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We present a new set of solutions to Yang-Mills equations with axially symmetric external charge
sources. Our solutions for the gauge fields are not explicitly axisymmetric, but the noninvariance of
the fields under a rotation about the symmetry axis can be compensated by a gauge transformation
about a symmetry axis in gauge space. All gauge-invariant quantities are therefore axisymmetric.
Our solutions are characterized by a gauge-invariant integer winding number n, and all winding
numbers are allowed. We prove that the total gauge-invariant charge of the system (source plus
gauge fields) vanishes identically in our solutions for n&0, even if the source has net charge. We ex-
plicitly solve the equations of motion for a spherical shell of charge. The solution depends on the
gauge coupling g, the total charge of the shell Qs, and the topological number n. We use perturba-
tive methods to obtain the solution in closed form for ct—=g Qs/(4~r) ((1. We show analytically
that in this limit the energy 6'„of the system satisfies the bound 6'„& [g Qs/(8~a)]X1/(2n +1),
where a is the radius of the shell. Using relaxation methods to find the exact solution to the equa-
tions of motion numerically for arbitrary ct, we establish that this bound is satisfied for all g, Qs, and
n.

I. INTRODUCTION AND SUMMARY

In this paper we present a new set of solutions to
Yang-Mills equations with axially symmetric external
charge sources. We work exclusively in the SU(2) gauge
theory. ' Our solutions for the gauge fields are not expli-
citly symmetric under rotations about the symmetry axis,
but their noninvariance can be compensated by a gauge
transformation about a symmetry axis in gauge space.
All gauge-invariant quantities are therefore axially sym-
metric. Our solutions carry a topological quantum num-
ber, which is the winding number of a vector that de-
scribes the orientation of the gauge fields about the sym-
metry axis in the internal gauge space. We find an
infinite tower of solutions, corresponding to all possible
values for the integer winding number. Our solution with
zero winding number is the explicitly axisymmetric solu-
tion discovered several years ago by Sikivie and Weiss.

The methods we use to find these new solutions are due
to Jackiw, Jacobs, and Rebbi (JJR), who found a solu-
tion to the Yang-Mills equations for a spherically sym-
metric source. Their solution carries a topological quan-
tum number of unity. As in our case, the topological
quantum number of their solution is the winding number
of a vector describing the orientation of the gauge fields
in the internal space. However, in their case, the vector
covers the sphere, and can do so only once, while in our
solutions, the corresponding vector covers the circle, and
all winding numbers are allowed.

We now summarize the organization and main results
of this paper. We begin by establishing some basic prop-
erties of the Yang-Mills equations for external charges, in
Sec. II. In Sec. III we review the methods developed by

JJR for finding perturbative solutions to the Yang-Mills
equations for small source strengths. We review their
methods in some detail, in order to facilitate our new ap-
plication. In Sec. IV we use this perturbative approach
to find a simple ansatz for the gauge fields A '" induced
by an axially symmetric charge density. In this ansatz,
the coordinate and gauge indices of the gauge fields are
factorized into a product of unit vectors in the two
spaces. We identify the topological quantum number of
these solutions as corresponding to the winding number
of a vector describing the gauge index of 3'". We then
verify that the ansatz solves the Yang-Mills equations for
sources of arbitrary strength. The coordinate and gauge
indices of the potential are completely factored out of the
Yang-Mills equations, which are reduced to a set of only
two (coupled, nonlinear) partial-differential equations, for
two axisymmetric scalar functions.

We obtain an analytical expression for the leading be-
havior of the solution to these equations at large dis-
tances from the source. Using this result, we prove that
the total gauge-invariant charge of the system (source
plus gauge fields) vanishes identically, even if the source
carries a net charge. These solutions thus exhibit com-
plete screening of the gauge charge. We also devote par-
ticular attention to establishing the fact that the winding
number of our solutions is a gauge-invariant quantity.

To illustrate the properties of our solutions, we explic-
itly solve the equations of motion for a spherical shell of
charge, in Sec. V (Ref. 5). The solution depends on the
gauge coupling g, the total charge of the shell Qs, and the
winding number n. We use the perturbative analysis of
Sec. III to find the solution to the equations of motion in
closed form for a —=g Qs/(4') ((1. We find an analyti-
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cal expression for the energy (a„of the system in the limit
o. &(1. Using this result, we derive an upper bound for
the energy in this limit, (a „~[g Q&/(8na ) ] X 1/(2n + 1),
where a is the radius of the shell. We then use relaxation
methods to find the exact solution to the equations of
motion numerically for arbitrary c7. We find that the
above bound is satisfied for all g, Qs, and n. We also
compare our results to the energy of a shell of charge in
the ansatz due to JJR (which they computed numerically
in Ref. 3), and in the explicitly axisymmetric solution of
Sikivie and Weiss [(corresponding to our n =0) (Ref. 6)].

Finally, in Sec. VI we draw some conclusions about our
results and outline some prospects for future work.

II. YANG-MILLS EQUATIONS FOR EXTERNAL
SOURCES

The Lagrangian for an SU(2) gauge field A'" coupled
to an external source j'" is

gauge-equivalent solution can be obtained from the trans-
formation

g'o'~ UQ'o'U

3'"o' UA'"o'U '+i2UB"U

U(r t ) e
—is (rt)a, /2

(3)

g JP:B(F'P—Q') . (4a)

where o' are the Pauli matrices. We must therefore be
careful to characterize the external source Q' in a gauge-
invariant manner. In particular, the integral of Q'(r) is
not a gauge-invariant measure of the total charge of the
source. We would also like to have a gauge-invariant
measure of the charge induced by the gauge fields. Since
gauge-invariant quantities can be obtained by taking the
trace over a product of gauge-covariant terms, a gauge-
invariant, conserved current can be immediately obtained
from F'""and Q' (Ref. 8):

FapvF a ~ ap. A a1

4 2 pv p 7 (la)
In the case of the static charge density of Eq. (2a), JT can
be further separated into two gauge-invariant terms
which are separately conserved:

where the gauge coupling g is made explicit in the first
term in Eq. (la) by using the following form for the field-
strength tensor F'":

Jlr =Jg+ JP, B„Jg=B„JP=0,
where

(4b)

Fapv —gag av yves ay+&achy bye cv

The Yang-Mills equations are

g Fapv+&abcg bFcpv 2 av
p P

(lb)

(lc)

and

Jg =j'Q'= Q(r)5"

g 2' Fapp~aby b
P

(4c)

(4d)

In explicitly covariant form, Eq. (lc) reads

~abFbpv g
2 av

P

where

crab gaby + acb A c
P P P

(ld)

(le)

Antisymmetry of the tensor F'" implies a consistency
condition on the external current, which must be covari-
antly conserved:

~abj bp pp

Jf clearly characterizes the external source, indepen-
dently of the gauge fields. We can therefore interpret
JP as the current density induced by the gauge fields and
JP as the current density of the whole system (source plus
gauge fields). For later use, we here record the expression
for the conserved gauge-invariant total charge Qs of the
external source,

Qs =Id rQ(r),

and the total charge QT of the source-field system:

We are interested in an external source j'" that de-
scribes a static charge density:

g QT= tt)„„dS'F" (r)Q'(r) . (6)

j'"(r, t ) =Q'(r)5" (2a)

In this case, Eq. (lf) implies that A' and Q' must be
parallel vectors in the internal gauge space

&abcA bOQc(r) p (2b)

We express the charge density Q'(r) in terms of its mag-
nitude Q(r), and a unit vector Q'(r) in the internal gauge
space, which may depend on position:

Q'(r)—:Q(r)'Q(r), q(r)Q(r)':—1 . (2c)

The Yang-Mills equations are gauge covariant under a
simultaneous transformation of the gauge fields and the
external charge density Q' (Ref. 7). Thus, given a solu-
tion A'" to Eq. (lc) for a charge density Q'=q'Q, a

We note that the gauge-invariant characterization of
an axisymmetric charge density is only that its magnitude
is independent of the angle about the symmetry axis [e.g. ,

Q(r)=Q(p, z)]. The vector Q'(r) describing the orienta-
tion of the charge in internal-symmetry space need not be
axisymmetric.

III. PERTURBATIVE SOLUTION
TO THE YANG-MILLS EQUATIONS

We now review the techniques developed by JJR (Ref.
3) for solving the Yang-Mills equations perturbatively,
for small source strengths Q(r). To do this, it is con-
venient to write Eq. (lc) in terms of the usual electric and
magnetic fields:
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V Ea eabc Ab Ec g g Q(r)

V X8'—@abc A" X Bc &abc' boEc 0

where

(8c), or from the fact that the direction of the charge den-
sity in the internal-symmetry space acquires a nontrivial
dependence on coordinates in the gauge frame of Eqs. (9).

In the gauge frame of Eqs. (9), the electric and magnet-
ic fields to lowest order in Q are given by

E = V g 0+&abc Abg cO (7c) E"=—V 3 '", 8"=V X A" . (10a)
a VX Aa l ~abc Ab~ Ac

2 (7d) Gauss's law, Eq. (7a), then reduces to
and where we have assumed for convenience that we are
working in a gauge in which the gauge fields A'" are ex-
plicitly time independent.

A perturbative solution that correctly accounts for
powers of Q in Eqs. (7) may be found for A ' of 0 ( Q ),
and A' of O(Q ). In this case, the leading contribution
from the gauge fields to Eq. (7a) comes from —V ( A' ),
which is of the same order as the source, and the leading
terms in Eq. (7b) for A' are of 0 ( Q ). If the unit vector
Q'(r) describing the orientation of the external charge in
gauge space is position independent (e.g., q'=5'i), then
this perturbative solution does in fact solve the Yang-
Mills equations to leading order, yielding the Abelian
Coulomb solution (which, of course, solves the Yang-
Mills equations to all orders in Q; see Mandula, Ref. 1).

However, this is not the most general possibility. To
find a more general perturbative solution, we have to be
sure to distinguish between gauge-equivalent solutions.
Following JJR, we do this by first working in a "gauge
frame" in which q' is a constant:

q'(r):—5" . (Sa)

A more general perturbative solution, that correctly ac-
counts for powers of Q in Eqs. (7) to lowest order, is

(Sb)

A'o'= —i2U 'VU+O(Q ) U—:e ' " (Sc)

since the pure gauge term in Eq. (Sc) makes a vanishing
contribution to the magnetic field 8", and thus only con-
tributes terms to Eqs. (7) that are, at most, of the same
order as the leading terms that we have already identified.
The perturbative solution of Eqs. (8) can yield solutions
of a truly non-Abelian character.

However, not all choices for the pure gauge term in
Eq. (8c) result in a consistent perturbative solution. To
further analyze this situation, it is convenient to first
transform away the pure gauge term in Eq. (Sc), passing
to a new "gauge frame" in which the charge vector and
gauge fields assume the forms

q "(r)o'=—Uo U

A" o'—= UA o. U '=O(Q),
A'~o ~= U A o U —2jUVU i =-O(Q ) (9c)

where the prime serves to identify quantities that are ob-
tained by the gauge transformation from Eqs. (8). It
should be emphasized that this perturbative solution is,
in general, not equivalent to the Coulomb solution de™
scribed below Eqs. (7), despite the fact that the potentials
in Eqs. (9) are of the same order in Q. This should be
clear from the presence of the pure-gauge term in Eq.

—V'( 3" ) =gQ "(r)Q(r},
and Ampere's law, Eq. (7b), reduces to

V Xg &abc' bOE c

(10b)

(10c)

Note that Ampere's law is only consistent if 3" satisfies
Eq. (2b) for covariant conservation of the external
current, as follows from the fact that the right-hand side
of Eq. (10c) must be divergenceless. 3 " must therefore
take the form'

3" (r)—:q"(r)&b(r) . (1od)

IV. SOI,UTIONS FOR AXISYMMETRIC SOURCES

Following the perturbative methods due to JJR de-
scribed in the previous section, we have found a new set
of solutions for axially symmetric external charges:

(12)

where, from here on, we work exclusively in the gauge
frame of Eqs. (9), dropping the prime.

An ansatz for Q' and A ' which meets the consistency
conditions implied by current conservation [Eq. (2b)], and
the lowest-order Gauss's law [Eqs. (10b) or (11)],for this
axisymmetric source is

q'(r) =q„'(P) —=cos(ng)5" +sin(np)5'
A' (r)—=q„'(P)4„(p,z),

(13a)

(13b)

where n is an integer, n =0,+1,+2, . . . . We note that

We now see that the perturbative solution of Eqs. (9)
must meet another consistency condition, implied by
Gauss's law to leading order in Q. Expanding the Lapla-
cian in Eq. (10b), we find

q "V 4+2Vq" VC&+@V q"= —g q "Q(r) .

Since the two sides of Eq. (11) must be parallel in gauge
space, we see that the derivative operators acting on
q "(r) must result in vectors parallel to Q". Clearly, not
all choices for q" will meet this condition. JJR found an
ansatz which meets this consistency condition for a
spherically symmetric external charge, Q(r ) =Q(r ).
Their ansatz is Q"(r)=r', 4(r)=4(r). The structure of
A' in coordinate and gauge space is then determined by
Eq. (10c). Their solution carries a topological quantum
number of unity, which is the winding number of the vec-
tor r' over the sphere in gauge space. It turns out that
potentials of the same structure as this perturbative solu-
tion actually satisfy the Yang-Mills equations for arbi-
trary Q, as verified by direct substitution into the full
equations [Eqs. (7)].
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we have chosen the coeScient function 4„ofthe symme-
try vector Q' in A' to be independent of the azimuthal
angle P, in order that gauge-invariant quantities con-
structed from the potentials (such as the energy density)
will be axially symmetric. Requiring Q' to be a function
only of P then eliminates the second term in the con-
sistency condition of Eq. (11), and the final form for q'
then emerges from the requirement that VQ'(P) ~Q'(P)
[subject to the condition that g'(P) be a single-valued
function]. The index n is clearly a winding number, the
number of times the circle spanned by the vector Q„'(P) is
covered, when the azimuth PE [0,2~] is covered once.

In general, the winding number (or Kronecker index)
co[ v ] of a two-component unit vector v '(P ), i = 1,2
(v'v'= 1), can be calculated from"

co[ v ]= f d P e'Jv ' (14)
2~ 0 dP

where e' = —e '= 1. We verify that co[/„]=n [note that
q', i = 1,2 in Eq. (14) refers to the two nonvanishing com-
ponents of the charge vector in the gauge of Eqs. (13)].
However, in order for the winding number of our solu-
tion to be a meaningful quantity, it must be gauge invari-
ant. We will prove that this is, in fact, the case, after we
develop some further properties of our ansatz.

To get the form of the three-vector potential A' to
lowest order in Q, we solve Eq. (10c), using Eq. (10a) for
E' and O'. Choosing a divergenceless form for A', we
have [to O(Q )]V A'=np 'C&„(p,z)5' P, to which the
solution is of the form

A'(r)=5' A„(p,z)$ .

It turns out that an ansatz having the structure of Eqs.
(13) and (15) actually solves the full Yang-Mills equations
[Eqs. (7)] for axisymmetric sources of arbitrary strength,
as can be readily verified by direct substitution. For a
source of arbitrary strength, the electric and magnetic
fields [Eqs. (7a) and (7b)] are given by

E'„=—Q„'V4„(p,z ) —P'„4„A„(p,z ) ——P, (16a)

B'„=V X [ A„(p,z )P]5' (16b)

—V 4„(p,z )+ A„—— qi„=g Q(p, z ), (16c)

[where P'„—:—sin( n P )5'+ cos( n P)5' ], while Gauss's
law [Eq. (7c)] reduces to

2

This implies, in particular, that the total energy @„ofthe
system,

3r(Ea2+ Ba2)1
(18)

is invariant under n —+ —n.
The ansatz of Eqs. (13) and (15) thus factorizes the

coordinate and gauge indices of the gauge fields into sim-
ple unit vectors in the two spaces, which then factor out
of the equations of motion. Although gauge-variant
quantities such as A„'", E'„, and 8'„are not explicitly ax-
isymmetric, their noninvariance under a rotation about
the symmetry axis z in coordinate space can be compen-
sated by a gauge transformation about the symmetry axis
6' in gauge space. ' For example,

A' (P)o'= U~ A' (P —b. )o'U~ ',
A"(P)o'= UqR g A'J(P h)o'U—~ ',

where

(19a)

Uz=e (19b)

and where R $ is the rotation matrix for a rotation by an
angle b, about the three-axis in coordinate space. All
gauge-invariant quantities, such as the energy density, are
therefore axially symmetric.

For a localized source, the leading behavior of 4, and
3„ in the limit r~ ~ can be obtained analytically. In
order for the total energy of the system to be finite in the
infrared, @, and A„must both tend to zero in this limit,
so we attempt to solve Eqs. (16c) and (16d) to leading or-
der in 1/r by keeping only terms linear in @„and A„.
The equations then become decoupled, and the leading
behavior of the solution is readily obtained in spherical
coordinates:

sin~" ~0 sin8
~+1n +1 r

(20)

We then verify that the nonlinear terms in Eqs. (16c) and
(16d) can truly be neglected to leading order in 1/r,
which justifies our derivation of Eq. (20).

We can use Eq. (20) to establish a very interesting
property of the total charge Qz- [Eq. (6)] of the source-
field system in these solutions. In general, we expect Qz'
to be a function of the source charge Q(p, z ) (and of the
winding number n). However, since F ' (r~ oo ) for our
solutions with n&0 goes to zero faster than 1/r, we find
that Qz vanishes identically:

and Ampere's law [Eq. (7d)] reduces to
Qz. [n, Q(p, z)J =0 for all Q(p, z) (n&0), (21)

„(p,z)=C&„(p,z) (n&0),
A „(p,z)= —A„(p,z) (n&0) .

(17)

—V A„(p,z)+ A„—&b„A„——=0 .
P

We note that our solution for n =0 is the explicitly ax-
isymmetric solution discovered by Sikivie and Weiss
(their so-called "magnetic dipole solution" ). We also
note that

independent of the charge density Q(p, z) of the source.
In particular, we note that if the source carries net charge
(i.e., Qz&0), it gets completely screened by the charge in-
duced by the gauge fields (i.e., Q~= —Qz), and the total
charge of the source-field system is zero. We note that
Eq. (20) also shows that for n =0 a charged source is not
completely screened. Explicit numerical calculations
show that the source is partially screened, with
Qz. ( n =0] (Qz (Ref. 6).
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g, „dype'"y'n„q", (22)

where, in the first two lines above, we have used the fact
that the two- and three-dimensional Levi-Civita tensors
are related by I'J=e '~ (we then replaced the indices
i,j =1,2 by b, c =1,2, 3), and where V =P V. To arrive
at Eq. (22), we then used the fact that A' vanishes at
infinity faster that 1/p, in order to introduce the covari-
ant derivative in the third line (note the limit on the in-
tegral).

We recognize the expression in the integrand in Eq.
(22) as the component along the third direction in gauge
space of the commutator of Q and 2)~Q. We define

CaC'=—' 'q 2)'Q C'—: (23a)
&TrC' '

and we note that, in the gauge of Eqs. (13) and (15),C'~ —5' as p~0o. The expression in Eq. (22) is
therefore equivalent to the functional

&R]—: f, dP p Tr(C), (23b)

which, as we have shown, gives the winding number of q:

Q[q„]=n . (23c)

Finally, we observe that since g and 2)„q both transform
covariantly, so does their commutator C. The functional
Q[Q] is therefore manifestly gauge invariant.

We have therefore established the fact that the winding
number n is a gauge-invariant property of our solutions.
We conclude this section by noting that the gauge trans-
formation that connects the gauge of Eqs. (13) and (15),
to the gauge in which q'=5' [cf. Eqs. (8) and (9)] is
singular, as it must be, since the winding number of Eq.
(14) vanishes identically in the latter gauge, co[5' ]=0.
However, the singular term acquired by A' under this
gauge transformation results in 0[5' ]=n (Ref. 13).

V. APPLICATION TO A SPHERICAL SHELL
OF CHARGE

To illustrate the properties of our set of topologically
nontrivial axisymmetric solutions, we now solve in detail
the equations of motion for a system containing a spheri-
cal shell of charge

Q(p, z ) =Q(r )=,5(r a}, —S

4+a

where Qs is the total, gauge-invariant charge of the shell

We can also use the result of Eq. (20) to recast Eq. (14)
for the winding number co[@„]into a manifestly gauge-
invariant form. Working in the gauge frame of Eqs. (13)
and (15), we have

J
co[/] = I dP ~"Q'

g d y pe"q'v, q'

[cf. Eq. (5)].
We note that our axially symmetric solutions obviously

break the spherical symmetry of this source. Of course,
the (nonspherical) energy density of this source is in-
dependent of the direction along which the spherical
symmetry is broken. This implies that the system can
have rotations about an axis perpendicular to the symme-
try axis, just as in deformed nuclei.

Using the perturbative methods described in Sec. III,
we can obtain the solution for this system in closed form,
for a weak source. Since the charge density enters into
the equations of motion through the product g Q(r ) [cf.
Eq. (16c)], the actual expansion parameter for the pertur-
bative solution is'

&:—Qs44m
(25)

Following JJR, we first note that we can actually obtain a
useful bound on the total energy e„of the system for
small a, without knowing the actual perturbative solu-
tion. To leading order in K, we have

=8( }+O(a /g ),
where @(„}is the energy to O(a ) (Ref. 15):

(26a)

2
d'r d'r'q„'(P)q„'(P'), . (26b)

g' d3 d3, Q(r)Q(r')
(27)

8~
" "

[r—r'[

shows that 8(„)&6„„,for n&0 [since Q„'(P)q„'(P') &1].
This also shows that 6I„) o~=6c,„~. We note that this
analysis applies to any positive-definite, axisymmetric
charge density Q(p, z).

We obtain considerably more information about the n

dependence of the energy by explicitly solving Eq. (10b)
for @„ to leading order in a. Equation (10b) is just
Poisson's equation, and is easily solved for our problem in
integral form. The result is most conveniently expressed
in spherical coordinates. We find

@„(r,0)=a g, , C,"P,"(0)+O(c7,'),
I=n 7

(28a)

where r &
——min(r, a ), r &

——max(r, a ), PI"(8) is the associ-
ated Legendre polynomial, and where

Cl"= ' I d8sinOPP(0) .21+n! o
(28b)

We note that CI"=0 if l+n =odd. We have also ob-
tained a closed expression for A„ to leading order in cz,

but it is not particularly illuminating, and we do not need
it to get the O(a ) energy.

We note that B'=O(a ) only contributes to the next-to-
leading term in 8„. Equation (26b) follows by expressing
the solution to Eq. (10b) (which is just Poisson's equation)
for A' to O(a) in integral form, and then using Eq.
(10a) for E' in Eq. (18) for the energy. Comparing Eq.
(26b) with the energy 8, „& of the Abelian Coulomb solu-
tion
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&Qs aa „
J d8sin8 (r=a, 8) .

2 0 BT
(30a)

Since the source is a delta function at r=a, the radial
derivative of 4 has a discontinuity there [as follows by in-
tegrating both sides of Eq. (16c) from r =a —e to r =a
+e, for a~0+]. Thus, the energy in this case becomes

aQs B@„B@„f d8sin8 "(a+,8}+ "(a,8)
4 o Bp' dr

We now make use of a very convenient expression for
the energy, due to JJR, which is valid for any static solu-
tion to the Yang-Mills equations, provided that E' and 8'
fall ofF faster than r at infinity:

e = J d r Q'(r)r. E'.
We then obtain the following (exact) expression for the
energy of our solutions for the source of Eq. (24):

[the equality in Eq. (33) only applies to the n =0 solution;
recall that we have already shown that @ „} o~=Cc,„,].
We have thus proven, at least in the perturbative regime
cz && 1, that the energy of a shell of charge in our axisym-
metric solutions tends to zero as the topological quantum
number n of the solution tends to inGnity.

We have ex licitly summed the series in the exact ex-
pression for 8„},Eq. (31), to obtain the actual value of
the 0(a ) energy, for a few values of n:

T

0.317, n =1,
x 0. 126, rl = (34)

0.039, n =10.

It is interesting to compare these results with the ener-
gy of a spherical shell of charge in the spherically sym-
metric solution due to JJR. As described in Sec. III, their
ansatz takes the form

(30b) Q'(r)=r'Q(r), A' (r)=—r'4&JJR(r) . (35a)

We now do the integration in Eq. (30b) using Eq. (28)
for @„to 0(a), to obtain an analytical expression for the
0(a ) energy 8~ ):

~Q oo

Ci"j d8sin8PP(8)n 4 I

I=n
(31)

1= g Oi"Pl"(8),
/=n

(32a)

where we find that the coeScients 0&" in this Legendre
series are related to Cl" by [cf. Eq. (28b)]

0,"=(21+1)Ci". (32b)

We then square Eq. (32a) and integrate with respect to 8
to find

00 1+n !1= Q (21+1);(Ci")
(1 n)!— (32c)

using Eq. (32b) to express 0&" in terms of C&".

Then, inserting 1=(21+1)/(21+1) into the summand
in Eq. (31), using the fact that 1/(21+1) ~1/(2n+1),
and using Eq. (32c), we arrive at the following upper
bound for 6( }:

g(2) & gn — Coul 2

where we used Eq. (28b) to rewrite the integral in the first
line above in terms of C&", and where for convenience we
have expressed the energy in terms of the Coulomb ener-
gy Nc, „&=aQs/(2~).

We have explicitly summed the series in Eq. (31) to
compute the numerical value of 6'( l. However, we first
note that we can turn Eq. (31) into a simple and very use-
ful upper bound for 8( ). We do this by using the fact
that the Legendre polynomials I'I" form a complete set
with respect to l, for any n. We can therefore write

Their solution is therefore characterized by the unit
winding number of the vector r' over the sphere in gauge
space. We have solved Eq. (10b) analytically for the per-
turbative limit of @JJR for a shell of charge [Eq. (24)]. We
find

r&
4 JJR(P') =

2
+0(tX )

r
(35b)

Using Eq. (10a) for E' to 0(c7), we then derive the 0(u )

energy BJQ of their solution for the charge shell:

~)JII.= -,
' ~C..l (35c)

Comparison with Eq. (34) shows, in particular, that our
solution with unit winding number has lower energy than
the spherically symmetric solution of JJR, at least in the
perturbative regime.

To extend the results of our perturbative analysis, we
have used relaxation methods to solve the coupled, non-
linear, partial-differential equations of motion [Eqs. (16c)
and (16d)] numerically, for arbitrary a. The use of relax-
ation methods to solve similar problems in classical and
semiclassical gauge Geld theories has been thoroughly de-
scribed in an excellent review paper by Adler and Piran. '

We give here a brief summary of these methods, as we
have applied them to our problem.

Relaxation methods proceed by discretizing the
differential equations [Eqs. (16c) and (16d)] on a finite
mesh, and solving the resulting algebraic equations itera-
tively. The most convenient discretization links each
point on the mesh only to its nearest neighbors. An ini-
tial guess for the potentials at each lattice point is made
(in our case, the iterative method converges even with a
relatively crude initial guess), and a sequence of estimates
of the potentials is then generated by repeatedly sweeping
through the lattice. On each sweep, the updated poten-
tials are obtained by solving the discretized equation for
the potential at a given node, in terms of the current
values of the potentials at the neighboring nodes. The
nonlinear coupling between Eqs. (16c} and (16d) is han-
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died by sweeping through the entire lattice for one poten-
tial while the other potential is held fixed. Convergence
of the iterative method can be accelerated by systemati-
cally overestimating the change in the values of the po-
tential from one iteration to the next ("successive over-
relaxation" ). Once convergence has been obtained on a
lattice with a given cell size, the cell size is halved, and
the iterative procedure is repeated on the new lattice, us-

ing the values of the potentials on the cruder mesh as ini-
tial estimates. The mesh size is repeatedly halved until
the quantities of interest (in our case, the energy), con-
verge to the desired accuracy.

In our case, we found that it was most convenient to
solve Eqs. (16c) and (16d) in spherical coordinates, as it
turned out that the energy could be computed to reason-
able accuracy (=1% or better) using only a small, axed
number of points along the 0 axis. In this way, our prob-
lem is eff'ectively reduced to a one-dimensional system,
since the computing time only doubles with each halving
of the [r] lattice cell size (as compared to the quadrupling
of the computing time for a two-dimensional lattice that
must be halved along both dimensions in order to con-
verge to the true solution to the desired accuracy).
Furthermore, the source term in Eq. (16c) is easily han-
dled in spherical coordinates, by simply imposing a
discontinuity condition on the radial derivative at r =a:

Be. , Be„
(r =a+, 0)— (r =a, H) =-

Br
' Br

(36)

gQs 1

8~a 2n +1 (37)

It is also interesting to note that our results for n =0
(corresponding to the explicitly axisymmetric solution of
Sikivie and Weiss ), exhibit a critical coupling at a= —,'.
Below this coupling, 6~„o~=6'c,„& [compare to the per-
turbative result given below Eq. (33)]. We have actually
been able to derive the value of this critical coupling in

for all 0. Our problem then reduces to the source-free
equations for all rWa.

We typically solved these equations by starting on a
mesh with 20 X 20 points in r X 0, and iterating up to a
mesh with 320X20 points, obtaining the energy in most
cases to better than 1% [we note in this connection that
we found that the accuracy of the numerical estimate of
the energy on a lattice of a given size could be consider-
ably improved by taking the average value of Eqs. (18)
and (29)). Only 8 min of CPU time on a VAX 8820 com-
puter was required.

We plot our results for the energy as a function' of K
in Fig. 1, for our solutions with topological quantum
numbers n =0, 1,3, 10 [we recall that 6 „=6„;see Eq.
(17)]. We have also included the Coulomb parabola in

Fig. 1, for comparison.
The curves in Fig. 1 clearly show that the decrease in

energy with increasing n, which we found analytically in
the perturbative regime, holds for all values of cx. In fact,
our detailed results for large o.'show that the bound of
Eq. (33) on the O(c7 ) energy is actually satisfied for all
values of the coupling

30—

X

~ 20

15

10

0
0

FIG. 1. Energy 8„ in units of 2a/(ag ) of a spherical shell of
charge of radius a and total charge Qs vs a =gsg /(4'). g is
the gauge coupling (Ref. 14). The curves show the energy of the
shell in our axisymmetric solutions with topological numbers
n =0, 1,3, 10. The curve labeled by C is the Coulomb energy of
the shell, which in these units is given by 0. .

the n =0 ansatz by analytical methods. ' We also note
that our numerical results for D[„0] agree with the
charge-shell calculation in Ref. 6.

We have also repeated the numerical calculations of
JJR for the charge shell in their spherically symmetric
solution, using the methods they described in Ref. 3. We
find that our analytical result, that A'iiR) 8~„,~

in the
perturbative regime, also holds for arbitrary K.

VI. CONCLUSIONS AND OUTLOOK

We have discovered that our topologically nontrivial
axisymmetric solutions to the Yang-Mills equations pos-
sess two remarkable properties. First, we showed that
the total charge of the system (source plus gauge fields)
vanishes identically for our solutions with topological
number n&0, even if the source carries net charge. The
charge carried by the gauge fields thus completely screens
the charge carried by the source. Second, we showed
that the energy of a spherical shell of charge in our solu-
tions tends to zero as n tends to infinity.

We note that similar properties have been observed in
other solutions to the Yang-Mills equations. In particu-
lar, there exists a family of (nontopological) spherically
symmetric solutions (originally discovered by Sikivie and
Weiss), which are labeled by a continuous parameter,
whose energy can be made arbitrarily small by taking an
appropriate limit of the parameter labeling the solu-
tions. '

However, while the energy of this family of spherically
symmetric solutions and the energy of our axisymmetric
solutions can both be made arbitrarily small, we expect
there to be an important difference between the two sets
of solutions having to do with their stability. Since the
spherically symmetric family depends on a continuous
parameter, these solutions are clearly unstable with



TOPOLOGICALLY NONTRIVIAL SOLUTIONS TO YANG-MILLS. . . 4149

respect to perturbations to the gauge fields that change
the parameter. On the other, we expect that our axisym-
metric solutions are stable, due to their topologically
nontrivial properties.

Jackiw and Rossi performed a thorough analysis of the
stability of the topologically charged solution due to JJR,
and found it to be gyroscopically stable, at least in the
perturbative regime. ' We are currently investigating the
possibility of generalizing their methods to study the sta-
bility of our axisymmetric solutions.

In addition to the stability problem, other avenues of
investigation which we are currently undertaking include
a search for possible bifurcating axisymmetric solutions
(JJR found bifurcating solutions in their spherically sym-

metric ansatz in Ref. 3), and for possible nontrivial
embeddings of our SU(2) solutions in SU(3).
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1X r r'—V +A„—rk(A„V +V„A„)

XQ„(P')Q(r')

+ f d'r[VX(QA„)]',
2g
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