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We consider the renormalization of the energy-momentum tensor in scalar QED in which the
(P*P)' interaction is purely electromagnetically induced. This is a theory with scalar fields and a
single coupling constant e and it may be expected in an analogy with A, P theory that the finite im-
provement programs, of the kind considered in paper I, may work here. Indeed, we find that the
finite improvement programs work to a high order, viz. , up to O(e' ). But, we also find that both
kinds of finite improvement programs fail at least in O(e '

) and most probably in 0 (e ' ).

I. INTRODUCTION

In Ref. 1 (henceforth referred to as I) 'we considered
the renormalization of the energy-momentum tensor in
scalar QED. It was shown that an improvement term
was needed for the energy-momentum tensor. The addi-
tion of such an improvement term in 0„ is equivalent to
the addition of a term in the action (in the presence of an
external gravitational field) of the form —,'Eo JRP*iI'i d "x.
As explained in detail in Ref. 2, the question we focused
our attention on in I was whether the coefficient Ko is re-
normalized independently or whether it was fixed by the
Oat-space theory. If Ko is renormalized independently,
this requires a new experimental input to fix the renor-
malized parameter K. A new experimental input is not
needed in case the finite improvement program(s) goes
through. Finite improvement programs are of two kinds.
(i) The improvement coeflicient Ko is a finite function of
bare quantities at a=4 —n =0. In this case, no renormal-
ization counterterms which would correspond to the re-
normalization of the coefficient of —,

' fR P*tt d "x are need-
ed (apart from flat-space renormalizations). (ii) The im-
provement coefficient is a finite function of renormalized
quantities at e=O. In this case the renormalization coun-
terterms are uniquely fixed by the requirement (imposed
ad hoc) that the improvement coefficient is a finite func-
tion of renormalized quantities.

In I it was established that neither kind of improve-
ment program goes through to 0(e A,"). A similar result
was derived in the other renormalizable field theories
with scalar fields and two coupling constants, in Refs.
2 —4. The proofs depended crucially upon the fact that
two independent coupling constants were present. In this
paper we shall consider the other alternative: viz. , the
theory has scalar fields but only one independent cou-
pling constant. This can be arranged if one assumes that,
in scalar QED, the (P*P) coupling is induced only
through electromagnetic interactions. In this paper we
wish to address ourselves to the question of whether finite
improvement programs go through in such a theory. In
an analogy with the 1i.P theory, a theory with a scalar
field and one coupling constant, one may hope that they
do go through.

We find that finite improvement programs of either
kind do go through up to 0(e' ). But both of them
necessarily fail in 0 (e '

) and most probably in 0 (e '
) it-

self. [To ascertain whether finite improvement programs
break down in 0(e '

) itself requires a tedious calculation
of a renormalization constant, which we have not done. ]
Thus, in either case, Ko is independently renormalized at
least from 0 ( e ' ); and fiat-space parameters are
insufficient to specify the theory completely in the pres-
ence of external gravity from this order.

As a technical point, it should be noted that the
mathematical steps in the present case are not just a spe-
cial case of those in I.

II. PRELIMINARIES

(The notation is as in I.)
There is no (iI)*P) interaction in the lowest order, and

thus X' contains only one independent coupling constant
eo. However, in 0(eii) and higher, a (P*P) coupling is
induced and there are counterterms needed of the form

(&A*sf) )~
p'M, (e, e)I d "x .

Thus the original Lagrange density L' must be modified
to contain a counterterm

X = —~iF„F" + ~i(D„tlat)" (D"P)—'m-
—p'M, (e',e), —

—,'go(&. & )' . (2.2)

This Lagrange density is a special case of the Lagrange
density

,'F„F" + —,'(D„tt —)*(—D"P)——,'m otti*tti

(2.3)

We shall work with a complex scalar field coupled to
an Abelian gauge field A„described by the Lagrange
density

,'F„,F" + ——'(D—P)*(D"P) 'm——

(2.1)
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used in I. jX"d "x is an action containing two indepen-
dent coupling constants A,o and eo and it is often con-
venient to look upon X of Eq. (2.2) as a limiting case of
X"of Eq. (2.3), the limit being specified below. However,
we should remark that in this work we are interested in
the Lagrange density X of Eq. (2.2) which has only one
independent coupling constant eo and that X" of Eq.
(2.3) is being introduced only for certain technical
reasons.

We shall use dimensional regularization together with
the minimal subtraction scheme for regularizing proper
vertices of the theory and of operators. The renormaliza-
tion transformations are

X =Z17 Zm =Z17+gZm
1 —1 (3.3)

17 e 6 BZ17
(
—«+P ) + — +P' —2y Z„

Z11/17+Z153 57 (3.4)

Here Z17 is the coefficient of mixing of operator 0,
(defined in I) that appears in Eq. (3.1) with 07 =(3 (())*p).

As shown in I, Z17(k, ,e, e) satisfies the renormal-
ization-group (RG) equation

Z1/2yR 2 = 2Z

ko=(M'[AZ2 (A, , e, e)+M(e2, e)],

e2 —pE 2ez2 g Zl/2gR g Z g Z —lg0 g 3

(2.4)

We are interested in the Lagrange density X of Eq.
(2.2). The results for this Lagrange density are obtained
by setting A, =O in the above equation and noting that
Z17, being a power series in A. has a smooth limit as
A.~0, we arrive at the RG equation satisfied by
Z, (7A, =O, e, e)=Z, 7(e,e)—:

In I we had introduced two independent mass parame-
ters p1 and pz in the relations for A,o and eo. But for the
purpose of this paper, this is unnecessary. So we set

p, =p2 =p. The renormalization-group quantities are
also now similarly redefined. For example,

B B
P (A, , e, e)=P A, =(M, A+P2

BP BP1 } I=) 2=)

e6 BZ17

2
+p' —y, 7=Z»y, 7+Z(s'Ys7 p I

Be

(3.5)

where every quantity in Eq. (3.5) is evaluated at A, =O and

etc.
The Lagrange density of Eq. (2.2) is obtained from that

of Eq. (2.3) by putting X=O. So we shall deal with X" of
Eq. (2.3) first, and obtain results for X of Eq. (2.2) by set-
ting A, =O.

III. CONDITIONS FOR A

FINITE ENERGY-MOMENTUM TENSOR

The improved energy-momentum tensor for X" is
given by Eq. (3.5) of I. Its trace is, as seen from Eq. (3.6)
of I,

is a series in e . [It should be noted that Z» and Z» in-

dividually contain terms proportional to 1/A, . However,
the combination Z»y, 7+Z15j 57 does not contain such
terms. This is seen by substituting expressions for y, 7
and y57 given in Eq. (A3) of I (the y, 7 here is y, 7+ y', 7 of
I, etc. ) and noting that Z, 7

—Z57 is proportional to I,.]
Hence X of Eq. (3.3) now satisfies an equation (assuming g
to depend only on e and e)

ee, (3X
Xm

11 Y17+ 15 Y57 P ~+ P g (((
A

Bp
Xo

( 8„e"( =

finite�'+

(n —4i (
— ((('p P+ ,'E„„Fn"— 11717 15757+ T . (3.6)

(3.1)

As shown in I, the right-hand side of Eq. (3.1) simplifies
to

(3.2)

Equation (3.6) is valid for an arbitrary choice of
g(e, e). Now, the first two terms on the right-hand side
of Eq. (3.6) contain only simple poles, ' while T may con-
tain double and higher-order poles in e. We now formu-
late the necessary and sufhcient conditions for the finite-
ness of 0„' ".

To this end we note that finiteness of 8„' » is necessary
and sufficient for the finiteness of 0„' 1'. 0„' 1' ~ is finite, as
seen from Eq. (3.2), iff'X has no worse than simple poles
in e. We now prove the necessary and sufficient condi-
tions for L to have no worse than simple poles.
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Theorem. The necessary and sufficient conditions for X
to have no worse than simple poles are (i) T has no worse
than simple poles and (ii) X' ' is made zero, where X and
T have been expanded as

l yql 21

Z2qZ —1 I+ y y I

l =1p =1

Then, the double poles in X are (noting that go
' =0)

(4.2)

X= X(r)
(3.7) 0Yo + —1 Y1 1

)
E

Proof. (i) First we prove the necessity of the two condi-
tions. Let X have no worse than simple poles. Then
X' '=0. Further, the left-hand side of Eq. (3.6) as well as
the first two terms on its right-hand side have at worst
simple poles and hence T cannot have worse than simple
poles. (ii) Next we prove the sufficiency of these condi-
tions. Suppose that X' ' is zero and that T has no worse
than simple poles. We then compare the coefficient of
e 1' (p &'2) in Eq. (3.6) and obtain

ax'p)

These equations, starting from p =2, successively yield
X' '=X'"'= =0, noting that X'1'(e =0)=0; p ~2.
Hence X has no worse than simple poles in e.

Thus, the question is whether g can be chosen so that
the two conditions of the theorem above can be satisfied.
In the subsequent sections we try to choose g of either
forms of the finite improvement program to see whether
these two conditions are satisfied.

IV. IMPROVEMENT COEFFICIENT
OF THE FORM g(eo2p ', e)

In this section we shall consider an improvement
coefficient g which is a finite function (at e=0) of the bare
coupling eo. Noting that g = —g je, g has an expansion

As seen from Appendix A neither y2 nor y1' vanish.
Thus, these double poles vanish if

y11
o

yO2
.

2

(4.3)

In 0(e ): From this order onward, it is convenient to
deal with X indirectly, making use of the theorem in the
preceding section. First we require that T has no worse
than simple poles:

2 —e)n Z —1 pA, Y.a
~~ n=o

= —e g ng„(e)(eo/2 ')"Z ' —P Y
n =1

= —e g ng„(e)e "Z, "Z ' —
/3 Y .

n =1
(4 4)

eg1 (e)e Z, Z ' —2eg2(e)e (Z Z ) —3eg3(e)e
This again has a double pole coming from the first term.
It is proportional to g, ' (with a nonzero proportionality
constant Y'2 ', see Appendix A). Hence,

Now/3 (at A, =O) is 0(e"). Yto 0(e ) has only a simple
pole. ' Hence the second term on the right-hand side has
no double poles to this order.

To this order the first term is

g(eop ', e)= gg„(e)(eop )"
n=o

g, '=0
and Eq. (3.2) then implies that

(4.5)

k( 2 —e)n k

n =ok= —1

and consider X order by order.
In 0(e ):

(4. l) go 0 (4.6)

Now X' ' to this order is [here Z', 7' is the coefficient of
e q/e~ in Z»(e, )]e

X =Z17+ g gte =Z17 +go(e)
k= —1

Now Z, 7=0 in 0(e ). Hence X has no worse than sim-

ple poles.
In 0(e'):

X =Z, 7+go(e)Z '+g, (e)e

X' '=Z ' +g'y + e y'' +173 go 3 e g1 2 g2 1

X' '=0 implies

1 yo3 = —goy12 — 1 y21 —Z~2)go 3 g1 2 g2 1 17 3

In 0(e ): In this order T is

—eg, (e)e (Z, Z ') —2eg2(e)e (Z, Z ')

(4.7)

Z17, to 0 (e2), vanishes as seen by an explicit calculation.
' does have a simple pole in 0(e ). The last term in

the above equation has, at worst, a simple pole. Hence
the double pole in X is proportional to g„'. Thus, X has
no worse than simple poles iff'go ' =0.

In 0(e ):

X =Z»+go(e)Z '+g, (e)e'Z,'Z '+g2(&)e' .

Z12 has only a simple pole to 0 (e ). We expand

—3eg3(e)e (Z, Z ') 4eg4(e)e —P—Y .

2g 1 y22 goy13 —ay 2 (4.8)

where

p =ae +be + .

As p is 0 (e ), p Y does not have triple poles to this or-
der, nor do the remaining terms [noting Eq. (4.5)].
Equating the double poles in T to zero one obtains
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(4.9)

Now, X to this order is

X=Z,7+go(e)Z '+g, (e)e Z, Z

+g2(e)e Z, Z '+g&(e)e Z, Z '+g~(e)e

Double poles in X cancel if

0—Z(2) + 2y04 + 1 y13 + Oy22
17 4 g0 4 g1 3 g2 2

i.e., if
2 y04 Z(2) 1 y13 0 y22g0 4 174 g1 3 g2 2

In 0 (e ' ): In this order T is

eg, (e)e—(Z, Z ') —2eg2(e)e (Z, Z ')

—3eg3(e)e (Z, Z ') —4eg4(e)e Z,'Z

—5eg, (e)e ' PY. — '

(4.10)

(4.1 1)

In view of Eqs. (4.5) and (4.6), no term has a quadruple
pole. The triple poles in T cancel iA'

—g y' —2g 'y —ay =0

The determinant

y14 2y»
2Yz2 &o

3 2

(4.12)

(see Appendix A). Hence Eqs. (4.12) and (4.8) uniquely
determine g, and g2 '. Then Eqs. (4.7) uniquely deter-
mines g0.

Double poles in T cancel i6'

and [Ziz(A, ,e, e) is zero in 0 (A,); hence Y has no term of
0(e )]

Therefore, this constraint can be satisfied in an infinite
number of ways. Thus the energy-momentum tensor can
be made finite by the improvement term of the form as-
sumed in this section to 0 (e' ).

Next we shall show that the improvement term of the
kind assumed in this section cannot definitely work
beyond 0(e' ). To this end we consider the constraints
obtained on g1 and g 2

' by the requirement that the quar-
tic poles in T in 0(e' ) and quintic poles in T in 0(e' )

must cancel, in particular, if the program is to work in
0 (e ' ). This places, as we shall see, constraints on the al-

ready fixed parameters g, and g2
' which are inconsistent

with those placed by Eqs. (4.8) and (4.12).
That in 0(e' ) the quartic poles in T cancel requires

, Y' —2 1Y24 Y (4.16)

That in 0 (e ' ), the quintic poles in T cancel requires

0 Y 1 6 2g 1 y25 g y 5 (4.17)

We have verified that these inhomogeneous equations
are inconsistent.

This inconsistency, most probably, is in the set of the
first three equations [Eqs. (4.8), (4.12), and (4.16)] itself.
To show this requires a tedious calculation of simple pole
divergences in 0(e ) in Zi7, which we have not done.

Consider now the four equations (4.8), (4.12), (4.16),
and (4.17). The coefficients occurring in it, viz. ,
Y'i' (p ~ 4) are related to Y3 and Y i' to Yz via
renormalization-group equations (see Appendix A). Y~
are also related ultimately (see Appendix B) to the simple
pole divergences in Z17 in orders A,e and e . We have
calculated the simple pole terms in 0 (Xe ) in Zi7 but not
in 0(e"). We shall treat the latter as an unknown. One
thus has four equations in three unknowns: viz. ,

(gQ Y3 ), (gz
'

Y2 ), and e /e terms in Z&7

g y' +g'y' +2g 'y +2g y +3g 'y

+ay,'+by,'=0 . (4.13)

gi, g2
' have been determined already and the equation

contains three new free parameters g'„g2, g3 '. We
rewrite the equation as

V. IMPROVEMENT COEFFICIENT
OF THE FORM g ( e, e)

In this section we shall consider an improvement
coefficient g(e, e) which is a finite function of e at e=o.
Noting that g = —g /e, g has an expansion

g1 Y4 +2g Y +3g y =known (4.14}
g(e', e)= g h„(e)e'"= g g h„"e'"e" .

n=0 n=Ok= —1

(5.1)

Double poles in X to this order cancel if

Z (2) + 2y05 + 1 y05 + 3y05 + Oy14 + 1y14+ 2 Y14
17,5 g0 4 gO 3 g0 5 g1 2 g1 3 g1 4

+g
—1 y23 +g

0 y23 + 1 y23 + —1 y32 + 0 y32
2 1 2 2 g2 3 g3 1 g3 2

In this case Tof Eq. (3.6) is

T= —P Y+ P'(e) — gZ
2 Be

—1 y41 0 (4.15) = —P'Y+ g 2nh„(e)e "Z ' . (5.2)
2

In Eq. (4.15), the coefficients go, g„g2 ' are already
determined. One could eliminate g', between Eqs. (4.14}
and (4.15). One could substitute for go in Eq. (4.15) from
Eq. (4.10). One then obtains an equation containing the as
yet arbitrary parameters

3 2 1 0 —1 0 —1
gO~g 1 ~g2~g3~g4 ~g2~g3

0(eo): no constraint,

0(e ): ho '=0, (5.3)

We consider X and T, order by order, as in Sec. IV. We
shall write, directly, the constraints placed on h„'s. They
are
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O(e'): h', Y", +h Y", =0,
0 ( 6). h

—I [Pe Yol & Y02 ]
—()

(5.4)

(5.5)

APPENDIX A

We have defined [see Eq. (4.2)]

Here p3 is the coefficient of the 0(e ) term in p'. As
the quantity in the square brackets is not zero (see Ap-
pendix A) Eq. (5.5) and hence Eq. (5.4) imply that

h =0=ho1

0 (e s): h 0[2Pe Y02 Y03 ]

peal"e 2I'

Z, ~Z,„'=1+g
r=1s=1

In this appendix we shall derive the relations among
Y,q" used in the text. p' is defined by

[P'(e) —
—,'ee]=p e =p, (eop '~2Z, ')

Bp Bp

+h -'[4P'Y" —2Y", ]— Y ', =0,
$2yo" = —Z[ ' —$1yo3 —goy0 4 174 1 3 2 2

0 (e 10). h 0I [2pe3 Y03 Y04]

+hz '[4p3Y~z —2Y'3 ]—a1'3=0 .

(5.7)

(5.8)

(5.9)

This implies

8 /3'(e)
p lnZe =

Bp
' e

Further Z ' satisfies

eE —ep lnZ, .
2 Bp

(A2)

Equations (4.7) and (4.9) have a unique solution for h,
and h2 ':

h'[2/3;Y, —Y4 ]+2h~[2P;Y —Y ']
+3h 3 '[2P3 Y&' —Y& ]=known .

(5.10)

Equation (5.10) is analogous to Eq. (4.14) and has an
infinite number of solutions for h '„h 2, h 3

'. In a similar
manner, one obtains an equation analogous to Eq. (4.15),
which can be satisfied by infinite choices for

ho A 1)h2)A3)h4 )A2)A3

p lnZ '=2y (e) .
Bp

Thus, we have

p, ln(Z ~Z ') = 2y (e)—2q
'(e)

or equivalently

p (Z, ~Z ')=[/3'(e) —
—,'ee] (Z, ~Z ')

Bp Be

'(e)
2y (e) —2q (Z,2~Z ') .

(A3)

Thus the energy-momentum tensor can be made finite
by this kind of improvement program also up to 0(e' ).
Next we shall show, in a manner analogous to the previ-
ous section, that this kind of an improvement program
definitely fails beyond 0(e ' ).

Cancellation of quartic poles in T to 0 (e '
) requires

P'(e)=P3e +0(e ), y (e)=y 2e +0(e ),
we obtain

(A5)

—
—,
' (2r +2 ) Y~+ I+ ' +/33 Y~"(2r)= (2y z

—2qP3) Y'i",

Now consider the coefficient of e " /e" on both sides
of Eq. (A4). Defining

h [2p3Y'4 —Y,']+2h~ '[2p3 Y3 —Y„]=aY4 (5.11) I.e.)

and cancellation of quintic poles in T to 0 (e '
) requires

h, [2P'Y5 —1' ]+2h '[2P'Y —Y~ ]=aY'5 . (5.12)

As in the previous section it can be verified that Eqs.
(5.7), (5.9), (5.11), and (5.12) are inconsistent equations,
proving the failure of this kind of a finite improvement
program in 0 (e' ) and beyond. As noted in the previous
section the breakdown takes place most probably in
0(e' ) itself.

1;+I+' = [(2r +2q)p3 —2y 2] Y'„q" . (A6)
I

r+1
To obtain Yq" using Eq. (A.6), one needs to only know

Yf' is easily related to /33 and y z. The result is

Yf' =(2qP3 —2y z) . (A7)

As seen from the values of p3 and y 2 stated in Eq. (B9)
Y~" is always nonzero (here, q ~ 0).

We now deduce a number of related results used in the
text:

@14 2y23 —,'(8p; —2y 2) —,'(8p; —2y 2)
13 22(i) 1" 2Y =2Y3 Y2

3 2
WO.

This has been used below Eq. (4.12).

(ii) p3Y' ——'Y '= Y '[p' ' —'(2p' 2y )l=—Y—i [—p3 —y z]1

This has been used below Eq. (5.5).
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APPENDIX B

We have defined

=a
17

Y r(e2)r=X X
A, =o r =1p =1 E

We wish to relate the quantities Y z, Y 3, Y 4, Y 5 that ap-
pear in Eqs. (4.8), (4.12), (4.16), and (4.17) which we wish
to show are inconsistent. These relations are obtained via
the renormalization-group equation satisfied by Z, 7, viz. ,

[ —
A,e+P (A, , e)] Z, 7+

2
+p'(A, , e)

'BZ 17
Xm 17»~17 15T57 ~

Be
(81)

We expand X)7 (showing only the necessary terms)

2 4 6 8 10 4 6 8 10 2 6 2 4
, Ae b, ke Ae dAe fle ke he e, e d, A e, A e

E E2 E3 E4 E5 E E2 E3 E4 4 E3

2 2 3 2
, A. e . A, e

E2 E3

We also expand P (A, , e), P'(A, , e), y (A, , e) as

p2(g e)=g2 ~ Z(() + e~ ~ Z()) + e ~ gg()) gg(() p) 4+piLge2+p2g2+. . .
Bk 2 Be 2 Be

2 8 az(1)
p'(Ae)= Z,")+eA, —=p3e +, y (Ae)=y )A+y 2e +

2 Be

(83)

Next we compare the coe%cients of A,e' /e, e' /e, A,e /e, A,e /e, e /e, e /e, A,e /e, 1, e /e, A, e /e, and A, e /e
on both sides of Eq. (81) and obtain successively

6f +(Sp3+—p~2 —2y 2)d —2y, m'+2/3, d'=0,

P, c —Sm'+(8P3 —2y 2)g =0,
—5d +(6/3;+P, —2y, )c —2y,g+2P, f'=0,

(84)

(85)

(86)

This, together with
—3c'=(2y, —P, )a'

obtained in I and the following values calculated explicit-
ly,

—4c+(4P3+P2 2y 2)b' ——2y, h +2P)c'=0,

p, b' —4g+(6p3 —2y 2)h =0,
p)a' —3h —2y 2k =0,

3b'+(p2 —2p3——2y 2)a' —2y, k =0,

(87)

(88)

(89)

(810)

—4j+(2P, —2y, )c'=0, (812)

4f'+(2p2+2p3 2y —2)c'+(p, —2y ) )b—'=0 . (813)

—Sd'+3p) j +(p) —2y ) )c +(2p2+4/33 —2y 2)f '=0,
(811)

p2 — p 2, — p2,9 — 1

g~' g~2
1 1

Vml

(815)
1 1f3'=, a'=

16' 48vr 3( 16w2)2

enables one to express Y2, Y23, Y 4, and Y5 (denoted by
b', c, d, and f, respectively, in the above equations) in
terms of "k," the simple pole terms in Z, 7 of 0(e ), a
quantity which we have not calculated. This enables one
to look upon Eqs. (4.8), (4.12), (4.16), and (4.17) as four
equations in three unknowns (go Y3 ), (g2

'
Y2 ), and k

and verify their inconsistency.
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