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Higher-dimensional black-hole solution with dilaton field
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Using dimensional reduction by isometry from a higher-dimensional Einstein theory, the higher-
dimensional black-hole solutions are considered. We obtain the spherically symmetric black-hole
solutions in (4 + n)-dimensional spacetime with the dilaton field. It is shown that the contribution of

the dilaton field affects the gravitational coupling.

I. INTRODUCTION

As the higher-dimensional unification!? of gravitation
with other interactions became interesting, many authors
began to study higher-dimensional theory in an effort to
find the generality and the universality of the theories of
physics.

In a local direct-product basis the (4-+n)-dimensional
unified metric g 45 may be written as

g,u,v +e 2Kz(zSabB H/,LB bv eK¢abB bv
8an exkB a,u¢ab ¢ab

where e is the coupling constant, « is a scale parameter of
the isometry group, and B, is the gauge potential of the
isometry. Hereg,, (u,v=0,1,2,3) is the four-dimensional
metric and ¢,, (a,b =1,2,...,n) is the internal metric.
Many solutions have been found which are static spheri-
cally symmetric in higher-dimensional spacetime. These
solutions are classified by various viewpoints: (1)
definitions of the radial coordinate, e.g., three-
dimensional or general-dimensional radial coordinate; (2)
dimensions of spacetime, e.g., five or higher than five; (3)
topologies of the internal space, e.g., flat, sphere, torus,
or other geometry; (4) parameters of the solutions; (5) the
types of action, e.g., Einstein-Hilbert action, or additional
actions; (6) conformal transformation of the base space-
time metric, etc.

There are simple generalizations of the wusual
Schwarzschild, Reissner-Nordstrom, and Kerr solutions
with®>* or without the cosmological constant.® These
higher-dimensional solutions are established on the
higher-dimensional, general sphere. Thus the radial
coordinate r in these solutions is treated as the general
one: r2= 3713 (x1)?, where n denotes the extra dimen-
sion added to four-dimensional spacetime. As a special
case of the solution of Myers and Perry,* Chakrabarti®
found the eight-dimensional Kerr-type solutions with oc-
tonion algebra.

Static spherically symmetric or axisymmetric solutions
of the five-dimensional vacuum Einstein equations, which
have the form M*XS! asymptotically, have been dis-
cussed as black-hole solutions’ !! and monopole- or

) (1.1)
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instanton-type solutions. >~ !* All static, spherically sym-
metric solutions of the five-dimensional vacuum Einstein
equations have been found and classified by Chodos and
Detweiler.®

In the aspects of internal space topology, some authors
have considered the case of Ricci-flat internal space. In
particular, Dereli’® and Yoshimura!® have classified all
solutions for which internal space is Ricci flat while the
base space is a two-sphere. Dobiasch and Maison’ con-
sidered a more general case, in which the internal space is
flat and the external base space represents a two-sphere,
but the metric is supplemented by additional nondiagonal
terms corresponding to Abelian gauge fields. Myers!’
found Majumdar-Papapetrou-type solutions of the
(4+n)-dimensional Einstein-Maxwell solutions for the
case of the torus internal space. Van Baal and co-
workers!® studied the case in which the internal space is a
seven-sphere, in the context of 4+n=11 supergravity.

In the viewpoint of a parameter for charge Chodos and
Detweiler® derived a class of five-dimensional solutions,
which contains three parameters but only two of these
are independent. The solutions of Gibbons and
Wiltshire!® are more general than those of Chodos and
Detweiler, in that the metric contains an extra nondiago-
nal term, which brings about the third independent pa-
rameter: magnetic charge. Dobiasch and Maison’ con-
sidered an internal space with the Abelian isometry
group in a space of more than five dimensions, which
gives the corresponding parameters. There also had been
the non-Abelian gauge field case in general® or special di-
mensions.?® Sokolowski and Carr?! had shown that there
are no neutral black-hole solutions with a nontrivial sca-
lar coupling between four-dimensional spacetime and the
n-dimensional internal space, except in the charged
black-hole cases.

There can be solutions for actions to which are added
the terms containing higher powers of the Riemann cur-
vature to the (4+n)-dimensional action. Since such
higher-power terms allow the possibility of spontaneous
compactification?? they also give the regular dimensional-
ly reduced black-hole solutions. Wiltshire?* had the solu-
tions on an (n +2)-sphere, which is the generalized form
of Myers and Perry.* Some work has been done by Tom-
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imatsu®* and Myers and co-workers,? especially to see
the effect in string theory. They obtained the
Schwarzschild solution and then treated terms arising
from the higher-order curvature corrections as perturba-
tions.

In any higher-dimensional unification a central issue is
how to make the dimensional reduction. So far a
widespread method has been the use of the “zero-mode
approximation”2® of the harmonic expansion, after spon-
taneous compactification?’ of internal space. Unfor-
tunately the method has serious defects in many as-
pects.?»?° Thus we adopt the method of dimensional
reduction by isometry.?3% Since internal space need not
be compact in this reduction, the internal curvature can
assume a negative as well as a positive value. The impor-
tant point of our dimensional reduction is the way we
identify the physical spacetime metric. Now the point is
that g,, may not be viewed as the spacetime metric. 3!
To remove the defect one has to make the conformal
transformation

gpv—"g‘uv:‘/Tﬁgp.v (1.2)

and must identify the new metric g,, as the phy-
sical one.>! Here the new physical metric is assumed to
have the spherically symmetric form g,
=diag(—B(r),A(r),rz,rzsinze). There also have been
solutions with a dilaton or conformally transformed
metric. Pollard® used such a type of metric, showing the
antigravity effect in five-dimensional spacetime. Mazur
and Bombelli!! had stationary rotating axisymmetric
five-dimensional solutions with a dilaton field and showed
that the rotating Kaluza-Klein black hole is described
uniquely by the trivial embedding of the Kerr metric in
five-dimensional spacetime. Gross and Perry!® and
Yoshimura!® also obtained solutions in five or higher di-
mensions with a conformally transformed metric. But
they did not treat or find the roles*? of the dilaton field,
such as renormalization at a classical level or the an-
tigravity effect with a variable gravitational constant.

The purpose of this paper is to represent a higher-
dimensional generalization of the black-hole solution, to
understand the dynamical roles of the dilaton,3! and to
compare their characters with other black-hole solutions.
Here we investigate the higher-dimensional solution by
dimensional reduction onto the three-sphere, not the gen-
eral sphere, to see the roles of the dilaton field clearly.
For convenience ¢,, =¢'""(r)pay, Pap =84, and B, =0
are assumed in this paper. That is, the internal space is
Ricci flat with a dilaton field not considering the gauge
field. Black-hole solutions are given in Sec. II without
the cosmological constant A and in Sec. III with A. Con-
cluding remarks are in Sec. IV.

II. BLACK-HOLE SOLUTION

Instead of solving the field equation for &> We start
from the (4+n)-dimensional Einstein field equation by
the old metric g, :

Rup—HRyy,+A)g5=—87GT 4 . 2.1)
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To find the metric components B and 4 of g,,, we substi-
tute g,,=g,,/Y ¢ into (2.1) and obtain the differential
equations for B, 4, and ¢. The nonvanishing Christoffel
symbols are :

"k A’ k
0 _= _ % 1 —_ i !
To=25 729> Th=o7 727
2 ’
k B B k
r\] =_L+r__ I’ 1 -2 D r_,
2T T T TeT o T2
I}, =Tsin, I"f2=l"?3=%—!§-a’, 2.2)
r'};= —sinfcosh, TI'3,=coth ,
k ’ log k !
tllb: Ano_ ek(2/n+1) Sab’ le___.;o, Z ,
where o is the dilaton field defined by>!
172
1 1 |n+2
= —1 = — 1 N
o=r n¢ > " ] n¢ (2.3)

and a prime denotes differentiation with respect to ». The
parameter k =V'n/(n +2) shows the extent that the
effective gravitational coupling constant®? Gy is varied,
as we can see later. Both ., and 8§ in (2.2) play the role
of the Kronecker delta regardless of the location of the
indices. When k =0 and/or o =const, (2.2) is reduced to
the four-dimensional case. In the case where the internal
metric ¢, is equal to the Kronecker delta §,, purely, i.e.,
the vanishing of the dilaton field, it also approaches the
four-dimensional problem.

Using (2.2) the nonvanishing Ricci tensor components
are

B" , B |4 B B' , Bk
R - D e 2 2 =
00 24 a4l AT B | T AaTA2C
B |B A, 4|k
+= ==L 41 |2y )
A|B 4 rl|a?> @4
R. =48 _B |4 B | A" k_,
1 2B 4B | A B rd 2
A" B 4 |k
+ |22 Koo 32402 )
y N 4’cr +3iko' (2.5)
1 r A' | B’ r? k
Ry,=—+—"— |-L 4+ |1 - 24"
24 24 A B ! A2
r’|A" B 4|k,
Al 4 B rl|a%> 2.6)
R;;=R,,sin%6 (2.7)
1 |4 B 20" | k
—__,kQ2/n+l)o Lt | A _ B 0F LU | A,
Rap ¢ nAd | A B r o 208”1"
(2.8)

When the matterless case without the cosmological con-
stant A is considered, the Einstein equation (2.1) becomes
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R 5=0. (2.9)

Then (2.8) gives the relation

(2.10)

which means the wave equation o =0, since its internal
manifold is Ricci flat. By integration (2.10) we obtain
o'« ~VAB . @.11)
r

Using (2.10), the Einstein equation (2.9) for the Ricci ten-
sor (2.4), (2.5), and (2.6), respectively, corresponds to

B B |4 B | _ 18
i Bl R 1
24 44 | A B ra 212
B B |4 B |_ 14 __ .,
R —— L= : 2.13
28 4B | A B | ra  ° @.13)
1, r|_4a B
L | A B 2.1
i — S | =S =0 (2.14)

Both (2.12) and (2.14) are the same as those of the
Schwarzschild case. But the right-hand side of (2.13)
represents the energy-momentum tensor component by
o-field contribution to the matter field*> while the contri-
bution does not appear in the Schwarzschild case.
From (2.12) and (2.13),
A' | B’ ,
7 + 7 = %k 0% .
In the Schwarzschild or other higher-dimensional
cases* ¢ the right-hand side of (2.15) is zero, which yields
the relation 4 =1/B. But in this higher-dimensional
model (2.15) does not become such a simple form since
the three-sphere instead of the general sphere is the base
space for dimensional reduction.
The component Ry, in (2.4) can be recombined as

(2.15)

| _BEK_|
24 A2
B Bk |[B_a 2|,
2A4 A2 2B 2A4 r ’
(2.16)
With (2.11), (2.16) gives the form as
B~ef? | (2.17)

where p is the integration constant. It is the similar form
to the solution of Brans-Dicke theory** and those of
modified Brans-Dicke theory with torsion field.?* We
will follow the methods taken in those references to solve
our problem.

With the help of (2.10), (2.14) becomes

o __4+1 2.18)

o’ r

From (2.10), (2.15), (2.17), and (2.18),
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A=1+po'r—3ik’c'%r?. (2.19)

When p=0, since 4 does not have the second term in
(2.19),
1/2

4 1| 3k? 3k? ) 2
~——In{r 1|~ 1+ [=—— |r™
p 3k?2 myr 4a 4a ’
, 21— (2.20)
B=1, A= 1+ 3k | GM ,
4 r

where a is the proper constant for (2.11). This solution
does not approach the Schwarzschild solution asymptoti-
cally. Equations (2.18) and (2.19) give the differential
equation for

y'r+y+py?—3ik**=0, (2.21)
where y =ro’. If one gets the solution to y from (2.21),
then the r dependence of o, B, and A will be found.
Though apparently it seems that y=const or p~Inr
satisfies (2.21), this gives rise to 4 =0, from (2.18), which
is unrealistic. In the case of a very small y, we can set
(2.21) into y'r +y =0 and solve it to have y ~1/r or

(2.22)

a

o~

-

where a is a constant to be determined by the require-
ment that the solutions approach the Schwarzschild
metric in the asymptotically flat region. However, con-
stants @ and p will be found by comparing the form of B
in (2.17) with the effective Newton coupling G = Ge ~*°
which shows how the mass gets changed by the dilaton. 32
From the weak-field approximation

2.2

r {y=__F |pa _ pa”
~—— =— + 4.

Gy 2M(B b 2M | r 272

(2.23)

It is taken in the large-r limit. The effective coupling
with setting G =1 will be

‘kvzl_fﬂ_f_
¥

Gy=e (2.24)
If these two representations for the effective coupling,
(2.23) and (2.24), are identified up to O (r ~2), then

p=—2k and a=M . (2.25)

r

The explicit form of the factor of effectiveness of the cou-
pling becomes

—kU:_e—M/r .

e (2.26)

Near the origin the coupling is zero and it approaches
unity asymptotically, which shows that the coupling is
constant for large r. Using (2.26) we get

B=1—-2M ko oy
r

2
2M+2M '

ST 227



40 HIGHER-DIMENSIONAL BLACK-HOLE SOLUTION WITH . ..

The topology of the metric (2.27) is the same as the case
of Reissner-Nordstrém solutions of e2>M?2. Since the o
field, here, plays the role of the energy-momentum tensor
in (2.10) and (2.13) analogous to the electromagnetic field,
it is natural that this metric has the form of the
Reissner-Nordstrom solution by the dilaton field (2.22)
instead of the charge. In this metric there is no event
horizon but a naked singularity which accords with the
other results. Recently Mignemi and Wiltshire*® proved
that the spherically symmetric solutions for the asymp-
totically constant ¢!’/" and asymptotically flat space
without the gauge field have a naked singularity, which
was well known.?? Pollard® and Angus'? also obtained
solutions which had the naked singularity. Since there is
an event horizon for a four-dimensional Schwarzschild
metric without a dilaton field o, one can say that the o
field removes the horizon to show a naked singularity.

If the y® term only is neglected in (2.10), y'r +y
+py2~0, then the dilaton has the form of
1-< (2.28)

o= iln +const ,

where a is the proper constant. For the exact solution of
(2.21) without any approximation, the algebraic equation
for y is given by proper integration

p/2VA
__const

>
r

p—3k¥/2+VA
p—3k%/2—VA

y
Vi+py —3k%y?/4

(2.29)

where A=3k?*+p?>0. Therefore B and A will be ob-
tained from the solution to y.

III. SOLUTIONS WITH A

When the cosmological constant A exists, the right-
hand side of Einstein’s field equation (2.9) is not zero, but
it contains the A term:

_ 8uB
2+n

This equation can be rewritten by its components sepa-
rately:

(3.1

R z=

_égﬁufi %%+€;-—£i=%AB(*“, (3.2)
g§~+f% {%~+€; —f%c=—%AAe*"—;k%f2,

(3.3)
%“'ﬁ — i+% —1=—1Ar%e ko, (3.4)
gé_é%_ %4~%;=—kAﬁ%¢*U. (3.5)

The A term can be a source term for the dilaton field o,
and it makes the inhomogeneous wave equation as (3.5)
instead of (2.10). Thus the A term plays the role of
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energy-momentum added to the effect of the o field.
However, in Egs. (3.2) and (3.3) the A terms cancel each
other, and they give the same relationship (2.15) which is
derived from (2.12) and (2.13) without the A terms.

Since it is very hard to solve the equation, the ansatz
such as adopted in Ref. 33,

r=Be?” (B,y=const) (3.6)

will determine the » dependence of o, B, and 4 (Ref. 37).
With this ansatz (2.15) becomes 4B =r?(§=3k?/4y?).
If we substitute this into (3.4),

-aL(rl-‘c’B)=(1——%Ar2e_k")r5 .

7
o (3.7

By integrating (3.7) with (3.6), o, B, and 4 will become

o=1mL, (3.8)
14
=2 || _2M  siisy, ko
1+8 r
——A 71, 3.9
6—2k /7 re ‘ (3.9)
A:(1+6) 1_¥r~6+k/ye—ko
148 o
- 2e ko 3.10
6—2k /7 r<e ] ( )
Because these metric components approach the

Schwarzschild-de Sitter metric when kK —0 or §—0, 2M
is given as the constant of the second term in (3.9) and
(3.10). The factor e X in the metric plays the role of
effective gravitational coupling except the second term
which has another factor of » "®Tk/Y Of course when
8=k/y, ie., y =3k /4, the other factor of the second
term becomes one not affecting the coupling constant,
and then the effective coupling would be purely e %7,
One may leave k a parameter of the theory which has yet
to be specified. Since o increases logarithmically with r
for positive ¥ from — o to + oo, the effective coupling
grows weaker as the distance becomes farther. When the
constant of the second term is chosen as zero, the metric
will be a de Sitter solution with the effective gauge cou-
pling e "% and the parameter can be determined from
(3.2) and the equation for o.

It is very hard to find the event horizon for the metric
(3.9). Since (3.9) approaches the Schwarzschild—de Sitter
metric as k—0, event horizons near k/y—0 can be
found. There are two horizons analogous to the
Schwarzschild—de Sitter metric for small values of M and
A: the event horizon ry ~(2M)!/1*® and the cosmolog-
ical horizon re~(1/A)"/?7%/7) where A=A(1+8)/(6
—2k /y +28). The horizons are calculated in the limits
of k,M,A—0. But for the case of large k /y there exist
no horizons.
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IV. CONCLUSIONS

We obtained the static spherically symmetric solution
for a higher-dimensional metric through dimensional
reduction into a three-sphere by isometry. The solution
was determined from the Einstein equation derived by a
new conformally transformed metric. Without the
cosmological constant the solutions were similar to those
of Brans-Dicke theory up to a constant since the dilaton
field in our model played the role of the scalar field of
Brans-Dicke theory. Thus the effective gravitational cou-
pling realized Dirac’s conjecture®® naturally on the same
footing of Brans-Dicke theory. With the ansatz (3.6) the
solutions containing the cosmological constant were
calculated. The effect of the dilaton field on the space-
time topology was shown by approaching the
Schwarzschild—de Sitter metric. Thus any other effects,
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such as the quantum radiation patterns for the outgoing
and incoming waves near the horizons, would be investi-
gated by changing the horizons on the analogy of
Schwarzschild—de Sitter ones.*’

As a further discussion our model and the correspond-
ing problem can be extended into the case of p,,#8,,
and/or B, 70 in internal space. Then the dynamical
roles of the gauge fields near the black hole and the
effective gauge couplings which lead up to a classical re-
normalization3? would be understood more clearly.
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