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The dynamics of a reduced cosmic density matrix for minisuperspace is derived by projecting out
inhomogeneous modes. This projection procedure roughly represents the intrinsic loss of informa-
tion beyond the horizon of the local observer. Even if the wave function of the whole Universe ex-
ists, it will be unobservable and therefore should be projected onto actually accessible dynamics.
We use a simple model of the homogeneous Robertson-Walker universe with an inhomogeneous
scalar field. The path-integral expression for the density matrix is derived and evaluated by the
steepest-descent method. We show that the cosmic expansion reduces the quantum coherence of
the scale factor and simultaneously that of the canonically conjugate momentum.

I. INTRODUCTION

The dynamics of the cosmic evolution must ultimately
be described by quantum theory. Especially when we
trace back to much earlier stages of the cosmic evolution,
the effect of quantum fluctuations becomes more prom-
inent. For example, quantum fluctuations themselves
may be the origin of the large-scale structure presently
observed, and they may remove the classical space-time
singularity.!

One of the extreme ideas to describe the Universe by
quantum theory is the introduction of the wave function
of the Universe. This idea has been widely studied.>™*
Although it is possible to calculate the wave function of
the Universe from a simple initial condition and a minisu-
perspace model (spatially uniform matter and space-
time), we have to deduce some observable predictions
from the wave function. The deduction is highly non-
trivial and is always indispensable since the observable
variables are drastically different from the original vari-
ables of the wave function. The logic is quite the same as
in statistical mechanics; the contraction of information
leads to a variety of phenomena even if the basic dynam-
ics is only QED. The deduced results may depend on the
deduction methods. However, a universal property in
this deduction process exists: the destruction of quan-
tum coherence. This will be the origin of why the various
cosmological variables we observe now are well described
by classical mechanics. We are going to study this
decoherence property in this paper. We emphasize here
that the interpretation of the whole wave function of the
Universe, without any deduction, will cause various
difficulties as long as we do not invent any nonstandard
interpretation of the wave function.* One of those
difficulties will be the problem of dispersion. Even if we
can set a definite initial condition, almost all the disper-
sion of physical variables seems to become larger in the
course of cosmic expansion.’ It means that a tiny obser-
vation of the late state of the Universe changes the entire
Universe drastically, which is, of course, inconsistent
with the present structure of the Universe.

In this paper, we consider the dynamics of decoherence
of homogeneous subdynamics by projecting out the inho-

40

mogeneous matter fields. At first we remember that in
many cosmological models, homogeneity and isotropy of
the matter distribution and that of background space-
time (minisuperspace model) are assumed from the begin-
ning. There, the restriction of the model to the minisu-
perspace variables is just an assumption. Here, we would
like to consider a more active role of this restriction pro-
cedure.

If we consider the whole Universe, we cannot observe
all the dynamical variables in the Universe. When we ob-
serve the Universe and interpret the results, we only treat
just a few variables, which can be directly accessible vari-
ables, and neglect the other huge number of variables.
This partial observation is an intrinsic nature in spite of
the ambiguous separation of the variables into observable
and unobservable. For example, the particles which go
out beyond the past light cone of the observer in the
course of cosmic expansion will never be observed by the
observer. Those particles are represented by the inhomo-
geneous modes of the scalar field. Here, we remember
the eternal inflationary scenario by Linde.® There, the
self-reproducing domains appear due to the inhomogenei-
ty of the scalar field. Those domains become causally
separated and the information in the original inhomo-
geneity is lost to the causally inaccessible region of the
Universe. What we can observe is the remaining almost
homogeneous portion of the Universe. This scenario may
justify our projection procedure of the inhomogeneous
mode of the scalar field onto the homogeneous modes.
The qualification of this mechanism will be discussed sep-
arately elsewhere. At this point, there naturally arises a
density-matrix description”® of the Universe that we will
study in this paper. We emphasize that what we want to
do is not an a priori introduction of a wave function of
the minisuperspace,>”* but the projection of the wave
function of the entire Universe onto the density matrix of
the minisuperspace.

The merits of the reduced description are the follow-
ing. First, the density matrix is directly related to each
local observation and there is no need to introduce any
nonstandard interpretation of quantum theory. Second,
it predicts the phase transition from the quantum regime
of the Universe to the classical one. Actually one of our
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main conclusions is that the phase transition does exist
for the expanding universes. The degree of classicality is
indicated by a quantum coherence width of the density
matrix, which we calculate in a simple model. The idea is

- very similar to that of Ref. 9. (The environment there
corresponds to the unobservable inhomogeneous modes
in our case and unavoidable measurement to the back re-
action of the particle production.) Third, the subdynam-
ics description necessarily introduces partially stochastic
evolution which is favorable for the generation of various
structures of the Universe especially in the inflationary
stage.

The outline of this paper is as follows. In Sec. II a
method to project the inhomogeneous variables onto the
homogeneous ones is shown. Then using a simple model
of universe and matter, we derive the density matrix for
the minisuperspace variables in a path-integral form. In
Sec. III the density matrix is evaluated by the steepest-
descent method and the destruction of the quantum
coherence is shown as a reduction of the quantum coher-
ence width of the density matrix. Then the density ma-
trix is transformed into a Wigner function and the similar
destruction of the coherence for the conjugate momen-
tum is derived. Conclusions and further problems are in
Sec. IV.

II. MINISUPERSPACE AS A REDUCED DYNAMICS

The deduction process mentioned in the previous sec-
tion is in general highly nontrivial since we cannot con-
struct a realistic wave function of the whole Universe and
we cannot definitely specify the individual observational
variables. Therefore, we will investigate the deduction
process by utilizing the following very simple model.
Space-time is represented by a spatially uniform and iso-
tropic metric (scale factor a). The remaining inhomo-
geneous modes are discarded for simplicity. Matter is
represented by a scalar field ¢ which couples to the
metric almost conformally invariantly. The zero-mode
condensation is disregarded also for simplicity. Term?

plai,biza_,¢_1=Ca_,¢_lplai,é.)
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which break the conformal invariance are treated as a

perturbation. Our basic strategy is to construct the

effective dynamics of the minisuperspace variable a by

projecting out all the other inhomogeneous modes.'*!!
The metric we consider is

ds*=a*(n)[N*n)dn*—dx*], 2.1)

where N is the lapse function, which represents an arbi-
trariness of the time reparametrization. The Einstein ac-
tion for this metric becomes
a;Z 4
6—+2Aa°N
N

-V
Sg[a]=—1€;r—5fdn , (2.2)

where a prime denotes a differentiation with respect to 7
and A is the cosmological constant. The choice of a spa-
tially flat metric as in Eq. (2.1) forces us to restrict our
consideration within a finite constant coordinate three-
volume V in order to make any calculation finite. The
matter action becomes

2 2
9 | _
9

_ - 3¢
Sal¢l=1[d*x N|N? ” , (2.3

where ¢ is a rescaled field from the original scalar field é
as ¢(x)=a ()$(x). A small mass term and a small cou-
pling term to the scalar curvature are regarded as pertur-
bations:

Sine=—1 [ d*x h(x)¢$*x) 2.4)
with
h(x)=N |m%+(66—1)—= | & ' 2.5)
aN | N ’ ’

The total action S is the summation of the above terms:

=fda;d¢'+da;d¢;fi*:z)a+f:*@mfaf@a_f;“mme“s[”""”‘s[“""”’
a4 + a_ -

From this, we define a reduced density matrix p for the minisuperspace variables:

play,a)=[dé, [db_plas.disa 6166, —¢-).

S[ay¢]:Sg[a]+Sm[¢]+Sint[a’¢] . (2.6)
The total density matrix is given by

Xpla’y,¢'v;a” 0" 1. (2.7

(2.8)

We assume the matter unperturbed state is the conformal vacuum. Then the reduced density matrix is expressed as

plas,a_1=[da’, [da' [ "Da, [ Da_pla’s,a” lexp(iS[a,a_]),
ay a_

where
exp(iS[a ,a_1)=Fa,,a_lexp{i(S,[a,]—S,[a_D}
(2.10)

and

(2.9

f
Has.a_1= [ Do,expli(S, 61 ]+Sim[dsas]
=S, [¢-1-Sinld—a_D} .
(2.11)
In Eq. (2.11), ¢, means a pair of scalar fields ¢, and ¢_
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and its path integration is performed on the conformal
vacuum. This is the in-in formalism of quantum field
theory which is natural and useful for calculating density
matrixes.'>”!* It is straightforward to evaluate Eq. (2.11)
in perturbation series in the interaction. In two-by-two
matrix representation, it becomes

F=exp
~—1 [d% [d*[hy GO (x,x hy(x")

—1Trin | -0, +

0 h_

+h o (O,(x,x" B (x")]+O(RY) , 2.12)
where
hy=m2a2+(66—1) |-= |,
ay
(2.13)
ha=h,—h_, 2h,=h,+h_
and
1. (To(x)p(x'))  {d(x")p(x)) 214
O, | (¢x)e(x)) (Te(x)g(x") |’ '
II,(x,x")=Re{ T(x)p(x))?*,
2.15)

I, (x,x")=2i0(x°—x")Im{ T$(x)p(x"))* .

In deriving Eq. (2.12), we have set N =1 and assumed
the regularization: {$*(x))=0. Fourier transform of the
square of the Feynman propagator becomes

fd”x expl(ipx){ T¢(x)¢$(0))?

::t:% %+(2—y+1n41r)+m'—lnp% +0(e) |,
T

(2.16)

where €=n —4 and v is Euler’s constant. In deriving Eq.
(2.16), we have already confined ourselves to the mini-
superspace description and have picked up a spatially
uniform component (p=0) because within the volume V,
the perturbations 4, are assumed to be homogeneous. A
real term in Eq. (2.16) appears in the process of the ana-
lytic continuation from Euclidean (pz) to Lorentzian (p,,)
momentum: p,,=(—p2,pg) and represents a ¢-particle
production rate, which is therefore necessarily positive
definite. In this paper we do not touch upon divergent
terms since their proper treatment is not yet clear in the
formalism of subdynamics. They may be absorbed into
renormalized quantities by introducing conformally in-
variant counterterms which are quadratic in the curva-
ture tensor as in Ref. 15. Then, Eq. (2.12) becomes

V
Fla,,a_]=exp ~Tor fdnhi(?])
.V ’ ’
——~8’1T2 [dn [ dnen—n)han)

XIn(p—n"h (q") | .

(2.17)
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The first term of the exponent in Eq. (2.17) arises as a
back reaction of ¢-particle production and will cause
diffusion of quantum coherence of the scale factor. The
second term of the exponent in Eq. (2.17) is very similar
to one that appeared in Ref. 15. It represents a dispersive
back reaction of the ¢ field and is needed for the concrete
evaluation of the diagonal elements of the density matrix.
However, it does not have any relation to a reduction of
classical properties of the density matrix.

III. STEEPEST-DESCENT EVALUATION
OF THE DENSITY MATRIX

In the preceding section, we have derived the path-
integral expression Eq. (2.9) for the density matrix of the
minisuperspace variable. We -evaluate this by the
steepest-descent method; the path-integral is approximat-
ed by the integrand with the extremum path (classical
solution). As far as the lowest order of the perturbation
is concerned, perturbation-free classical solutions are
sufficient to the evaluation of the integrand. The
perturbation-free action for the density matrix is given by

S70—_‘Sg[a+]—_Sg[a——]

3N2 +Aa
+

N 4
“gaG 41|V

a’?
—N_ |3~X,2—+Aa4_ , 3.1

where we have chosen a matter vacuum state in accor-
dance with the preceding section. The classical solution
must satisfy the extremum condition

88, "
0= Sa. <q' —2H?%>

(3.2)

and the constraint equation which comes from the lapse-
function independence of the density matrix

85,
o=
8Ni

<q'?—H%*% ,

(3.3)

where H=V'A/3. Here we try to impose the boundary
condition: a; —0 for 7— — «. Then the classical solu-
tion is determined as

cap(p)=—[Hn—P]1". (3.4)

In the gauge N =1, the perturbation becomes

"

a
ho()= |m%? +(66—1)—=
a+

=[m?+(6£—1)2H?]a’ =M?%a? . (3.5)

We put the classical solution Eq. (3.4) into the total ac-
tion Eq. (2.10) and expand it as a series in the difference
of arguments of the density matrix a, —a_ (=a,) as-
suming smallness of a,: l|a,/a.|<<1 2a.,=a, ta_).
The result becomes
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§=-— 4'% (@} —a® )— I/Z—AgacaAH——ln(Hac )]
;g;;acai , (3.6)
which gives an approximate density matrix:
pla ,a_J=Nexp |— ::Tg (a3 —a*)
—%%amd%—ln(Hac )]
- %;Z a,al (3.7)

Here we have taken each lowest contribution of real and
imaginary terms. From Eq. (3.7), the dispersion (the
width of the quantum coherence) o of this density matrix

is given by
g2 =10TH - (3.8)
MV

We should evaluate the degree of decoherence by the
quantity which is almost independent of a normalization
of variables:

1/2

0mH | =32 (3.9)

M4y

[

a

¢

This quantity manifestly reduces with the cosmic expan-
sion: a,— oo. This means that the density matrix diago-
nalizes in the course of cosmic expansion. Since the diag-
onalization means the reduction of quantum coherence
among different values of the scale factor a, we can con-
clude that the Universe we observe (minisuperspace)
transforms from the quantum era to the classical era in
this sense. Furthermore, we can show that even if we
take another boundary condition a . —0 for n— + «, we
also get the same expression for the dispersion. There-
fore, we can claim as follows: in a large universe, the
quantum coherence is small in different values of the
scale factor a while in a small universe, there is a strong
coherence. The loss of quantum coherence may be
caused by a diffusion of information from the homogene-
ous minisuperspace into inhomogeneous modes through
particle production. This classicalization corresponds to
the destruction of the quantum coherence among various
universes and is different from that claimed in Refs. 3 and
4: the appearance of a peak in the wave function of the
Universe. These two classicalization properties are dis-
cussed in the next section.

We have to come back to the validity of the perturba-
tion calculation which led to the above result. Since the
perturbative calculation breaks down for large A (x), we
cannot conclude the final decoherence of the expanding
Universe only from the above argument. Furthermore, at
the late stage of the cosmic expansion, the produced par-
ticles may change the quantum state for the scalar field
from the conformal vacuum. In order to conclude the
final decoherence, some other approximation method
such as an adiabatic approximation will be needed, or
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otherwise, we have to go over to the third quantization of
the Universe where the interaction term Eq. (2.4) goes
over to the time- and space-dependent mass term in the
new action for the field of Universe. These subjects are
beyond the scope of this paper and will be studied else-
where.

Now let us study what is going on in the other repre-
sentation of the cosmic density matrix. A special interest
is the representation in the conjugate momentum of the
scale factor. For this purpose, we transform the density
matrix into a Wigner function W, which is a distribution
function of the variables a, (=a) and the momentum of
a, (=p):

W(a,p)=fdaAexp(iaAp plai,a_]. (3.10)
For large p, the Wigner function, except the prefactor,
becomes

(p —po)?
Waexp |———200 | (3.11)
20,
where
3VH ,, VM*
pozma 12172 a[—;-—-ln(Ha)] »
4 (3.12)

2 MV
oL= T ——— .

7 10mHa

At first glance, the uncertainty in the variable p (of,)
seems to increase with cosmic expansion. However, we
should as before, evaluate the quantity which is almost
independent of a normalization of variables as a measure
of uncertainty. It becomes, for large a,

Op _4GM* " Y
) =~ 3 a , (3.13)

10VH?

where the average of the variable p with respect to W
({p)) is approximately given by p,. This shows that the
uncertainty of the momentum decreases with cosmic ex-
pansion. However, we should be careful that this result
does not necessarily indicate that the coherence in
momentum is also deduced by the cosmic expansion.
Note that the average p, asymptotically becomes the
classical value of the canonical momentum of the scale
factor.

IV. CONCLUSIONS

A reduced density matrix for a scale factor is derived
by integrating unobservable inhomogeneous modes of a
scalar matter field. The path integral form is derived and
evaluated by the steepest-descent approximation. The
width of quantum coherence of the density matrix turned
out to reduce as the Universe expands. This means the
destruction of quantum coherence between universes
with different values of scale factor. Moreover, by trans-
forming the density matrix into the Wigner function, we
found that the uncertainty in canonical momentum of the
scale factor also reduces in the course of cosmic expan-
sion.
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This destruction of the quantum correlation is a
different property from the appearance of a peak in the
wave function of the Universe. Although we have not
emphasized the latter in this paper, both properties seem
to be needed for the complete classicalization of the
Universe: the destruction of the quantum coherence
(which is indicated by the diagonalization of the density
matrix) and the creation of strong correlation between a
detector and the Universe (which is indicated by the
sharp peak in the distribution function). If the former
property were missing, the remaining quantum coherence
among macroscopic systems would introduce a strange
correlation which is incompatible with the self-
independence of macroscopic objects. On the other
hand, if the latter property were missing, the theory can-
not predict anything definite. The complete description
of the classicalization based on the above two properties
is in progress by the author and will be reported in a
separate paper.

Finally we will mention several comments. The intrin-
sic limitation of the observation should more precisely be
considered in an actual cosmological situation. Probably,
the degree of decoherence will change if we change the
reduced variables. However, we do not think that this
leads to an ambiguity of our approach. It just indicates
that the degree of decoherence depends on the energy

4027

scale of the system. We expect that the decoherence will
vanish for high-energy scale and approaches some con-
stant for small-energy scale. To clarify this expectation is
our future problem. Effects of the spatial curvature, in-
homogeneous modes of gravity, zero modes of matter
fields, etc., should be clarified in order to check the gen-
erality of the present results. In the course of cosmic ex-
pansion, the scale factor a becomes classical in the sense
that the quantum coherence width reduces. Simultane-
ously, the distribution of the conjugate momentum p
forms a peak at its classical value. In this sense, both the
variables a and p become definite. We will, in the next
step, check the generality of this result extending the
present model. After this work was completed, the au-
thor noticed papers which discuss the same problem with
different methods.'®
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