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A global chiral-invariant lattice fermionic action which solves the species-doubling problem of
free Dirac fermions on a lattice for (even) dimensions of space-time less than 8 is systematically
studied in perturbation theory in two space-time dimensions when a gauge interaction is present.
The decoupling of the replica fermions requires one to give up gauge symmetry for a finite lattice
spacing but the quantum continuum limit is gauge invariant and reproduces the results of the con-
tinuum Schwinger model with one flavor.

I. INTRODUCTION

The most important shortcoming of lattice gauge
theories at present comes from the difticulties to put a
Weyl fermion on the lattice. This is a key ingredient in
many theories such as the standard model of weak in-
teractions, grand unified theories, many composite mod-
els, and supersymmetric theories. None of the standard
methods to put fermions on the lattice' has been con-
sidered so far, in the case of chiral gauge theories, with
enough details to know if one recovers in the quantum
continuum limit all the features of these theories.

For a chiral gauge theory in the continuum the fer-
mionic measure cannot be regularized in a gauge-
invariant way. The only way to mimic this breaking on
the lattice (where the measure is invariant) is to work
with a non-gauge-invariant action. We escape this way
the no-go theorem and it becomes possible to build an
action with a global chiral symmetry. This possibility,
could also be used to construct a global chiral-invariant
action for vector gauge theories. Then an alternative to
working in the manner of Wilson is to maintain the con-
tinuous global chiral symmetry if one is forced to break
gauge invariance in the regularization procedure. Of
course, we have to be sure we shall recover the usual
Ward identities in the quantum continuum limit.

Looking for this alternative, we have proposed a free
ferrnion lattice action having the minimum number (i.e.,
only one) of replica fermion consistent with a continuous
global chiral in variance, short-range couplings, and
reAection positivity. A gauge field &s then introduced
keeping the replica fermion uncoupled. We need to give
up gauge invariance on the lattice but the symmetry is
recovered in the continuum limit.

This model will be here systematically studied in per-
turbation theory for the two-dimensional vector case.
The result is a formulation with the following properties.

(i) The continuum limit is gauge invariant despite a
breaking of the gauge symmetry in the regularization
procedure.

(ii) Two fermions are present, but only one is coupled
to the gauge field and all the results of the continuum
Schwinger model with one fermion are recovered.

(iii) There is a manifest invariance under the point-
independent chiral transformations acting on the lattice
fermionic field. (The corresponding Noether current has,
of course, no anomaly: the contributions coming from
the two fermions cancel each other. ) Nevertheless, we
can identify a lattice axial-vector current which, in the
continuum limit, picks up contributions from only one
fermion. As it must be this current has an anomaly,
which is the correct gauge-invariant one.

So the continuum limit has all the desired properties
including an anomalous axial-vector current, while a glo-
bal chiral symmetry of the lattice action is preserved at
every step.

This paper is devoted only to the vector gauge theories
case and is organized as follows. In Sec. II we present the
formulation on the lattice of a free fermion theory with
global chiral invariance. Section III is devoted to the dis-
cussion of the gauge coupling and the derivation of the
lattice Schwinger model based on the Ward identities. In
Sec. IV the continuum limit of the model, when studied
in perturbation theory, is shown to reproduce the results
of the continuum theory for the mass gap, the U(l) anom-
aly, and the chiral-symmetry-breaking order parameter
(gg). We conclude with a summary and possible exten-
sion of the present work.
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II. A FREE FERMION LATTICE ACTION

The naive way to put a ferrnion field on the lattice is'

aa(f)=

(it—.+„4.—)y„f.1 (2.1)

which is the only quadratic, Herrnitian, lattice-
rotational-invariant action involving couplings only be-
tween nearest neighbors. The corresponding fermion
propagator in momentum space is P„(8)=sin8„+ QC„(1—cos8, ) (2.7)

one of them [8„=0(a)]is coupled to the current in the
continuum limit. The additional poles (there is at least
one in order to cancel the axial anomaly for the Noether
axial-vector current) should have all components
8„=++ /2.

%'e consider the simplest case with just one replica fer-
mion located at 8 =rr/2. If we work only with couplings
between nearest neighbors and add the condition that the
additional terms in the action do not disturb the fermion
propagator for 8„=0(a) then one has

D~ (8)=a igy„P„(8) (2.2)

where a is the lattice spacing; the angular variables 0„,
with —m(0„~m, are the momentum components in
units of a ' and

the corresponding action being

1=1 (e e)-+I+(e it»
where

(2.8)

P„(8)=sin8„. (2.3)

W„e ', 0„ P„e' ",
and the associated currents

(2.4)

J„(5)(n)=—[W. +„y„(y5W.+W. y„(y5)4.+„] (2.5)

are conserved as a consequence of the U(1) X U(1) symme-
try of the quantum theory. The coupling of these
currents to the fermions is given by the vertex (in
momentum space)

0„+0„'
V„(~)(8,8') = i y„(y5)cos— (2.6)

Then the free fermion propagator vanishes in the contin-
uum (a ~0) limit except in the regions of size of order a
centered around the 2 poles of (2.2) located at the points
with 0„=0 or ~, where it reproduces the standard free
fermion propagator up to similarity transformation of the
gamma matrices.

The action (2.1) is invariant under the U(l) XU(1) glo-
bal transformations

e' 0„, it„e' "0„,

+(4.+.—4. )y„0.] (2.9)

and the DXD matrix of coefficients should satisfy the
condition

C = —1
JMv (2.10)

in order for the fermion propagator to have a pole at
0„=m /2.

Note that the new action does not respect the lattice
rotational symmetry for any choice of C„. The reason is
that the only quadratic, Hermitian, lattice rotational-
invariant and chiral-invariant action involving neighbor-
ing couplings exclusively is I, for which the propagator
does not have any pole at n. /2. As now we are placing a
pole at m/2, maintaining that the action will be quadra-
tic, Hermitian, and chiral invariant, by force the lattice
rotational symmetry must be broken. The only transfor-
mation which one can ask to be symmetries of the new
action are those that leave invariant the selected location
of the poles of the ferrnion propagator. Among these
transformations, those leaving invariant each pole sepa-
rately are any permutation of axis which requires that

which reduces, for the 2 regions selected by the propa-
gator, to the vertex in the continuum theory, up to signs
which are in fact responsible for the cancellation of the
axial anomaly.

In order to have a lattice formulation of a theory with
one fermion one has to decouple the replIca fermions, i.e.,
one should find a set of lattice operators which are cou-
pled to just one fermion [8&=O(a)] in the a ~0 limit
and which reproduce the correlation functions of the cor-
responding continuum theory operators. If one starts, for
instance, with the currents (2.5) one sees that the problem
with the naive action (2.1) is that all (2 ) fermions are
coupled to them. One way to try to avoid this problem,
which is the one explored here, is to add a new term to
the action in (2.1) in order to change the location of the
poles of the fermion propagator in such a way that only

(2.11)

which together with the condition (2.10) determine the
matrix C of elements C„up to an arbitrary constant A, :

(2.12)

P„(8)=sin8„+(1—cos8„)——g(1 —cos8 ),2
(2.13)

If together with this symmetry one requires the action I
to be invar'iant under the transformation which inter-
changes the two poles of the fermion propagator one ob-
tains il, i= 1. Now, the requirement of having only one
replica fermion at 8„=sr/2 is satisfied (in D =2,4, 6) by
A, =1. So we have



GLOBAL CHIRAL-INVARIANT FORMULATION OF LATTICE. . . 4125

the correction to the naive action being invariance under local phase transformations. In particu-
lar the gauge-invariant version of the naive action is

+(&.+, 4.—)r„4.]
g[g„y„(U„„y„+„it„—)

—(4. „U.,„—0. )) „4.].
When this general procedure is applied to the action (2.8)
the result is

+(it.+. 4. )—1'„it.] . (2.14)

The difference between this formulation and the naive
way to put a fermion field on the lattice is that now there
is a natural way to decouple the replica fermion. In fact
when one associates to any local operator g(X)I g(X) the
lattice operator

I (Q, U) =I (f, U)+I+ (f, U)+Iiv( U),
where

Is.( U) = g (1 —U„„U„+„U„+„U„)1

2g

(3.1)

(3.2)

0 (n) =—,'(Q„I P„„+Q„„Ig„], (2.15)

III. COUPLING TQ THE ABELIAN GAUGE FIELD

The standard method to introduce a gauge interaction
in the lattice formulation of a field theory is' through a
new dynamical variable U„„, associated to the links of
the lattice, which is inserted in the action in order to have

then one finds that only the pole at p„=O contributes to
the correlation functions of these lattice operators in the
continuum limit because, due to the location of the addi-
tional zero mode in momentum space, the coupling of
these operators to the additional fermion is of the order
of a. There is nothing similar to this simple mechanism
of decoupling of the replica fermion in the case of the
naive action.

The final result is that the action (2.8), with I+ given
by (2.14), solves the fermion doubling problem via decou-
pling of the replica fermion. For the moment, of course,
this method works only for free fermions. Usually we are
not free to choose the propagators and the vertices in-
dependently of one another without troubles with the
gauge invariance. The coupling with a gauge field will be
studied in the next section.

The continuum limit of this model can be studied ex-
plicitly in perturbation theory. By standard power-
counting arguments ' one finds that after subtraction of
the first terms in the Taylor expansion of a Green's func-
tion, the ultraviolet finite part can be calculated as a sum
of contributions each one calculated by replacing the ver-
tices and propagators by their expansion around each
pole. There is an additional contribution where the limit
a ~0 cannot be taken until the end. This additional con-
tribution is present only when the superficial degree of
divergence is not negative.

These general arguments have been discussed in detail
in the context of two-dimensional models in Ref. 9 and a
detailed calculation using this method will be presented
in the next section when the gauge interaction is taken
into account. In the present context of two-dimensional
models, the only nontrivial case, where the continuum
limit can differ from the previous naive classical argu-
ments, is the one-loop contribution to the current-current
correlation function which is the same calculation in-
volved in the current Ward identities.

is the standard Abelian gauge lattice action.
The vertex which describes the interaction of the fer-

mion with the gauge field is a sum of two contributions
coming from to the two terms I (f, U) (responsible for
the coupling to the fermion at 0„=0) and I+ (f, U)
(which gives the coupling to the replica fermion). The
final result is that the action (3.1) describes a gauge field
coupled simultaneously to both fermions and the gauge
interaction ruins the solution of the doubling problem we
had before.

The obvious thing to try to avoid this problem is to
start with a different action:

I'(g, U) =I (P, U)+I+(g)+I', (U) . (3.3)

Now the gauge field, which is coupled to the fermion only
through the first term, will respect the decoupling of the
replica fermion at least at the classical level. The action
(3.3) differs from the naive action one would have written
to describe the Abelian gauge theory with one fermion
field by the presence of the additional term I+(g) ir-
relevant in the naive continuum limit which breaks ex-
plicitly the lattice rotational symmetry and the gauge in-
variance. The remaining symmetries are vector and
chiral global transformations of the fermionic field.

So the most difFicult question, but necessary if we want
to solve the fermion-doubling problem via decoupling, is
to see how gauge invariance can be reobtained when the
action (3.3) is taken as a starting point. This question can
be studied explicitly in perturbation theory looking for a
lattice realization in the continuum limit of the relations
among Green's functions (Ward identities) which refiect
the gauge invariance of the theory in the continuum. The
Ward identities corresponding to Green's functions with
a negative superficial degree of divergence are automati-
cally satisfied because one can calculate them directly by
replacing the vertex and propagators by their approxima-
tion around P„=O, i.e., by their continuum expressions.
There is no contribution from the pole around +~/2 pro-
vided we use a lattice current operator of the type (2.15)
(naive current). In other words, the term I+ (f) in the ac-
tion (3.3) is completely negligible in this calculation and
the remaining terms are gauge invariant. An alternative
way to understand the result is to realize that once the
I+ part of the action has been neglected the naive
current is the conserved Noether current associated to
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the global symmetry of the naive action.
Then the only quantity one has to consider in detail is,

in two dimensions, H„, the vacuum polarization. In the
continuum limit H„receives contributions only from the
two diagrams depicted in Fig. 1 and the result of apply-
ing the Feynman rules corresponding to the action (3.3) is

d l
11„.(k) = —f" " ', [I„".'(l, k)+I„",'(I)],P ~ (2 )2 P

with

(3.4)

I„' '(l, k) =Tr V„'"(l,l +k)
1

ig(/+k)

X V'"(l, l+k)
IP(/)

(3.5a)

FIG. 1. The Feynman graphs that give the vacuum-

polarization contribution.

I„','(—l, k =0,m)],

II'„'(0)=— ' " ' [I".'(I, k =O, m)P" ~ (2 )2 P~

(3.8)

+I„"'(I,m)] . (3.9)

In 11 „' '(k) we can replace the vertices and the propaga-
tors by their expansions around the poles, and the calcu-
lation reduces to the standard calculation of the vacuum
polarization in the continuum theory for one fermion.
There is no contribution from the replica fermion because
the vertex vanishes when l„=m/2a. The result is

k„k
lim lim II ' '( k ) = ——5

m~O a~O LMV pv k 2
(3.10)

l„=0 an intermediate IR regularization has to be intro-
duced in order to give some meaning to the terms evalu-
ated at zero external momentum. It is convenient, for ex-
ample, to introduce a mass term m in the fermion propa-
gators. Then one can write

II„,(k) = lim [II„','(k)+II„', '(0)], (3.7)
m —+0

where

II' '(k)= —f [I' '(l, k, m)
(2~)2

I„"„'(/)=Tr V„','(l, l +k) 1

ig(/)

the vertices being

aV„"'(p,q) = —iy„cos —(p +q)„

(3.5b)

(3.6a)

One still has to consider the contribution (3.9). After the
IR regularization (3.9) reads

d l
11~,~(0)= —f"' " ', Tr[V„'"(1,1)S (I)--i. (2~)'

X V"'(I, l)S (/)

+ V„' '(I, /)S (/)],
Q

V„' '(p, q) = ia 5„,y„sin —(p +q)„2
(3.6b)

where

S (I)=
iaaf ( I ) +m

and, using (2.13) for D =2,

aP&(/) =sin(al, )—[1—cos(a/z)],

aPz(/) =sin(a/2) —[1—cos(al, )] .

This part of the calculation can be simplified if one in-
tegrates by parts using the relations

av„'"(/)
V„' '(/, I)=

The next step. in a perturbative calculation of a diagram
with a superficial degree of divergence D is to separate
the contribution of the first D +1 terms in the Taylor ex-
pansion around k =0 from the rest. In the present case
D =0 but due to infrared divergences around the pole at

BS (/)

al.
BP„(/)= —S (I) i+y„

After this has been done one has

S (/) .

ala (2~)—2

If the lattice action were gauge invariant, then the factor
in brackets would vanish identically due to the relation
between the vertex and the propagator of a gauge-
invariant theory and the result of the continuum theory
(3.10) would be recovered in the lattice formulation. In
the present case the term I+(g) breaks explicitly gauge
invariance and one gets

~/a d2lII' '(0)= —f ( i cosa/ )(—i sinai, )—
— ~ (2~)'

XTr[y„S (/)yP (/)],
where v=2 (1) when v= 1 (2). Because of the fact that
the momentum-dependent factor coming from the ver-
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tices vanishes on all the poles of the fermion propagator
the computation of

lim II„'„'(0)
m~0

can be done directly with m =0. The final answer is

FIG. 3. The expansion of the current-current correlation
function (J„J„)in terms of Feynman diagrams.

»mii'"(0) =c +c,S„, ,
a~O

(3.11)
when J (n) is the naive current

where

1
C

———3
O g

(3.12a)

(3.12b)

I(P, U) =I'(g, U) g( —U„„—U„„)(U„,—U„, )
npv

As the vertex vanishes for the replica pole, the replica
fermion is not coupled and contributes only with contact
terms. One can deal with such terms and eliminate the
replica fermion by using the renormalization procedure.
So we are led to introduce a counterterm in the action
(3.3):

J„(n)=+ '(q„—l'„U„„q„+„+q„+„1'„U„„q„). (3.16)

In the expansion of (J„J„)in terms of Feynman dia-
grams given in Fig. 3 one recognizes the expression for
the continuum correlation function except for the first di-
agram which differs from the continuum one only by
unimportant contact terms which can be omitted. In the
definition (3.15) a "normal-ordered" prescription is un-
derstood, i.e., one must subtract the expectation value of
J . With the action (3.13) and the definition (3.15) for the
vector current all the Green's functions involving vector
currents are those of a gauge- and Lorentz-invariant con-
tinuum theory with only one fermion.

g( U„„—U„„)
n, p

(3.13)

which is the action corresponding to our lattice global
chiral-inUariant Schwinger model. Note that the last
modification introduced in the action does not affect the
coupling of the fermion to the gauge field and all the pre-
vious discussion based on it remains valid for the new ac-
tion. With the action (3.13) the vacuum-polarization ten-
sor, given in terms of Feynman diagrams in Fig. 2, is then

k„k
11„.(k) = ——n„.— (3.14)

which is the result for the gauge-invariant continuum
theory with only one fermion.

As expected we have to introduce a counterterm to re-
store the gauge invariance broken by the action in Eq.
(3.3); an additional counterterm is also needed to restore
the rotational symmetry. (See the works in Ref. 10 where
similar problems have been considered. )

The last step is the identification of the lattice operator
corresponding to the vector current in the continuum
theory. If one considers, for example, the diagrammatic
expansion of (J„J ) it is easy to see the operator we look
for is

J„(n)=J„(n)— cog( U„—U„)
2a

2a
(3.15)

+ /M

FIG. 2. The complete one-particle-irreducible vacuum polar-
ization. The third diagram with the black dot represents the
counterterm defined in Eq. (3.13).

IV. COMPARISON OF THE GLOBAL
CHIRAL-INVARIANT LATTICE SCHWINGER

MODEL AND THE CONTINUUM
SCHWINGER MODEL

Because of the controversy among different studies of
lattice fermion formulations, especially when applied to
the nonlocal formulations, one strategy which has proved
to be useful is to study these formulations in the context
of the exactly solvable Schwinger model. The result of
these studies is that no nonlocal formulation can repro-
duce the results of the continuum theory, the Kogut-
Susskind action corresponds to a theory with two
Aavors, and only the Wilson' action is consistent with the
continuum theory.

Motivated by these results and once the global chiral-
invariant Schwinger model with lattice action (3.13) has
been obtained it seems interesting to see whether or not
the continuum limit of the perturbation expansion based
on this model is consistent. The main properties of the
Schwinger model which are going to be studied are the
mass of the lowest-lying particle in the spectrum, which
can be obtained from the vacuum-polarization calcula-
tion, the U(1) anomaly related to the construction of the
lattice axial-vector-current operator, and the chiral order
parameter (Pf).

In the preceding section it has been shown that the
vacuum-polarization tensor II„ is the same as in the con-
tinuum theory with one fermion, then the mass gap for
the Schwinger model is automatically reproduced with
the lattice model.

The second property of the lattice Schwinger model we
are going to study is to see whether one can understand
in this formulation the U(1) anomaly of the continuum
theory. The starting point in this case is H„5 the ana-
logue of the vacuum-polarization tensor but with an axial
vertex which can be calculated following exactly the same
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steps we used in Sec. III for the %'ard identity associated
to the vector current. The result for H„5 can be obtained
directly from the result for the vector current in (3.10) us-
ing the relation y„y 5

=e„y typical to the two-
dimensional case. In any case it is clear the evaluation of
this part reduces once more to the standard perturbation
calculation in the continuum theory. The result is

ik„II„s„(k)= — ik—„e„=— ik—„e„D@Did ',1. 1.
(4.2)

and using the definition of the A„propagator,

D p(k)=a ge"""(A (n)Ap(0)),

If this were the total answer then one would have (in a
gauge where D &' exists)

lim lim II„s (k)= — e„—5
a~O m~O

(4.1)
we would have the axial Ward identity:

1
ik„II„s ( k ) =a pe """ ——e„

ln

A n+p) —A ((tt)
44(0 ))D p,

' (k),
a

(4.3)

where one recognizes in the term in large parentheses the
two-dimensional chiral anomaly with the derivative re-
placed by its finite difference representation. The Noeth-
er axial-vector current we can derive from the action (3.3)
receives contributions from the two fermions and has no
anomaly. Note that the nonvanishing result in Eq. (4.3)
is due to the fact that the current involved in H„~ is not
the conserved Noether current derived from the action
(3.3), but the axial-vector current associated to the I
part (i.e., the naive one) of this action (3.3).

Then in order to show that the correct U(1) anomaly is
reproduced in the lattice all one needs is to show how to
get rid of the remaining contributions to H„~ which
come from the expression similar to (3.9) for the axial
case:

II„s (0)= i — cos(al„)sin(al )() . +i dl
--~. (2~)'

XTr y„y5
I"(&) I'(&)

(4.4)

This integration, once more, can be done directly with
m =0 and the result is

current:

J„(n)=J„(n)— g " (U„—Ut ),
2a 2' (4.6)

where J„(n) is the naive axial-vector current,

J„'(&)=+ q(4.1'„1'sU,W. +„+0.+„X„zsU.',„4.)

(4.7)

and again the normal-ordered prescription is understood
in the definition (4.6).

The expansion of (J~J ) in Feynman diagrams is
given in Figs. 4 and 5. Again we recognize the usual con-
tinuum expression, up to unimportant contact terms in
the first diagram. So one recovers the gauge invariance
and simultaneously gets the correct anomaly

8"J = — e gi'
P 2~ P (4.8)

The last property of the Schwinger model we shall in-
vestigate with the lattice formulation is the chiral order
parameter (it)f). It is known that the one-fiavor mass-
less Schwinger model undergoes a breaking of the chiral
symmetry. This can be seen by noticing that '"

limII„'s' (0)= e„, .
1

a~0 2&
(4.&)

2

G(,0)=(tt),„,l(),„,q„,y, o &

This term spoils both the gauge invariance and the chiral
properties one would like for (J„J„).It refiects nothing
but the naive lattice axial-vector current; J, does not con-
verge to the continuum gauge-invariant axial-vector
current when the lattice spacing goes to zero. We can
follow the same procedure we used for the vector current
in Sec. III to construct the correct lattice axial-vector

(4.9)

where y is the Euler constant. For more than one flavor
(li)g) vanishes.

We shall follow closely the method described in Refs. 9
and 11 to compute GI (n, m) defined by

D„(mm) (—,'X(4.,4.~=„+0.~~4. )

x —,'X(q q ~,+() ~„g„)),(4. (0)

FIG. 4. The expansion of the axial-current —vector-current
correlation function (J„J'„). The axial bubble is defined in Fig.
S.

where according to our previous discussion we have in-
troduced for it)P an operator which cannot be a source for
the replica fermion. The diagrams which contribute to
GL (n, m) when a goes to zero are shown in Fig. 6.



GLOBAL CHIRAL-INVARIANT FORMULATION OF LATTICE. . .

+ + + e ~

FIG. 5. This axial bubble is made with the two graphs in Fig.
1 when one vertex picks up y5 matrix. The third graph
represents the counterterm introduced in the definition of the-5
axial-vector current J (4.6).

FIG. 6. The diagrams giving a contribution to GL(x, 0) when
the lattice spacing goes to zero. The wavy line with a black
square is the complete photon propagator.

The power-counting arguments tell us every diagram
of Fig. 6 except the first one can be obtained in the limit a
goes to zero by replacing the propagators and the vertices
by their expansion around each pole. As in the previous
cases the contributions of the replica fermion to these di-
agrams are destroyed by the vertices and we can write

lim G~(x, O) =G (x,O) —I(x)+ limIL (x),a~0 a~o
(4.11)

where I(x) and IL(x) are the values of the first diagram
for the continuum theory and for the lattice model, re-
spectively. With the technique used in Secs. III and IV
one can show that these two terms cancel each other up
to an irrelevant contact term. The result for the order
parameter follows:

2

limGL(x, O) ~ e r .
0 x ~ 8~3

(4.12)

V. SUMMARY AND DISCUSSION

We have shown that it is possible to have a global
chiral-invariant lattice formulation of a vector gauge
theory with one fermion by adding a term to the naive ac-
tion which decouples the replica fermion. This mecha-
nism of decoupling requires us to break explicitly the ro-
tational and gauge invariance at the level of the action
but when applied to the Schwinger model is has been
shown, by using weak-coupling perturbative expansion,
that the gauge and rotational symmetries are recovered in
the quantum continuum limit and a lattice Schwinger
model with all the desired properties is obtained by add-
ing appropriate counterterms. In particular, the relevant

axial-vector current, including counterterms, reproduces
the correct anomaly of the effective one fermion theory,
in contrast with the conserved axial-vector current asso-
ciated with the global chiral invariance of the full action
(3.3)

The extension of the present analysis to the case of a
non-Abelian gauge symmetry as well as to four-
dimensional theories and the determination of the struc-
ture of counterterms in these cases is presently under in-
vestigation. One should take into account that the possi-
bility to determine the counterterms perturbatively is
specific to the two-dimensional case. In four dimensions
there would be contributions from arbitrary high orders
in the coupling constant. In principle one should fix the
counterterms with a nonperturbative calculation of some
appropriate physical quantities and/or a nonperturbative
check of Ward identities. In a erst step, the Schwinger
model could also be used to test if the present formula-
tion works with the standard nonperturbative method.

The use of a formulation which respects a global chiral
symmetry on the lattice at every step should be very ap-
propriate to understand those aspects of the standard
model of strong interactions related with this symmetry.
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