, and because of
this relation the gauge-dependent terms (a terms) in the
expansion of the first term B, becomes the terms of e or-
der [0(e)]. For this reason these terms vanish in the
e 0+ limit.

Using (25) from (34) we obtain

where

= i5„S '(p) —
—,'b(0)S(p)l „(p,o)S '(p), (39)

i( )
BS '(p)

Bp„
(40)

Thus, this identity depends only on a quark propagator
power number K, which by definition is K 0 as in Eq.
(13). From (39) and (13) we obtain

0+v+1 (41)

so that there are three and only three different types in
the quark propagator (13) behavior in the e—+0+ limit.

Let us write down these different possibilities for the
quark propagator SD equation with corresponding ST
identity,

(38)

Diff'erentiating (38) with respect to k„, passing to the lim-
it k =0 and taking into account (36) and (37), finally one
obtains the identity

I „(p,o)[e' '+ —,'b(0)]

(I) ~=1, S(p)=eS(p), I (p, o)=e 'I „(p,o), S '(p)=g I „(p,o)S(p)y„,

[1+,b(0)]l „(p,o) =ia„s -'(p) —,'b(o)s(p)l „(p,o)s -'(p) .

This system has been investigated by Pagels in his pioneer work on nonperturbative QCD, who found some particular
solutions to this system.

(II) 0& I~& 1, S (p) =e'S(p), I „(p,o) =e' I „(p,o), S '(p) =g I „(p,o)S(p)y„,

—,'b(0)I „(p,o) =i8„S (p) —
—,'b(0)S(p)I'„(p, o)S '(p) . (43)

These two possibilities lead to the vanishing quark propagator (0 & ~ 1).

(III) ~=0, S(p) =S(p), I „(p,o) =eI (p, o), S '(p) =S '(p)+g I „(p,o}S(p)y„,
—,'b(0)I „(p,o) =iB„S '(p) —

—,'b(0)S(p)I „(p,o)S '(p) . (44)
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b(k )=e '+"b(k )

(III) ~=0, G„(k,O) =e 'G„(k,O),

G (k) =eG(k),
b(k )=e 'b(k ) .

(45)

We obtain Pagels's solution I as a particular case of
our gauge-invariant approach to quark confinement in
QCD. His system has a regular limit b(k )=0, while
systems II and III do not have this limit.

It is necessary to point out here that, only in our ap-
proach, the ghost-quark scattering kernel 8(p, k) does
not depend on the e parameter (each term of its skeleton
expansion does not depend on this parameter) and is
compatible with the corresponding SD equations for the
quark propagator and the ghost self-energy. There is a
consistency between the SD equations, the ST identity,
the relations (10), (12), (13), and auxiliary Ansatze
(21)—(24) in the infrared region. In any other case this
consistency would be destroyed. The most interesting
solution for the quark propagator is, of course, the solu-
tion for the infrared-finite quark propagator. The possi-
bility of the existence of the infrared-finite quark propa-
gator has been mentioned in Ref. 13 and brieAy discussed
in Ref. I4, respectively.

This system leads to the infrared-finite quark propaga-
13, 14

For the ghost degrees of freedom these possibilities im-

ply

(I) ~=1, G„(k,O)=eG„(k, O),

G(k)—=G(k),
b(k ):—b(k ),

(II) 0&lr& 1, G„(k,O)=e '+ G„(k,O),

G(k) =e' G(k),

Let us note that the final results are expressed only in
terms of the quark propagator power number ~. It means
that the ghost degrees of freedom play an auxiliary role
and therefore we avoid the difhculties due to the Ward
identity for the ghost-gluon vertex function G„(k,q) in
the infrared region. ' At the same time, it is the con-
sideration of the ghost contributions that makes it possi-
ble to obtain the infrared-finite, gauge-invariant quark
propagator. We see that for covariant gauges the compli-
cations due to ghosts can be considerable in our ap-
pl oach.

Although our consideration was carried out in the ar-
bitrary covariant gauge, e6'ectively only the transverse
part of the full gluon propagator D„(q) Eq. (7) makes
sense in our approach. The longitudinal part (which de-
pends on a gauge-fixing parameter a) becomes of e
parameter order within our approach and therefore van-
ishes in the e~O limit. It is possible to say that the
Landau gauge (a =0) is preferable at least in the infrared
region.

In conclusion to this section let us investigate the be-
havior in the infrared region of the triple gauge field ver-
tex Ti„(k,q, l ) with the help of a corresponding ST
identity. The identity is ' '

[1+b(—k )]k Ti„(k,q, I )

=d '( q)Gi (q—, k)(g "q qq")—
+d '( —I )Gi„(l,k)(g I —I I ), (46)

where k+q+I =0 and d '( —
q ) are defined in (8).

Gi (q, k) is the ghost gluon vertex function (19). Let us
define the infrared-finite triple vertex T&„by the relation

Ti„„(k,q, I ) =et'Ti„(k, q, I ), e—+0+,

where p is a real number. Using now auxiliary relations
(45), one obtains the following [d '( —

q ) does not de-
pend on the e parameter at all].

(I) I~= 1, Pagels's solution:

Ti„(k,q, I ) =eTi„,(k, q, I ), e 0+

and the ST identity for T&„ is

[1+b(—k )]k Ti„,(k, q, l )=d '( —
q )Gi (q, k)(g "q —

q q")+d ( —I )Gz (I,k)(g I —I I ") .

(II) 0 & Ir & 1:

Ti,„(k,q, I ) =e'Ti„„(k,q, I ), e—+0+,

b( —k )k Ti„(k,q, I )=d '( —
q )Gi (q, k)(g "q —

q qi')+a '( —I )Gi„(l,k)(g I —I I ) .

(III) a'=0.

Ti„,(k, q, I )=Ti„(k,q, I ), e~0

(49)

(50)

(51)

and the corresponding ST identity coincides with (50).
Thus we obtain that the behavior of the triple gauge

field vertex function Ti„(k,q, I ) in the infrared region is
determined again by the quark propagator power number

Ir (p = 1,~, 0); i.e., this vertex behaves like the quark prop-
agator S(p) in the e~O+ limit.

The quark propagator of the vanishing type (systems I
and II) is not so interesting, because after the removal
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(e—+0+) of the infrared regulation parameter in (3) the y~
invariance of the quark propagator will be restored; i.e.,
chiral symmetry is preserved for these solutions. These
solutions also can be used in the Bethe-Salpeter equa-
tions. Let us consider in Sec. V the most interesting case
of the infrared-finite quark propagator (III).

V. SOLUTION OF THE SD EQUATION FOR
THE INFRARED-FINITE QUARK PROPAGATOR

In order to solve the system III Eq. (44) it is convenient
to represent the finite quark-gluon vertex function at zero
momentum transfer as

(p 0) FI(p )r +F2(p

+F3(p )p p +F4(p )Pl (52)

1 A(p) F q 1 A(p)8 '(p)

F,(p') = —= [8(p')E(p')]' —F4(p'),
+2( 2)

F,(p')== » [A(p')&(p')]',2 1

b E'(p')

(52a)

Obviously, (52) is a four-vector decomposition on in-
dependent matrix components. Substituting this repre-
sentation to the ST identity (44) one can express the sca-
lar functions F, (p ) (i =1,2, 3,4) in terms of the quark
propagator (2), scalar functions A (p ) and 8 (p ), respec-
tively. Let us point out that the ST identity (44) can be
solved explicitly without the help of (52) (Ref. 13):

A(t)= ——t 'e '" " 1 —e"' " 1 ——t (57)

(28). Thus our system (54) and (55) does not depend on
this parameter in the explicit form. Instead of the two
various parameters, the initial coupling constants g and
b (0), we have only one parameter —the coupling constant
A, (56), and therefore we avoid the difficulties associated
with the unknown ghost contributions in the covariant
gauge. Moreover, it is the consideration of those ghost
degrees of freedom that makes it possible to obtain the
infrared-finite, gauge-invariant quark propagator. As it
will be shown later, this system always has a chiral-
symmetry-breaking solution (mo =0, 8WO). Singular
dependence of the coupling constant (56) on the ghost
self-energy at the zero point indicates the essential role of
the ghost degrees of freedom in the dynamics of chiral-
symmetry breaking.

The system (54) and (55) cannot be solved exactly in
the general case (moAO), but it is possible to show that
the solutions of this system cannot have polelike singular-
ities in any finite point t =to on the real axis in the whole
t-complex plane. ' It is a direct manifestation of quark
confinement. Our system (54) and (55) excludes the trivi-
al solution A =B =0. Any nontrivial solution automati-
cally breaks the y~ invariance of the quark propagator (1)
and (2) and therefore leads to spontaneous chiral-
symmetry breakdown [ma=0, 8 (t)WO, dynamical quark
mass generation].

Let us consider the case mo=0. In this case, the initial
system (54) and (55) can be solved exactly. The regular
solution for the differential equation (54) is

E (p2) —
p

2 A 2(p2) +8 (p2) (52b)

and b =b (0) is the ghost self-energy at the zero point
(28).

Proceeding now to the dimensionless variables

where a prime denotes a differential with respect to the
Euclidean momentum variable p,

and

A(t)= ——+ — t+O(t ), t 01 2 1 2

3A2

1 2 1
A (t)- — +, t~+ ~,

~ t2

Asymptotic expansions of this solution are

(58)

(59)

2

A(p )=p A(t), 8(p )=p 'B(t), t=
p

(53)

and doing some algebra, the initial system (44) can be
rewritten as (normal form)

respectively. Thus, exact solution (57) has correct asymp-
totic properties (is regular at small t and asymptotically
approaches the free propagator at infinity).

Let us consider Eq. (55) for 8 (t) when mo =0.
Defining

1 1A'= —2 —+-
t

2 1 2 1
moBi, t

(54)
8 (t) =+/ "(t)

an exact solution can be expressed as

(60)

8'= ——'A 8 '+ —(m A 8)—
A,

(55) t0
y(t)=B (t)=3e ' " e' " A (t')dt', (61)

where A = A (t), 8:8(t), and a pri—me denotes a
differential with respect to the Euclidean dimensionless
momentum variable t. The coupling constant is

where to is an arbitrary constant of integration. In the
explicit form we have

A, =g [b(0)] '(2~) (56) P(t) = 3e '4""[C(t, ) P(t) ], — (62)

where b(0) is the finite ghost self-energy at the zero point where
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3

P(t)= — — —t '+ —— Ei —t1 3 2 2 . 2
2

i
3 3

3
1 4 Ei

12 A.

2

3
—t ——— t e ———t e
4 2 2 ) (2/g)t 2 2 2 (2/g)t

3

2
2 3 (2/A, ) t 1 4 ) (4/gt), 1 4
3

+ —t e + — t e
12 3

t 2e(4/A)t — t 3 (4u)t1
3'

C(to)=&/(to) .

Here Ei(z) is the exponential integral function.
Asymptotic expansions of this solution are

(64)

V( A, B)
4

„f dt tIlnt[tA (t)+8 (t)]+tA(t)+1I .
2(2~)"

(69)

P(t) =8 (t)

=C 1 ——1+— t+O(t ), t~O,4 3 1 2

4 A, C
(65)

The effective potential method for a composite opera-
tor ' can be applied for the choice of the correct "physi-
cal" solution in the problem of dynamical breakdown of
chiral symmetry in the framework of the SD equations
(see, for example, Refs. 3, 12, and 31).

The effective potential is

dn
V(S) = i f Tr—[ln(SO 'S) —(So 'S)+ 1]+V2(S),

(27')"

(67)

where V2(S) is the sum of all two-particle-irreducible
vacuum diagrams. If S(p) is a solution of the SD equa-
tion, then the effective potential can be evaluated as

V(S)= i f Tr—[ln(SO 'S) —
—,'So 'S+ —,'] . (68)p

Going to Euclidean space (d "paid "p, p ~—p ) and
dimensionless variables (53), finally we obtain

where C is slightly different from C(to) and

P(t) =8'(t)
= —3 A.t '[1—

—,'A, t '+0 (t ')], t ~+ ~,
respectively. The real part of the exact solution for 8 (t)
at infinity is identically equal to zero, according to
mo =0.

Thus, the solution for B(t) as well as the solution for
A (t) have correct asymptotic behavior at small t and at
infinity. Exact solution (61)—(64) for 8 (t) depends on the
one arbitrary constant of integration, which will be deter-
mined by the effective potential method for a composite
operator ' in the next section.

Exact solutions for A (t) in Eq. (57) and 8 (t) in Eqs.
(61)—(64) do not have polelike singularities at any finite
point on the real axis in the whole t-complex plane and,
therefore, the exact solution for the infrared-finite quark
propagator S(p) in this case (mo=O) is a confinement-
type solution.

VI. THE EFFECTIVE POTENTIAL AND THE
NONPERTURBATIVE (EFFECTIVE) QUARK MASS

Solution for A (t) is completely determined and the solu-
tion for 8 (t), Eq. (61), depends on the one arbitrary con-
stant to. As was pointed out in the previous section, the
exact solutions for A (t) and B(t), respectively, asymp-
totically approach the free propagator solution. For this
reason the effective potential (69) diverges in the ultravio-
let limit. In order to define exactly the effective potential
in the ultraviolet region it is necessary to introduce an ul-
traviolet cutoff A. It is easy to see that the effective po-
tential (69) has a minimum in the region to A at the
point to =A. We obtain that the arbitrary constant of in-
tegration to must be identified with the ultraviolet cutoff
A. It should be pointed out here that in order to calcu-
late any physical quantities such as quark condensates,
the pion decay constant, meson mass spectrum via the
Bethe-Salpeter equation, and so on, one certainly needs to
introduce an ultraviolet cutoff A.

So our quark propagator contains two natural (intrin-
sic) parameters: the coupling constant A, and the mass
parameter p, characterizing the scale of confinement, and
the third parameter to (arbitrary constant of integration)
must be identified as the ultraviolet cutoff A via the
effective potential method.

Let us now calculate the nonper'turbative (effective)
quark mass M defined in (3). Restricted by the main term
in the asymptotic expansion of the P(0, to ) at large to in
(62)—(64), finally we obtain

2p —(2/A, )to

&3k ' (70)

the well-known formula, which exhibits an essential
singularity in the coupling constant A, , in accordance with
the renormalization-group solutions in the infrared re-
gion. ' As is well known this nonanalytic dependence
on the coupling constant A is a characteristic feature for
the nonperturbative solutions in QCD at large distances
(infrared region). In (70) we observe an interesting con-
nection between the infrared (nonperturbative parameter
p ) and the ultraviolet (perturbative cutoff A = to ) regions,
respectively. In the models" which are characterized by
the existence of the boundary-value momentum ko,
separating the infrared (nonperturbative) from the ultra-
violet (perturbative) regions, respectively, our parameter
to can be identified with this boundary value ko.

Concluding this section let us point out that chiral
symmetry is automatically broken at any (nonzero) value
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of the coupling constant A, in (56). In the infrared region
the coupling constant is already strong enough and there-
fore without fail exceeds the possible critical value, pro-
vided by the contributions to CSB from intermediate and
ultraviolet regions (see, for example, Refs. 32 and 33).

VII. CONCLUSIONS

Making only one widely accepted assumption that the
full gluon propagator becomes infrared singular as q at
small momenta in the arbitrary covariant gauge, we pro-
pose and develop a general, gauge-invariant, and nonper-
turbative approach to the extraction of the infrared-finite
Green's functions in the context of the SD equations,
completed by the corresponding ST identities in the in-
frared region in QCD. The precise definition of the
singularity q in the sense of distribution theory in the
framework of our approach allows us to prove quark
confinement (in other words, we prove that there are no
free quark states in nature) and chiral-symmetry breaking
in the infrared region. We find three and only three
confinement-type solutions for the quark propagator and
clearly establish a close connection between quark
confinement and chiral-symmetry breaking in the in-
frared region. Two of these solutions are of vanishing-
type solutions and one solution is the infrared-finite solu-
tion. We discover the essential role of the ghost degrees
of freedom in the dynamics of chiral-symmetry breaking.
We show that for the covariant gauges the complications
due to ghost contributions can be considerable in our ap-
proach. Moreover, it is the consideration of ghost contri-
butions that makes it possible to obtain the infrared-
finite, gauge-invariant, nonperturbative quark propaga-
tor, which has no pole (confinement-type solution) and
implies chiral-symmetry breaking (dynamical quark mass
generation). The infrared-finite quark propagator de-

pends only on two natural (intrinsic) parameters: the
coupling constant A, and the mass parameter p, character-
izing the scale of confinement, and the third parameter to
(arbitrary constant of integration) can be identified as the
ultraviolet cutoff A in momentum space via the effective
potential method. For the dynamical (nonperturbative)
quark mass we derive the expression which exhibits an
essential singularity in the coupling constant in accor-
dance with the renormalization-group solutions in the in-
frared region. We also point out that a gauge-invariant,
nonperturbative approximation to the bound-state prob-
lem is within our approach in the context of the BS equa-
tion. Evidently, that proposed quark propagator can be
applied to the evaluation of the various physical quanti-
ties, such as quark condensates, the pion decay constant,
meson mass spectrum, and so on.

Concluding this section it &s necessary to emphasize
that the problem of the consistency of our solutions with
the full apparatus of the SD equations requires a separate
consideration. In this connection let us point out that
our solutions correspond to a pure gluon dynamics in the
infrared region (the quark and ghost loops behave as e in
the e—&0 limit in the context of our solutions). The in-
frared singular asymptotics (8) for the full gluon propaga-
tor have been obtained exactly in this approximation.
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