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The temperature-dependent quantum-electrodynamic corrections to the Helmholtz free energy F
of a particle at rest, and to its inertial mass m;„,„„are the same: 4F =Am;„,„,=~e'(kT) /3m. By
contrast, the correction to the total energy U=F+TS is AU= —hF. Donoghue, Holstein, and

Robinett have pointed out that if (as the equivalence principle appears to imply) weight is propor-
tional to total energy, then the gravitational acceleration of a particle inside a blackbody cavity be-

comes g(m +AU)/(m +AF) =g(1 —26F/m) &g. However, while F represents the random kinetic

energy of (and is thereby localized on) the particle, further analysis now suggests that the entropic

energy difference ThS =6 U —AF is distributed over the cavity uniformly and independently of the

particle position. If so, then the gravitational pull on TAS cannot affect the motion of the particle
well within the cavity, so that it will, after all, experience the universal Galilean acceleration g.

Consider the quantum-electrodynamic corrections of
order e to the motion of a charged particle which is at
finite temperature, in the limited sense that it is exposed
to blackbody radiation described by Planck's formula. '

In other words, the average values, of the photon occupa-
tion numbers are maintained at (ni ) = I/[exp(/3coi) —1]
by an external reservoir of heat (i.e., of photons). By con-
trast, the particle is not in thermal equilibrium. On the
contrary, to begin with we take it to be in a state specified
by its momentum p. [Later we shall, without further
comment, apply the results to particles described by
quasiclassical wave packets having a reasonably well-
defined (mean) position r as well as a reasonably well-
defined (mean) momentum. ]

For the equation of motion one requires the radiative
correction AF to the Helmholtz free energy of the parti-
cle, since at finite temperature work done on the particle
by external forces (e.g., electric or gravitational) is regis-
tered as a change in F rather than in the total energy U.
Conformably with our scenario, F is in fact the free ener-
gy of a state of constrained equilibrium (the particle is
formally constrained to momentum p); all thermodynam-
ic quantities in the paper refer to such constrained equi-
librium states, whose thermodynamic status has been dis-
cussed in detail elsewhere. ' Further, our radiative
shifts AI', AU are defined to vanish at T =0; they are un-
plagued by divergences since we suppose the usual (zero-
temperature) renormalizations to have been performed al-
ready (so that m, for instance, is the physical mass ob-
served at T =0).

For a nonrelativistic particle under such conditions
one has

p~ b,o(T)
hF = b,o( T) + 0 ~ ~

2ftl Vl

where

bo(T)=ere (kT) /3m .

In fact, provided kT &&m, the total free energy and the

momentum are related in a pseudo-Lorentz-invariant way
best displayed as

[m+bo(T)] =(F+AF) p— (3)

Eqs. (1) and (2) entail for the total energy at rest the shift

b, U =(1—Td/dT)bF = bF = —50 . —

[The momentum- or velocity-dependent contributions to
b. U are too small (i.e., of too high an order in 1/m) to
a(feet the subsequent argument. ]

In light of these results, DHR (Refs. 6 and 7) have
made the following most remarkable and stimulating ob-
servation about the way such a particle would fall under

even though (3) is warranted by perturbation theory only
to leading order in 60 and AI'.

Equation (3) and the consequent equation (1) exhibit
the fact that the shifts in the free energy at rest and in the
inertial mass are the same, both being given by 50. Thus,
the equation of motion under an applied force f is

(m +60)d r/dt = f .

In other words, Hamilton's equations on a classical level
and Heisenberg's equations on a quantum level yield
p=(m +b,o)r, p = f. All these results have long been es-
tablished, though recent discussions have tended to put
more explicit stress on the status of 60 as a correction
specifically to F. Early papers can be traced from Refs. 3
and 4, which also discuss the thermodynamic aspects.
Equations (3) and (1) (which break down when kT )m)
will be taken for granted in the present paper. One proof
(along with a systematic approach through Feynman dia-
grams) has been evolved by Donoghue, Holstein, and Ro-
binett (DHR); a more pedestrian one based on the opti-
cal theorem, along the lines of Ref. 3, will be given else-
where. 60 itself will be calculated below.

By virtue of the standard thermodynamic relation
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d'z m —~o g= —g(1 —2b,o/m) .
m +ho

(7)

As DHR put it, this suggests that "Aristotle was right:
heavier objects fall faster. " [This at least is what (7) en-
tails for charged particles in principle: in practice, the
effect is far too small to be measured. ]

DHR's view of the problem appears natural from an
approach via Feynman diagrams, which tend to direct at-
tention to plane-wave states, i.e., to totally delocalized
particles, and which do not, therefore, automatically
challenge one to investigate the distribution in space of
the various energies involved. In fact AF is accounted for
by the extra kinetic energy of the particle due to rapid vi-
brations driven by the random electric field of blackbody
radiation. These vibrations are centered on the ordinary
(formally, zero-temperature) trajectory of the particle,
and are established practically at once when the particle
enters the cavity [in sharp contrast to the enormous time
scale needed to establish the true (unconstrained) equilib-
rium ]. The relevant point is that all the energy
represented by AF is localized at the particle: the two
necessarily move together. That hF =60 indeed consists
of kinetic energy is shown in the Appendix.

By contrast, as regards the diA'erence

AU —AF= TAS,
a more pedestrian alternative ' to the diagrammatic ap-
proach suggests that TAS, the entropic part of 6 U, is to-
tally delocalized, in the sense that it is spread out essen-
tially uniformly through the volume V of the cavity or
quantization volume. The argument will be given
presently. If the conclusion is correct, then the spatial
distribution of TAS remains unchanged as the particle
falls. Hence, the gravitational pull undoubtedly exerted
on the energy Tb S would perhaps be felt by the walls of
the cavity or by the heat reservoir responsible for main-
taining the Planck distribution; but the pull would not be
transmitted to the particle itself while the particle
remains well within the cavity. Accordingly, its fall
would be governed not by (7), but by the familiar equa-
tion

(m +b,,}d'z/dt'= —(m +4 )g,
dzldt = —g.

Thus the particle would fall normally, i.e., according to
Galileo rather than Aristotle: in the language of DHR
(Refs. 6 and 7), one would not after all be faced with a
violation (whether real or merely apparent) of the
equivalence principle.

It remains to verify the uniform spatial distribution of

gravity (e.g. , about the fall of an electron inside a black-
body cavity on the surface of the Earth). If one assumes
(as at first sight seems almost self-evident) that the gravi-
tational pull acts on the total energy U (rather than on
F), then the weight of the particle is
(m+6, U)g =(m —bo)g, and the equation of motion
(with z measured vertically upward) is

(m +ho)d z /dt = —(m —Ao)g,

the energy Tb,S (i.e., of the entropy). The argument will
automatically supply a convenient form of 60. Start from
the radiative shift 5E(i, ( ni [ ) of the pure state which in
zero order (in the absence of any radiative coupling) is
specified as having the particle in an energy eigenstate
~i ), and the Maxwell field likewise in an eigenstate
~ [ni J ) of the set [ni„[ of all photon occupation numbers.
The shift 6E can be calculated either by conventional per-
turbation theory (e.g., nonrelativistically from the cou-
pling —e A.p/m +e A /2m), or via a shortcut through
the optical theorem. ' The results are the same:

5E(i, [ n & ] ) = g n i 5oiz", (10)

whence
6 U = g [ ( n ( coi })5coi +coi 5 ( n ( coi ) ) ]

=5F+TAS .

Here bF =g ( i(cd ))i5coi as in (13), while

a(n(coi) )
6cog .

Bcog
ThS = g coi5(n(coi)) = +~i

(14a)

(14b)

(15)

S;nce „a(„&/a~=pa(n)/ap= —Ta(n)/aT, the rela-
tions (5) and (6) are, of course, satisfied identically.

Next, we observe that the energy TAS stems wholly
from a change of photon numbers: the reservoir
responds to the introduction of the particle by reabsorb-
ing a number of photons, counted by the ~5(n ) ~

[note

with

5'~'= —2m.f"(co~)/coi V .

Here, f" is the polarization-averaged forward-scattering
amplitude of light from the particle in state ~i ). Evident-
ly 5cu&' could be envisaged as the frequency shift of the
field oscillator A, due to the particle. (We consider only
particles far enough from the cavity walls for the usual
position-dependent image forces to be negligible. )

In our case the index i specifies the momentum of the
particle. To apply Eqs. (1)—(3), one need evaluate only b,o
(i.e., b.F for a particle at rest), so that f"=—e /m is just
the forward Thomson amplitude:

5toi=2vre /mcus V . (12}
Standard thermodynamic perturbation theory' now

yields AF at once, as the average of the level shifts over
the unperturbed canonical ensemble (constrained to given
p). Thus b,F is found simply by replacing the ni in (10)
by their thermal averages ( n (coi ) ):

5cog
bF = g (n(coi))5coi = g (13)

From this one obtains b,F=b, o as in (2) by substituting
for 5ioi from (12) and performing gi (Ref. 1).

The relation between 6U and AF now becomes obvious
and explicit. Because the total energy U is the expecta-
tion value of the perturbed energies over the perturbed
canonical ensemble, one has

( U+ b, U ) = g ( n ( cubi +5coi ) ) (coi +5coi ),
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that c)(n ) /c)co is negative].
The argument concludes by recalling that photons are

just excitations of the normal modes (of the coupled sys-
tem cavity plus particle); and that their energy densities,
governed by the normal-mode amplitudes, are essentially
uniform throughout the cavity (provided only that the
temperature is not too low, i.e., that the dominant wave-
lengths 2~/K, „-2m/kT are much shorter than the
linear dimensions of the cavity). We say "essentially uni-
form" because, in principle, though in fact only marginal-
ly, the amplitudes are, of course, affected by the location
of the particle, just as they would be by small changes in
the cavity shape. The point is that, the energy TAS being
wholly due to the presence of the particle, small nonuni-
formities in its distribution that are themselves due to the
particle are only a negligible secondary effect. Such
effects are of the same relative order as are any other de-
viations from the asymptotics dictated by Weyl's theorem
(number of normal modes proportional to V). It may
help to forestall confusion to contrast TAS in this respect
with the shift bF: Eq. (13) shows that b.F stems from a
small relative shift in the energy of the preexisting pho-
tons (present even when the particle is not); and we know
a posteriori that these small relative corrections, far from
being uniformly distributed, actually do reside on the
particle itself, constituting as they do a shift in its kinetic
energy.

To sum up, we have outlined a plausibility argument
suggesting that the distribution in space of the entropic
difference T4S between the energies AU and AF is in-
dependent of the position of the particle within the cavi-
ty. If so, then the gravitational force on TES cannot
contribute to the downward pull on the particle, which
would, therefore, fall according to (9), i.e., with the ordi-
nary, universal, Galilean accelaration g (Ref. 11).

Of course, a wholly convincing demonstration would
need to introduce the local stress tensor, and then to ana-
lyze explicitly the forces acting on an arbitrarily small re-
gion that contains the particle. Neither our argument
nor the earlier contrary suggestion by DHR (Refs. 6 and
7) can confidently preempt such an analysis. As com-
pared with DHR, we would claim only that our formal-
ism does at least invite the question of the possibly
different localizations of bF and of TAS, while in their
diagrammatic method, though in many respects it is
more flexible than ours, this question has not, so far, been
raised at all. Since the question, though irrelevant to
feasible experiments, is challenging in principle, it is to be
hoped that quantum field theorists better equipped than
the present writer to tackle the full calculation will soon
resolve it conclusively. '

APPENDIX: IDENTIFICATION OF h,I
AS KINETIC ENERGY

Since b,F is a (canonical) average of the level shifts oE
defined just above (10), we need merely identify 5E itself
as an expectation value (in a pure state) of the kinetic en-
ergy operator. Recall that AF =60 relates to a particle at
rest (in zero order, i.e., until driven to vibrate by the
blackbody electric field). The zero-order Hamiltonian Ho

and the coupled Hamiltonian H are (in the Coulomb
gauge)

H0=p /2m +Hrad (A 1)

H =m' /2m+H„d, (A2a)

m=(p —e A), (A2b)

H =H +HI" +HI"0 int int (A3a)

Hint —e A.p/m H =e A /2m (A3b)

Here H„,d = fd V(E„,d+B„,d)/8m = gzcoznz, the zero-
point energies have been dropped because they are ir-
relevant to the argument. With [a&,a& ]=5&»,
n~=a&a~, k:—(k, s), and K e, (K)=0, e, = 1, we have'

A= g (az A&+a& Az),

1/2

e, (K)exp(iK r) . (A4b)

(n /2m ) = ( tn~] I
A I In~I )

2

+2n&I A&I = g n&I Az2m m
(A5)

The thermal average [nz~(e 1) '] then beco—mes'

2e I dKK z 2
et'~ —1

(A6)

reproducing b,o as given by (2).
The same expression emerges from a classical model

featuring the normal-mode electric field amplitude E&. In
response to E& a classical particle vibrates at frequency
co&=A& with an amplitude x&= —eE&/men&. The result-
ing time-averaged kinetic energy T& is

(A7)

By considering the energy density of the normal ~ode
one can see that coznz/V =2IE&I /8', whence

Since our particle is at rest (p=0), H';„", annihilates the
zero-order state vector Ip=O) I n&I ), and drops out of
the proceedings altogether; by the same token, there are
no single-photon admixtures. But then, to order e, our
result follows trivially. On one hand, the energy shift is
just the zero-order expectation value of H;n„which now
reduces to (H „,') =(e A /2m ). On the other hand,
the kinetic-energy operator is m /2m, and (given p=O)
its expectation likewise reduces to (e A /2m ). Thus
the entire perturbative shift is indeed identically the same
as the expectation value of the kinetic energy. Evaluating
it one finds
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iE&i lro&=4mn&Iro&V . (A8) 2~e 1 ~ "x
m V

& co&

It is worth noting that both sides are Lorentz scalars.
Substitution into (A7) and summation over normal

modes yields

which is precisely the level shift given by (10) and (12). A
direct connection with (A5) can be made via
E&= —A&=i co~ A&.

The particle has charge e and mass rn. We use natural and un-
rationalized Gaussian units: A = 1 =c, e =,37 Only nonrela-
tivistic particles are considered, and only temperatures such
that kT « m. Photon normal modes are defined as usual in a
{real or fictitious) quantization volume V. They are labeled
by A, , which embraces both the polarization index s and the
wave vector K, with Kz —=co&. Sums over normal modes are
written g~; since blackbody radiation is isotropic and unpo-
larized, we have V '+&=2(2n. ) 'f d'It =tr f dKK .

0J. Wainwright (Sussex M. Phil. thesis, 1988) has described,
through a Langevin-type equation, how such particles do
eventually reach equilibrium, with (p) =0 and (p ) =3mkT.
However, by then one s interest in their dynamics is much di-
minished [and not only because the relaxation time is
~=135m'/32m'-e (kT) =5X10"(300/T) sec for electrons,
and the original observer long since dead].
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'~In their 1986 paper (Ref. 6} DHR suggest and evaluate an ad-
ditional effect, ascribed to a supposed vertical variation of the
equilibrium blackbody temperature T [and thereby of ho( T)],
due to the variation of the gravitational potential. If opera-

tive, this effect would upset the Galilean result (9) once again.
However, to the present writer the argument seems to de-
pend, essentially, on the maintenance of strict local equilibri-
um within the cavity. If the cavity is empty of matter (except
for the particle under study), the radiation behaves like a di-
lute gas with mean free path much longer than the cavity di-
mensions; consequently there is no local equilibrium, and
DHR's argument does not apply. We shall ignore the effect
elsewhere in the present paper; likewise we ignore any possi-
ble consequences of the variation of the equilibrium tempera-
ture up the walls of the cavity. Indeed DHR themselves ig-
nore al1 this in their 1987 (i.e., later) paper (Ref. 7).

Though our reasoning suggests conclusions different from
DHR's, it should be stressed that we have not managed to
identify just where theirs fails (if indeed it does). However, by
hindsight and very tentatively, the physics of our approach
might direct suspicion to two specific points, both concerned
with subtleties apparently inoffensive in other problems. (i)
Since the spatial distribution of the energy is of the essence, it
is perhaps conceivable that diagrammatic expressions rou-
tinely evaluated for plane waves require some unconventional
adaptation to particles realistically described by wave pack-
ets. (If so, it would simply be by luck that our more elemen-
tary approach can dispense with such elaboration. ) Put more
technically, DHR's q =0 (zero-momentum graviton) limit
might be unexpectedly accident prone (nonuniform?) in the
presence of the heat bath. (ii) The physically crucial diagram
is evidently the vertex coupling the graviton to the photon.
But in the real-time formalism natural to the problem, pre-
cisely this diagram suffers, at q =0, from a mathematically
undefined coincidence of singularities (Ref. 6). DHR define
their answer by an analytic continuation from the imaginary-
time formalism. Their procedure, though popular, entails an
element of choice, which may need to be exercised unconven-
tional1y in order to fit the physics of this particular problem.


