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Solvable two-dimensional models and the Virasoro algebra
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The Poisson brackets of various solvable two-dimensional models are specified by the Virasoro
algebra. As a result, their equations of motion result from appropriate evolution equations. These
models share an infinite number of conserved quantities and the same central charge and are related
by suitable changes of dynamical variables. In the quantum version, the conserved quantities are
modified diff'erently but the central charge is common.

I. INTRODUCTION lI. CLASSICAL THEORY

Conformal field theory in two dimensions (2D) plays an
important role in string theory and solvable 2D models. '

We have noted in the past that the solution of various
classical nonlinear 2D models can be obtained from the
condition that the appropriate curvature two-form 0=0
(Ref. 2). This suggests that these models are closely relat-
ed among themselves; here we further explore the close
relations among the models discussed in Ref. 2. The con-
dition for solvability is the existence of an infinite number
of conserved quantities. ' We focus our attention on
these conserved quantities and the central charge c in the
classical version of the Virasoro algebra which specifies
the Poisson brackets.

Here is an outline of our paper. Following Gervais,
we begin with the Poisson brackets of the Virasoro gen-
erators L„and obtain the Poisson brackets of their
Fourier transform u (x). The Korteweg —de Vries (KdV)
equation for the amplitude u (x) then follows from the
evolution equation given a suitable Hamiltonian. The
infinite set of commuting conserved quantities involved
(which include the Hamiltonian) arid the central charge
are obtained. We proceed to transform amplitudes from
u (x) to p(x) amplitudes via u (x)=p (x)+p„(x), where
the subscript denotes a derivative with respect to the x
variable, and obtain the Poisson brackets of p(x). As a
consequence, the modified Korteweg —de Vries (MKdV)
equation, sine-Ciordon (SG) equation, and Liouville (L)
equation are obtained from the evolution equation for a
suitable Hamiltonian. When v(x)=p +ip„ is formed,
another form of the KdV equation follows. The con-
served quantities and c are shared by the KdV, MKdV,
SG, and L models. Finally, the additional transformation
p(x)=g ( )+xf (x) is made, and the nonlinear
Schrodinger (NLS) equation is obtained from the evolu-
tion equation. Comments are made on the P model and
the quantum version of the aforementioned models.

We wish to emphasize that the Virasoro algebra em-
ployed below is not a degeneracy symmetry; i.e., its gen-
erators do not represent charges that commute with the
Hamiltonian. Instead, they constitute the dynamical
variable (amplitude) of the system, and the algebra serves
to specify its dynamics through their nontrivial commu-
tators with the Hamiltonian.

where L, are the Virasoro generators and c is the central
charge.

We introduce the field u (x), when the time dependence
is suppressed:

u(x)=2% g L e (2)

where the scale factor 2A is a parameter chosen to yield
the appropriate commutation relation in the quantized
field theory, and the constant —,

' is included to remove the
5' term from the Poisson brackets of u (x) that results
from (1). The periodic boundary condition
u (t,x+2~)=u(t, x) is imposed throughout, and it is as-
sumed that u (x) has continuous x derivatives of any or-
der. From (1) and (2), we obtain, with the aid of
5'(x) = —5(x)/x,

[u (x), u (y) I =2srh[ —5'"(x —y)+2u (x)5'(x —y)

+2u (y)5'(x —y)], (3)

where the primes on the 6 function are derivatives with
respect to x, provided the central charge is chosen to be

c =3/A .

Observe the formal analogy of Eq. (3) with the quantum
commutator of stress-energy tensors, which also
represent the Virasoro algebra in the context of confor-
mal field theory.

The infinite set of conserved quantities H„of the KdV
model are given by

2~H„= dx wz„+, (u), n ~0,
4~Pi o

where

Wl —0,
n —1

t
WIt + l ~ WyW~ y W

y= 1

The wz to ws that result from (6) are

The Virasoro algebra for classical systems is expressed
in terms of the Poisson brackets

i IL„,L I =(n —m)L„+ + —,', c(n n)5„+—
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, (7)
m4 = —u '"+4uu ', m5 = u ""—4uu "—3u +2u

It is shown that ' '

IH„,H }=0 .

Then, from (9) with u supplanted by p, and (ll), the
MKdV equation follows:

p, = Ip, H, }=p, —6p p (13)

The conserved quantities of the MKdV model H„(p) can
be obtained from (5) and (9) or from

Indeed, the KdV equation follows from the evolution
equation

n —1

Y„,= —8, Y„—p g Y„Y'„
k=1

(14)

u, = Iu, HI,
provided 0, is picked as the Hamiltonian so that

(9) 2~H„= dx pY2„, (p) .
4mB o

(15)

1
u = ~ u, dx —u .=u —6u(x)u (x) .XXX X (10)

In order to obtain the SG equation in the light-cone
frame, we identify the field P(x) with

We pause here and remark on the physical significance
of the conserved properties of the KdV equation. The
equation of motion of the KdV Lagrangian

yields

(16)

The Poisson brackets of p (x) and P(y) follows from (11)
and (16):

tp(x), P(y) }
= —&A'2m6(x —y),

or, generally,

or, for u =P„
u, —6uu —u =0 .

This 'is another form of the KdV equation that follows
from (10) upon u ~ —u. The Hamiltonian density for X
1s

H —$3 + 1/2 —u3+ 1 u2

jp(x), P"(y) }
= 2~&fing"—'5(x —y) .

The Hamiltonian

Hso = f dy(1 —cosPP), P=2V'A'
8mB

and p, = jp, Hso } with (17) lead to the SG equation

B,„P=——sin(PP) .1

(17)

(19)

Therefore the integral corresponds to H2 of (5):

H2= f dx tu, = f dx(u' —,'u„') .
1

The KdV equation describes shallow water waves, where
the amplitude u is proportional to the depth. The H2
expresses the conservation of energy of shallow water
waves. On the other hand, Ho and H, express conserva-
tion of mass and horizontal momentum, respectively.
The KdV equation is invariant under the scale transfor-
mation u~A, U, t +TIE, x~—XII,, p~AP, as this
symmetry holds for the evolution equation (9) and the
Poisson brackets (3).

In order to derive the MKdV equation and the SG
equation from the evolution equation (9), introduce the
variable u(x)=p +p and obtain the following Poisson
brackets ofp (x) from (3):

jp(x),p(y)} =2~iri5'(x —y), p(x)=p(x+2') .

Consequently the Poisson brackets (11) is also equivalent
to the Virasoro algebra.

We substitute u (x)=p +p in the H, of (5) and to ob-
tain

The conserved quantities of the SG and MKdV equation
are obtained from the conserved quantities of the KdV
given by (5) in the following way.

We substitute u ~—v in (7) and define

H„( —v) =K„,[v (x)=p +ip ] .

It is straightforward to show

(20)

p'+ip„ f dy e'«"' =O. (21)

If I" is an integral of a polynomial of v, v, v ~, . . . and
real, i.e., F (u) =F (u), (21) implies

F(v), f dy e'«' ' = F(v), f dy e

=0 (22)

Then IF(u), Hso }=0, and

(K„),= [K„(v),Hso }=0 . (23)

K„(u) are the conserved quantities and one obtains the
commutation relation of v by putting u ~—u in (3):

H, = — f dx(p +p ).
4m% o

(12)
[ v(x), u(y) }= 2vrh[5"'(x —y)—+2u(x)5'+2u(y)5'] .

(24)
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Another form of the KdV equation is obtained from the
evolution equations (9) and (24) for the Hamiltonian K, :

or

iP+g,„2—K~/ =0 . (35)
U, = IU, K, }=U„„+6vu„. (25)

H, = — f ei'~ay,1

Smk

which satisfies

(26)

In a similar way, we obtain the Liouville equation in
the light-cone frame with the Hamiltonian

To the extent that the Poisson brackets (30) is obtained
from a suitable change of variables of the Virasoro alge-
bra (3), the corresponding central charge is identical with
that of the aforementioned models, i.e., c =3/fi. Howev-
er, the conserved quantities (33) are difFerent.

We comment on the P model that is also solvable. If
we choose as the Hamiltonian

(K„),= jK„(U),HL }=0 .

From the evolution equation, one obtains

p, =&RB,Q= Ip, HL} =
—,'e~~,

(27) H= f (P 2—P )dy
32K 0

then

01

(28)

yields, with the aid of (17),

40.t+0' —4=0 .

Ip(x),p(y) }=i 2mfi5'(x —y), (29)

and further substitute p (x)=tP„(x)+g (x), where p (x) is
not Hermitian, in (29) and find the following Poisson
brackets consistent with (29):

In the previous classical models, the central charge has
been chosen to be c = 3/A'.

In order to introduce the classical nonlinear
Schrodinger (NLS) equation we normalize (11) with a fac-
tor i on the right-hand side as we anticipate an extension
to commutators, III. QUANTUM THEORY

The canonical quantization of the p (x) field is obtained
by replacing the Poisson brackets (11) by the commuta-
tion relation

[p (x),p (y)] =i2miri5'(x —y) . (36)

In this case, however, it is not possible to obtain an
infinite number of conserved quantities. This may be
traceable to the fact that in two dimensions the P theory
is not conformally invariant.

I g( ),xg (y) } =ivrA5(x —y),
I1it(x), 1((y)}=If'(x), gt(y)} =0, O~x ~2m. .(30)

If we expand p(x), which we take to be Hermitian, in a
Fourier series"

The conserved quantities H„are obtained similarly from
(14) and (15):i.e.,

n —1

k=]

p(x)= g a e'"", a„=a

we obtain

[a„,a ]=nh'5„+ 0 .

(37)

(38)

n —1~2, 3, . . . , (31)

H„= f dx Yg, (32)

where K is a real positive parameter, and Y„ is a polyno-
mial in P, g and their derivatives.

The H„ for n =1,2, 3,4 that result from (31) and (32)
al e

The a„ is a creation operator for n &0 and an annihila-
tion operator for n )0. The vacuum ~0) is defined as
a„~0)=0, n )0. The normal ordering designated by::
is specified by putting all annihilation operators to the
right of creation operators.

The quantum SG equation, for example, is formulated
by introducing the P field via (16) and expanding it in the
complex z plane:

H, = fdxg glnA,

H2= —f dx g„/Iran%,

H3= —fdx(Q„f„+Kg g )/mfi, .

H4 = fdx(g„„g, +3K/ P P')/~fr .

Qn
P(z)=q —ia 1 0nzi+g

"
z

n~O "
(33) where

[q, a„]=iiri5„0 .

(39)

(40)

Q= I Q, H3} = i( —g,„+—2K/ p ) (34)

If we choose H3 as the Hamiltonian HNL, the evolution
equation yields the NLS equation

In the classical case, each Poisson-brackets operation
of a polynomial of fields and their derivatives acts once,
leading to IP, Q }=iiiR. In the quantum case, because of
the multiple application of commutation relations, one
obtains the more general form [:P::Q:]=A'":R:. That is
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H„=:H„:+g A":H„":,
k=1

such that

(41)

to say, terms with higher powers of R and singularities
appear. It is shown in Ref. 9 for the NLS that an infinite
set of quantum polynomial conserved quantities H„cor-
responding to the classical case H„can be constructed, of
the form"

c =1+12 P, + 1

2 ~

1—1 —12
p&7

—3'2

2

2

(46)

[H„( x),H(y)]=0 . (42)
in agreement with (49).

The added terms are quantum corrections.
We return to the SG model where the Hamiltonian

Hso of (18) is defined in the quantum version as

H = '(2 —e t'~" —c -'«")
p2 4tri z

(43)

c =1—
A, , A. =—(1——'P irt)

12 2 1
(44)

or

with p=2&fi It is .shown in Ref. 5 that there is an
infinite number of corresponding conserved quantities
H„, and that the central charge is

IV. REMARKS

The Poisson brackets for the amplitudes u (x) for KdV
and P(x) for MKdV, SG, and L models may all be ob-
tained from the Virasoro algebra. In the classical version
they share the infinite number of conserved quantities
and the central charge. In the quantum version, howev-
er, the conserved quantities are modified, but the central
charge of the SG and L models is still common. For the
NLS model, the Poisson brackets of the amplitude g(x) is
consistent with the Virasoro algebra but a comparison of
(7) and (33) indicates that the conserved quantities of the
NLS are diFerent from the other models.

3'/3— (4&)
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