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General solutions of covariant superstring equations of motion
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The equations of motion arising from the Green-Schwarz Lagrangian for the superstring are
solved for both commuting and anticommuting variables. The form of the solution depends on the
number of independent Grassmann parameters; we are able to give the most general solution in
some cases, but not all. The method of solution is to use an octonionic formalism for ten-
dimensional vectors and spinors, and the solution is given in terms of a number of octonion parame-
ters.

I. INTRODUCTION II. THK EQUATIONS OF MOTION

The covariant formulation of superstring theory of
Green and Schwarz' has not been fully explored at the
classical level. A complete knowledge of the classical
solutions of the equations of motion arising from the
Green-Schwarz Lagrangian can be expected to be helpful
in quantizing the theory; it will enable one to elucidate
the structure of the gauge symmetries and hence to give
an explicit description of the phase space of the super-
string.

In this paper we look for the general solution of the
equations of motion of the Green-Schwarz superstring in
its critical dimension D=10. We find that there are
di6'erent forms of solution, depending on the number of
independent Grassmann parameters in the fermionic
variables of the superstring, and on the assumptions one
makes about the dependence of the bosonic variables on
Grassmann parameters. Thus the general solution would
contain a number of difFerent cases. %e have made the
simplifying assumption that both bosonic and fermionic
variables have their lowest possible Grassmann degree.
There are still a number of difFerent cases to be con-
sidered; we have found the general solution in one of
these cases, and a wide class of solutions in all the others.

Our solutions constitute a considerably wider class
than those found by previous authors. They require a
choice of gauge on the world sheet, since we assume a pa-
rametrization in which the metric is constant, but they
are fully covariant in space-time coordinates.

In Sec. II we discuss the equations of motion and put
them in the form in which we will solve them. The solu-
tion uses an octonionic formalism ' which we expound in
Sec. III. In Sec. IV we use this to find general solutions
under the assumption that the bosonic variables do not
depend on Grassmann parameters (have no "soul, " in
DeWitt's terminology. '

)

The variables in the Green-Schwarz formulation of the
superstring are the world-sheet metric g ~ (a,P=1,2), the
space-time position, X" (p=0, . . . , 9) of the world sheet,
and two anticommuting Majorana-%eyl spinors 0
(2=1,2). We note that Majorana spinors g have a sym-
metry property in their covariant bilinears, namely,

fir"4z =+42)'"4l

where the + sign applies to commuting spinors and the
—sign to anticommuting ones; and that Majorana-Weyl
spinors in ten dimensions satisfy a famous identity which
reads

(2)

for commuting spinors g, and

for anticommuting spinors $„$2,$3. As we will see in
the next section, this identity appears naturally in the oc-
tonionic formalism.

The variables g ~, X", and 0 are all functions of the
world-sheet parameters cr =(o,r), and the action is

S= Id~dr[ '& gg t'II~II—-—~ —~IV(u' —u' )2 pP a pfI pP

+e ~u'"u ]a pP

where

II~ =a~~ —u.'~ —u 2~,

U "=0"y"0 0 no sum over A .

To discuss the equations of motion it is convenient to
introduce on the world sheet a zweibein Iu+, u I satis-
fying
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u u~+u u~ =g ~

from which it follows that

~a f3

Q+u u+ua ft P a

u+u+~ 0 u u

u+u =1,

g =(E~gQ +it + )

Then any world-sheet vector V can be written as

(7a)

(7b)

(7c)

(7d)

H+ =0+v 8 v+ (17b)

Using the definition (6) of U
~" and the symmetry proper-

ty (1) for anticommuting spinors, these become

0+H" =28 0 'y"0+0',

a H~=2a e'~~a O'.
(18a)

(18b)

Equations (9), (11), and (18) are the equations to be
solved for H~+ and 0 . They fall into two similar pairs,
with H and 0' decoupled from H+ and 0; we need only
consider one pair, and will therefore drop the indices and
consider the equations

V =V u++V+u
with V+=V u+ .

Now the equation of motion obtained from the action
(4) by varying g can be written

(9)

and that obtained by varying X" is

a.[&—g ( —a X~+2U gu. +2U'~u., ) ]=0 . (10)

The equations for 8' and 8 can be reduced, using (10)
and the anticommuting Fierz identity (3), to

H" y„B+t9'=0,

H~y„a e'=0.
(1 la)

(1 lb)

[Note the significant role played by the fact that the 8's
are anticommuting variables. If they were commuting
their equations of motion would both be consequences of
the X"equation (10).]

We now use the reparametrization invariance of the
action (4) and change to world-sheet coordinates
o.—=o.+~ in which the components of the metric g are
constant; we take them to be

(12)

Then the zweibein can be taken to be

u+ =(1,0), u =(0, 1) (a=+, —); (13)

8+ —u+B
BcT

Now (10) becomes

a a x~=a .~g+a, "~ .

From the definition (5) of II( we obtain

a a X~=a H~+a v'~+a

=a 11~+a Up+a vs� .

(14)

(15)

(16a)

(16b)

this removes a potential ambiguity in the symbol 0+, for
it gives

H"H„=O,

H&y„a, e=O,

a H~=2a aqua g.

(19)

(20)

(21)

We shall see that (19) is a consequence of (20).
Our procedure will be to take a lightlike vector H", for

which there exists a convenient parametrization, ' find
the general solution of (20) for a+8, then find the general
solution of (21) for a 8, and finally impose the integrabil-
ity condition which would make it possible to find 0 given
0+0 and 8 0. For commuting variables this program
can be carried out in full generality. Grassmann vari-
ables, however, admit more complicated types of solu-
tions and we must analyze the Grassmann structure of
the variables.

The commuting variable H and the anticommuting
variable 0 belong, respectively, to the even and odd part
of a Grassmann algebra, and can, in principle, contain
terms of any degree. Equating terms of each degree in
Eqs. (20) and (21) would then give two towers of equa-
tions. For simplicity we will assume that both H and 0
contain only terms of lowest degree; i.e., the components
of H are pure numbers while those of 0 are basic an-
ticommuting elements of the Grassmann algebra (vectors
in V if the Grassmann algebra is the exterior algebra of a
vector space V). Then (20) remains one equation, and (21)
splits into two equations:

0+H =0,
Oy"a O=o .

(22)

(23)

a+8=a, y, + . +a,y, , (24)

Thus our assumption requires II (i.e., II ) to be a func-
tion of (o.—~) only, as is generally assumed. In principle,
however, II could have a soul (terms of higher
Grassmann degree) which could be a function of both
0 v and cT+v.

The solution of (23) depends on the number of indepen-
dent Grassmann elements among the components of 0+8.
This number is at most eight, since for a given Il Eq. (20)
reduces to 8 the number of independent spinor com-
ponents in 8+8. Let it be g; then we can write

Eliminating a+a X from Eqs. (15) and (16) yields

a+H =8 v+ —8+v' (17a)

where a„.. . , ag are anticommuting scalars and
are commuting Majorana-Weyl spinors. Now

put
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~-~=~141+ +txl 0~ (25)

where g ~h 8, u~+&, . . . , a& are independent anticom-
muting scalars and the P; are commuting spinors. Then,
because of the independence of the e, and the a;o. . with
i &j, Eqs. (20}and (23) give

Ii„y"lt(, =0 for 1 & i &g,

QJy"g; =0 for 1&i &g &j

(26)

(27)

(28)

Thus the fermionic equation (23) can be reduced to a
number of bosonic equations (26)—(28). The remaining
equations (19) and (20) also involve essentially commuting
variables, since 8 occurs only linearly in them. To solve
these equations we use the octonionic formalism for ten-
dimensional vectors and spinors which is summarized in
the next section.

III. OCTOMOMC FORMALISM
(RKFS. 8, 9, 11,AND 12)

A vector X" in real (9+1)-dimensional Minkowski
space is represented by a 2 X 2 Hermitian octonionic ma-
trix

(in block form}, where X is the 2X2 matrix correspond-
ing to the ten-vector X~. Note that this gives

0 1

1 0 (34b)

Here octonionic matrices are to act on octonionic
columns by the obvious combination of matrix multipli-
cation and octonion multiplication. Regarded as opera-
tors on octonionic columns, these y matrices satisfy

ty", y'} =2i)"'=2diag( —1, +1, . . . , +1) .

Their product is

(35)

0 —1
(36)

so the objects (]) and („)are the chiral projections of g.
Each of these Majorana-Weyl spinors has two nonzero
octonion components.

Identifying the usual 32-real-component Majorana spi-
nor with its four-octonion component form, the corre-
spondence between the expressions for the scalar and vec-
tor bilinears formed from two spinors gl and g2 is

X= X X
(29)

4142 «(fly'42»
(37)

when x —=X kX and x =X +X'e&+ +X e7 is an
octonion representing the transverse components of X;
x =X —X'e

&

—. —X e7 is its octonion conjugate.
Then the Minkowski square of the ten-vector X, with sig-
nature (

—+ + ), is

X"X = —x+x +IxI = —detX .p (30)

X"F =
—,'«[tr(XF')], (32)

where the index-lowering operation t is accomplished in
matrix form by

Y'=JY J J= 0 1

—1 0 (33)

In particular a lightlike ten-vector can be constructed
from a column g=(~ ) with two octonion components p, q
by forming the singular Hermitian matrix

X=g', (31)

where the dagger denotes matrix transpose together with
octonion conjugation.

The Minkowski inner product of two ten-vectors
X",Y", corresponding to Hermitian 2X2 matrices X and
Y, can be written as

where on the left y" is a 32X 32 component real matrix,
while on the right-hand side the matrix products are per-
formed using octonionic multiplication, and Re denotes
the real part of an octonion. Since g, and $2 are Majora-
na spinors, these bilinears have the symmetry properties
of Eq. (1).

The 2 X 2 matrix representing the ten-vector
V"=g,y"f2 can be expressed in terms of the chiral com-
ponents of g, and p2 as

( klk2 —4201 }+( 91)2—9291 } (38)

with the superscript t defined as in (33), and with the
signs chosen as appropriate for commuting or anticom-
muting spinors.

In this formalism the Fierz identity (2) appears as a
simple consequence of the properties of the octonions as
a division algebra. ' Suppose g=(]); then according to
(38) the ten-vector fy"g corresponds to the 2 X 2 matrix
V = —2(g~ and so, by (34),

Majorana spinors g in ten dimensions have 32 real
components and will be regarded as being made up of
two 16-component objects, f=(~~), where g and r) each
have two octonion components. A suitable representa-
tion of the Dirac matrices is defined by

0
y

Now if g=(~~ ) we have
T

(39)

0 X
Py"= Xt 0 (34a) (g' )'= (40)
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IV. SOULLESS SOLUTIONS

We now use the octonionic formalism to solve Eqs.
(19)—(21). Let II denote the 2 X 2 matrix corresponding
to the ten-vector H", and write the Majorana-Weyl spinor
Has

(41)

where g has two octonion components. Then the equa-
tions to be solved are

det H=O,

11'e,g=o,
B+H =0,
2(B g)(B~g) —2(8~$)(B g) =0 .

(42)

(43)

(44)

(45)

and then (g' )'g=O follows from the alternative law for
the octonions. '

Since (2) is true for all: commuting Majorana-Weyl spi-
nors g, it amounts to an identity on products of y ma-
trices which is symmetric in three of its matrix indices.
This identity yields (3) for anticommuting Majorana-
Weyl spinors.

variable, it would follow that g could be replaced by 8+/;
in fact, for commuting variables we have

II'/=0~II =rg' (49)

+l
0

(i =1, . . . , g;j=l, . . . , h) (50)

where r is real [showing that the first equation of motion,
Eq. (19), is a consequence of the second, Eq. (20)]. This
would give a nonredundant parametrization of H and
8+/ by means of 17 real parameters (r, g). However, the
Grassmann nature of 8+/ means that we must retain the
distinction between the parameters describing H and
those describing 8+/. Since (p, q ) occur only in the com-
bination pq ', there are nine parameters (r,pq

'
) for II

and eight (o) for 8+/. [We keep the two symbols (p, q)
and use the combination pq

' to emphasize that these
refer to the octonionic projective line, with a point at
infinity included, so that the parameter space is an 8-
sphere. ]

On expanding 8+8 in terms of independent Grassmann
elements, as in Sec. II, we are led to consider commuting
spinors

As we have seen, Eq. (42) can be solved by taking

II =g't (46)

satisfying (26)—(28), which become

Hy; =0, (51)

for some two-component spinor g, i.e. , II"=gy"g for
some Majorana-Weyl spinor g; conversely, if detII=O
there is a two-component spinor g such that II =g' . Let
g=(~~). This is a redundant parametrization of the light-
like vector II; if g is another possible choice, it must be
of the form

g;co~+coig; =pico;+co;y. (i &j ~g ),
g;co& +ci)&g; =0 (J )g ) . (53)

With II=g' and g=(~), as before, the general solution
of (51) is

(pq ')s;

Ve ')e'
q' with Iq'I =lql if q&0

(47)

s. (54)

where s; is any octonion. Now the general solution of
(53) is

with Ip'I = lpl if q=0 .
(pq ')&,

with (s, , i, & =0, (55)

Thus each lightlike vector corresponds to a 7-sphere of
spinors g. (If we normalize II by requiring II =

—,
' trII = 1,

then II is restricted to an 8-sphere in the light cone and g
is restricted to the 15-sphere g g= 1; the map (~II is the
Hopf map from the 1S-sphere to the 8-sphere, whose
fibers are 7-spheres. '

)

As is pointed out in Refs. 6 and 7, the supersymmetric
identity (2) implies that if II"=gy"g, then the equation
of motion (20) is solved by 8+8=/; in our formalism, if
II is given by (46), then (43) is solved by 8+/=/. The
general solution of (43) in these circumstances is

x( )x( )'=x;x,'.
Then, according to (47), y(~) is of the form

(56)

where the angular brackets denote the Euclidean inner
product between octonions. This can be seen as follows.

If y; is given, Eq. (53) is a linear equation for co . Put-
ting co =( ) and writing out (53) as a matrix equation, us-
ing (54), shows that (y, s;) =0 and x is uniquely deter-
mined by y. Thus the space of co satisfying (53) is seven
dimensional. Now let y(~) be a curve of spinors, labeled
by a real parameter ~ with y(0) =y;, which belong to the
same fiber as y,. under the Hopf map: i.e.,

(48) (pq ')s(~)
X( with Is(r)l = Is, I

. (57)
i.e., apart from a real multiple 8+/ belongs to the same
fiber as g under the Hopf map. If g were a commuting DifFerentiating with respect to v. and putting ~=0 shows
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that ro =g'(0) is a solution of (53). From (57) we see that
this is of the form (55); since t~ =s'(0} lies in the tan-
gent space to the 7-sphere at s(0)=s, , this is a seven-
dimensional space of solutions.

Thus each co with j)g is specified by an octonion t.
which is orthogonal to s;, . . . , s . Since the s; are in-

dependent, we can choose 8 —g independent t to give

COg + ]y ~ ~ ~ y 108~

Now we turn to Eq. (52). This equation is specifically
due to the anticommuting nature of 0, and we do not
have the most general solution. Clearly co;=y; is one
solution. More generally, if we suppose that co;, like g;,
belongs to the same Hopf fiber as g, i.e., that

(pq ')t;
(58)

We will call the octonion q; the "Hopf parameter" of g;.
The solutions are

(62)

(63)

8

r} 8= g aalu)+ g ag, ,
i =g+1

(64}

where ai as are anticommuting scalars 4o . . 4s
are commuting Majorana-Weyl spinors belonging to the
same Hopf fiber, the Hopf parameters of ttj„. . . , 1(s being
orthogonal unit octonions, and a; =a,

From (63) we obtain an integrability condition which
must be satisfied by a;, g;, and a;.: namely,

then (52) reduces to
g 8

g t) (a;1t;)= g 8 +(a, a,,g, ) + g B+(a,11, ) . (65)

(s;, ti ) =(t;,si) . (59)

We can assume that (s;,s ) =5, ; then the general solu-
tion of (59) is

i =g+1

The solution (62)—(64) is probably the most general for
g ~ 3, but we have not proved that 1(„.. . , fs must be-
long to the same Hopf fiber as go. This is certainly not so
if g = 1, when the general solution is

t; = g a;js.+t;,
j=1

(60}
~+0=&ifi (66)

pi

q;
h p, q, '=p, q (61)

where (a;. ) is a symmetric g Xg matrix and t is orthogo-
nal to s1, . . . , s . The part of co; containing t can be in-
corporated in cog+, and so we can assume that t,'=0.

We have now arrived at forms for 8+0 which we can
describe as follows. We will say that two Majorana-Weyl
spinors $„1tj2 "belong to the same Hopf fiber" if

&=~iP+~2gp+ +trsfs,
where the 1(; are as before but p is arbitrary.

(67)
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