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Inevitable ambiguity in perturbation around flat space-time
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Perturbation of general-relativistic predictions around flat geometry, in general, introduces inevit-
able ambiguity. The ambiguity reflects the geometrical nature of general relativity and is never a
difficulty of it. We explain it by taking a concrete example of the radar-echo experiment.

I. INTRODUCTION

There are famous experiments to check the effects of
(classical) general relativity: (1) the deffection of light
passing near the Sun, (2) the perihelion shift of Mercury's
orbit, (3) the time delay of radar echoes between a planet
(Mercury, Venus, or Mars) and Earth, and (4) the gravita-
tional redshift of the electromagnetic-wave frequency.
[Rigorously the last one (4) is not a test of general rela-
tivity but that of Einstein s equivalence principle, see, for
example, Ref. l.j We obtain some values (experimental
data) of angles, time, or frequency for each experiment.
The theoretical predictions for those values are often, ex-
cept for (4), given in perturbative forms around ffat
space-time. For the predictions of (4), an exact formula is
known.

A concrete outcome of the present investigation is that
the perturbative formula of (3) inevitably has ambiguity;
it has no definite meaning. The reason is as follows. In
the perturbation procedure it is necessary to compare
points in two different geometries: i.e., curved space-time
and Hat space-time. The comparison, however, is non-
sense geometrically; in other words, it has no intrinsic
meaning. Therefore, we are forced to introduce, by hand,
an identification rule in order to do the comparison. As a
result, perturbative formulas, in general, inevitably con-
tain ambiguity originating from the freedom of the
identification rule.

There are special cases where perturbation has no am-
biguity. Those examples are tests (1) and (2). In those
eases observed quantities are defined in the asymptotic re-
gion where space-time is Bat. Because of this special con-

''
I

dition we can expand the exact expression with respect to
a parameter (M: solar mass) of geometry without any
comparison of curved and Hat space-times in a
nonasyrnptotic region.

In order to demonstrate the "inevitable ambiguity, "we
will closely examine the perturbative form of the radar-
echoes delay time. Here we must point out that so far
there are, at least, three (post-Newtonian) formulas for
the time delay of radar echoes, even in the same coordi-
nate system. That is, using the same standard coordinate
system, there exist those formulas given by (1) Shapiro,
Ross and Schiff;" Dyson (Misner, Thorne, and Wheeler,
Will' ), (2) Weinberg, Wald, , and (3) Logunov and
Loskutov, where the authors in the parentheses in (1)
utilize essentially the same calculational method as the
other authors in (1) except for making use of the isotropic
coordinate system. Obviously the discrepancy stems
from calculational or interpretative mistakes. Especially
we should note that they use plane trigonometry (includ-
ing the Pythagorean theorem) without sufficient con-
sideration in deriving the formulas. Our secondary pur-
pose is to give a systematic derivation of the perturbative
formula, when an identification rule is given, without us-
ing plane trigonometry and to examine the validity of
these three formulas. We will see, as a final result, (1) is
right while the others are wrong. Furthermore the post-
post-Newtonian order will be treated.

%e will take the following three coordinate systems in
the concrete calculations: (i) the "standard" coordinate
system (t, rs, 8,$), (ii) the "de Donder" one (t, rD, 8, $),
and (iii) the "isotropic" one (t, rt, 8,$). These three coor-
dinate systems are defined in Schwarzschild geometry as

d, 1
2M d, +1 2M

dr,'+ rs (d 8'+ sin'8 d ttp')
rs rs

J

~ —M r +M
dt + drD+(rD+M) (d8 +sin 8dg )D+I D
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M
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M
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27 I

(drt+r&d8 +rtsin 8dg ),
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where M is the mass of a spherical body, and both the
Newtonian gravitational constant and the velocity of
light are put to unity, 6 =c= l. Coordinates t, 8, and P
are common in these three coordinate systems. As is
easily confirmed, coordinates rz, rD, and rr are related to
each other by simple relations:

b =bs=bD =br~ h =hz =hD =br,
where

2M dt z. z d{bs="s n
rs

(1.4)

M
s rD+M =rr+M+

I
(1.2) bD=, hD

—= (rD+M) sin 8
rD —M dt
rD+M dA,

'

Note that the relations (1.2) are one-to-one outside the
black hole (rs &2M, rD &M, rt &M/2). We restrict con-
sideration to the space-time region r& & 2M.

Here we make two points clear.

M
2r

1+
2rr

4

Ar= 1+ rrsH1 0
dt M 2. ~ d(h

2rr

A. Criterion of nonambiguousness

B. Good parameters and variables
to specify the con6guration

of a gravitational system

We have the freedom to choose parameters and vari-
ables to specify the configuration of a gravitational sys-
tem. It is, however, technically important to choose the
best ones in order to clearly discuss the present problem.

j. M: solar mass

S, D, and I coordinates have a common asymptotic re-
gion for r;~~. On the condition that all asymptotic
types of behavior must be the correct Newtonian form

2M
goo &+, r (1.3)

it is guaranteed that we may choose a common parameter
M in the expression of the line element written by S, D,
and I coordinates (1.1). The parameter M will play the
role of the expansion parameter for all tests (1)—(3).

We take the standpoint that nonambiguous quantities
must satisfy the following two conditions.

Condition 1: There must not be geometrically non-
sense procedures in their definitions.

Before stating condition 2, we note the above three
coordinates (1.1) satisfy the following properties: (a) In
the transformation equations among those coordinates,
the spatial part (in the above case r, 8, and {b) does not
contain the time coordinate; (b) in the asymptotic region
(in the above case, the large-r region), they approach the
Oat form with the correct Newtonian approximation.

Condition 2: Nonambiguous quantities must be invari-
ant (or covariant) under the transformations among those
coordinates characterized by (a) and (b).

In the present paper, emphasis is placed on condition
l. (For a thorough investigation of condition 2, see the
original version of this paper, Ref. 6.)

A, is an affine parameter describing the path x"=x"(A,).
This choice is guaranteed either by the requirement of
coincidence of constants in the asymptotic region or by
the fact that this choice is independent of transforma-
tions among S, D, and I coordinates.

Although we will not describe it explicitly, nonambigu-
ousness (check of condition 2) of the tests (1) and (2) can
be easily proved by using the result of Sec. II and the
above choice of parameters. (See Ref. 6.)

3. g: "angle" between Earth and a planet

In test (3) we must use position variables of Earth and
a planet. In addition to two position variables (r~, r~;
A=Earth, 8=planet), we will choose the "angle" g be-
tween the two objects. The "angle" g is introduced as a
variable independent of (M, rz, rz ) and common to S, D,
and I coordinates. The use of g and its characteristic
separation (g„;,g~;; i =S,D, I) will become a key tool of
Sec. III.

After reviewing briefly the tests (1) and (2), for com-
pleteness, in Sec. II, we examine in detail the perturbative
formula of test (3) in Sec. III. Remarks and conclusions
are given in Sec. IV. Detailed explanations and calcula-
tions are relegated to Appendixes A —D. Appendix A ex-
plains general features of the orbit of light in the
Schwarzschild geometry. Appendixes B, C, and D are
detailed calculations used in the light deflection angle
(Sec. II A), the perihelion shift angle (Sec. II B), and the
time delay of radar echoes (Sec. III), respectively.

II. TWO NONAMBIGUOUS KXANIPLES

A. The deflection of light

When light grazes the Sun (mass M), it deffects as
shown in Fig. 1. Using the geodesic equation 5f ds=O
and the null condition ds =0, we obtain the exact ex-
pression for the deflection angle 5 in the standard coor-
dinate system as follows:

2. b: relativistic energy; h: angular momentum

A gravitational system in the Schwarzschild geometry
has two constants of motion. We choose those constants
as

tr+5=2 I p ( )]1/2

F(u):——u +1+2mu

where Uo is a positive zero point of I':

(2.1)

(2.2)
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FIG. 1. The deflection of light by the Sun (mass M).

F(vo)=0 . (2.3)

FIG. 2. The perihelion shift of Mercury.

(For derivation, see Appendix C.) The following notation
is used for simplicity:

(For derivation, see Appendix B.) The following notation
is used for simplicity:

h M b —1

M, m=—h'r 2fP1
(2.9)

U=
I"

M h

b
(2.4)

in the post-post-Newtonian approximation' " (see Ap-
pendix B). The first-order term 4m amounts to 1.75
arcsec at the solar limb, on the other hand, the second-
order term (15m/4)m reaches 1.09X10 arcsec, whose
effect is over 3 orders of magnitude below the sensitivity
of the most accurate deflection experiment to date. But it
is possible to check this order in the near future. ' '
(Perhaps, this is the most promising experiment checking
the post-post-Newtonian effect. )

Here b and h are constants of motion and have physical
meaning of the relativistic energy and the angular
momentum, respectively. Thus the ratio b, =h/b has
physical meaning of the impact parameter. In general
the functions F(U) can have many zero points, but it is
known that the positive solution Uo is unique unless light
is trapped by the black hole. Needless to say, this solu-
tion Uo corresponds to the point of nearest approach of
light to the Sun.

Perturbing with respect to m, we can easily obtain

5=4m+ m +O(m')15m
(2.5)

Here b and h are relativistic energy and the angular
momentum (per unit proper mass of Mercury), respec-
tively. '

In general the functions G(v) can have many zero
points, but it is easily known that there are always two
positive solutions corresponding to U, and Uz, as far as
the orbit of "Mercury" is restricted in a finite region out-
side the black hole. ' All the other solutions are negative
or do not correspond to a finite orbit outside the black
hole. Thus the solutions U, and U2 are uniquely deter-
mined, which, of course, correspond to the aphelion and
the perihelion, respectively.

Perturbation with respect to I (with e fixed' ) gives

5=6+m + m (7+2')+O(m )
15m 4

2
(2.10)

in the post-post-Newtonian approximation" (see Appen-
dix C). The first-order term 6mm2 amounts to 43.03
arcsec per century for Mercury and 4.2 deg per year for
the binary pulsar PSR 1913+16. On the other hand, the
second-order term (15m./2)m (7+2@)amounts to —10
arcsec per century for Mercury and —10 arcsec per
year for the binary pulsar PSR 1913+16. The post-post-
Newtonian effect is too small to be detected in the near
future. "

B. The perihelion shift of mercury

2~+n=2f '
[G(U)]'

G(v)= —
U +2U+2e+2m u

(2.6)

(2.7)

where U& and Uz are positive zero points of 6,

G(v, )=G(U2)=0, Uz) U, . (2.8)

The orbit of Mercury deviates from an ellipse in gen-
eral relativity (Fig. 2). Using the geodesic equation, we
obtain the exact expression for the angle 5 of perihelion
shift in the standard coordinate system as follows:

III. THE TIME DELAY OF RADAR ECHOES

A. Exact expression

A radar signal, sent across the solar system past the
Sun to a planet (or satellite) and returned to Earth suffers
an "additional non-Newtonian delay" in its round-trip
travel time [Fig. 3(a)]. In this section we consider the
three-coordinate systems defined by (1.1). Putting aside
the motions of Earth ( A) and the planet (B) (Ref. 16), we
obtain the exact expression for the round-trip travel time
T; expressed in the i coordinate as'
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6

1+
2roI

M
'

2r OI

(3.4)

(Note that 6 has no dependence on the coordinate
choice. ) Because ro, is always outside the black hole,)0 is assured in (3.4), which is consistent with the
definition (2.4).

We can check the coordinate independence of the total
time Ts =TD = TI using Eqs. (3.1)—(3.4). (There is some-
times a confusion in the interpretation of the prediction
of the radar-echo delay. A cause of the confusion stems
from the misidentification of r~, (rz, ). with the distance'
between the Sun and Earth (planet). With this
identification, Tz= TD= TI do not hold. Because r~;
(rii,. ), in fact, is not the distance but the name of the place
of Earth (planet), the above way of thinking is
incorrect from the outset. A point named r in the stan-
dard radial coordinate has names r —M and
—,
'

I r —M+[r(r —M)]" I in the de Donder and isotropic
radial coordinates, respectively. )

FIG. 3. The orbit of radar signals emitted from Earth (A),
reflected by the planet (B) and back to Earth (2) again. C
represents a point of nearest approach to the Sun. (a) The real
situation with MAO. {b)The ideal situation with M=O.

dr. dr;
T;=2 ' ' +2"; [H (r, )]'" "; [H, (r, )]'" '

i =S,D,I (3.1)

(for derivation, see Appendix D), where H, (r, ) is defined

by

2M
H, (rs) = 1 —— 2M

rs ' rs2

(rD —M) rD —M
HD(rD ) =— 1 —b,

(rn+M) (rD+M)
(3.2)

M
'

2rI
HI(rr ) =

1+
2r&

Q21—
2rI

M
'

' 2;
'6

1+
2rI

H, (r )=00 . (3.3)

[For simplicity we consider only the orbits of type (III) in
the classification of Appendix A (Ref. 18). In this case a
unique ro; exists for each orbit. It corresponds to the
"perihelion" or "aphelion. '* See Appendix A for further
discussions on the orbits of light. ] ro; is related with b, ,
defined by (2.4), as follows:

r„; and r~, are the coordinate values of Earth and the
planet in the i-coordinate system. ro; is a positive zero
point of H, :

B. The inevitable ambiguity in the comparison
of curved and Aat space-times

We cannot obtain a perturbative formula for (3.1) in
the same way as given in Sec. II. First we see the
difference in the technical aspect. In Eq. (2.1) or (2.6), all
the end points of integrals are given by a trivial constant
(0) and the zeros of F(v) [Eq. (2.2)] or G(v) [Eq. (2.7)]
which can be determined by the constants of motion (m
and e). Therefore, the integrals (2.1) and (2.6) can be per-
turbatively expanded with respect to M (or m) without
any comparison of curved and Hat space-times, whereas,
in the case (3.1), the end points r„; and rid; are not such
constants. They are names of positions in curved space-
time. Then we are forced to compare points in curved
space-time and points in Oat space-time in order to obtain
a perturbative formula.

The situation can be explained in a more general way
as follows. In the previous cases, i.e., the deflection of
light and the perihelion shift of Mercury, the physical
quantities are angles defined in the asymptotic region.
(The angle of the perihelion shift can be regarded as the
angle between the two geodesics which pass through the
periherions and the center of the Sun; thus we can say it
is defined in the asymptotic region. ) Since the asymptotic
region is Hat, the comparison of the general-relativistic
predictions with the Newtonian ones has a definite mean-
ing. This is why we do not encounter any difTiculty in the
previous examples. In the general situation, however,
such a comparison has no definite meaning, because we
cannot compare quantities defined in different
geometries. The radar-echo travel time, which is not
what is defined in the asymptotic region, provides an ex-
ample of that situation.

If we want to compare the two different geometries (in
order to "clarify" the difference between two theories
based on different geometries, for example), we must
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specify, by hand, how to identify points on these two
geometries. Such an "identification rule, " which is ob-
viously not unique, has no intrinsic meaning from the
general-relativistic viewpoint. The resultant perturbative
formulas, based on two different identification rules, do
not coincide with each other, reflecting the degrees of
freedom of the identification rule; this is what we call the
"inevitable ambiguity. " In the next subsection, we will
verify this fact in a concrete manner.

C. The time-delay formula
in the post-post-Newtonian approximation

Taking into account the above points, let us obtain the
time-delay formula explicitly.

First we must specify an identification rule between the
Schwarzschild and the Minkowski geometries. As for
coordinates except for the radial one, we can naturally
identify the coordinate variables in (1.1) with the corre-
sponding Oat polar ones because of the spherical symme-
try of the system. As for the radial coordinate, there is
no such natural rule except for the asymptotic region.
%'e should specify the rule in such a way that the radial
coordinate of the Schwarzschild geometry reduces to the
corresponding Aat one at the asymptotic region as well as
M=O. For example, the rule (i) rs=r is an admissible
one, where r is the fiat polar radial distance. (This rule
implies that the point on the Minkowski geometry, apart
from the origin by the distance r, is identified with the
point on the Schwarzschild geometry, named r in the
standard coordinate system. ) As another example, there
are (ii) rs=r +M (i.e., rD =r) or (iii) rs=r +M+M2/4r
(i.e., rI =r). Though the available rules are not restricted
to the above three examples, we concentrate only on
them in the following discussi. on.

For the time being, let us adopt rs = r for the
identification rule. [We, however, continue to use the
sui5x S (D,I) without omission in order to remember the
adopted identification rule. ] In order to make perturba-
tion, we must clarify what are the independent quantities.
Given the solar mass M, the radial coordinates r~s, r~s,
and the "angle" g between Earth and the planet, then the
orbit of light is determined ' [Fig. 3(a)]. Because of the
identification rule, rs is identified with r, which is in;
dependent of M. The "angle" g is also independent of M
(because of the trivial identification rule). Thus the above
four quantities (M, r„s,rBs, g) are independent under the

I

adopted rule rs =r . (Notice that if we adopt another
rule, e.g., rD =r, then rs depends on M, and rD becomes
independent of M [see (1.2)].)

First we consider the case M=O [Fig 3(b)]. Since the
space is Euclidean in this case, we can use the plane tri-
gonometry. Thus the angles gAs and gBs, defined as in
Fig 3.(b) (with i =S), satisfy

gAs+gBs AscosgAS Bs gBs

Solving these equations, we get

(3.5)

g„s =arctan

gBs =arctan

r„,—r„cosg
rBs slilg

rBs rAscosg

rAs sing

(3.6)

When MAO, the above method loses its validity because
rs, in general, does not represent distance and further-
more the plane trigonometry does not hold. But, under
the identification rule rs=r, we can naturally define a
seParation of g into g„s and gBs by Eqs. (3.6) in the
MAO case also, because this separation does not depend
on M; viz. , gAs and gBs are independent of M. This sep-
aration of angle g defines a geodesic MC' [see Fig. 3(a)].
Obviously the geodesic MC', in general, does not coin-
cide with another geodesic MC in the MAO case. The
angle between these geodesics is denoted by 6s in the fol-
lowing. Needless to say, 6s=0 holds in the M=O case
[see (3.12)].

Next, it is important to notice that both ros and 6 are
dePendent on M (even if r„s and (rBs are assumed to be
independent of M) (Ref. 22). How they depend on M are
determined from the fact that the points (rAs, gA) and
(rBs, gB ) must lie on the orbit of light ' (see Appendix D):

where /=0 corresponds to the point of nearest approach
to the Sun and the notation of (2.4) is employed. (The or-
bit of light is restricted in the t9=m/2 plane without loss
of generality. ) Finally we obtain

Us=cosg+m(1+sin g)
2

8
( 3 sing sin2$ —30$ sing —20 cosg ) +0 ( m ),

(3.7)

6 = rAscoSQA +M

T =2(r —b, )'~ +2M

1+sin gA M2 (1+sin gA ) 3singAsin2$A —30gAsingA 20cosgA—
, '+ +0(M )

COSg A "AS 8 cos gA
=( A ~B in the above formula) . (3.8)

M dependence of ros is determined from (3.4) and (3.8). The last equality of (3.8) gives a relation between g A and gB.
Here we are ready to calculate the post-post-Newtonian formula. First, expanding (3.1) (with i =S) with respect to

M suppressing the M dependence of 6, we obtain (see Appendix D)

res rAs+(rAs2 2 1/2

(rAs b )
+2 ln

7r~s —8~ 15
2 2 res+M + m —2 arccsc +( A~B)+O(M ) . (3.9)
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Next, we insert the expression (3.8) into b, of (3.9) and obtain

I+sing„
T=2rA&sin/A+2M —sin/A+in . +

1 Sin/A rAB

1 8

COS QA
+ 1 sing„+ 2 cos

+(A~B)+O(M ) .

Finally we may write the relations

O'A WAS 5S~ 4B 0BS+5S

(3.10)

(3.1 1)

which clarify the M dependence of pA and pB, and are useful for subtracting the round-trip travel time in the absence
of the Sun [see Fig. 3(a)]. The relation (3.8) between p„and pB gives 5z as

1+sin PBs5~=M5, S+O(M ), 5,s= —(A~B) .
co sf Bz(r A+sing Az +rB~singBS )

(3.12)

Because of the second relation in (3.5), the O(5s) term cancels out within the "Newtonian term" of (3.10). Thus
0 (M ) terms in (3.12) are irrelevant for getting the post-post-Newtonian formula. As a final result we obtain

I +SInIjj AzT =2r As sin 0As +2M —sing As +1
1 —

sin/As

+M 1 2 —cos1( As
rAssingAB+rBssingBS COSQAs

Sing AS 8 151)' AS+1 +
2rAs cos'Ir' As 2"AscosPAs

2 2
cosOAs +cosfBs

COS AS COS

+(A~B)+O(M ) . (3.13)

Remember that we have adopted the identification rule rz=r. Of course, we could adopt another identification rule
such as rD =r or rl =I". Then we would obtain

I+Sin/AD
T =2rADsingAD+2M ln

1 —sin

+M 4 1

cosWAD(rAD» PAD +rBD»nPBD ) co WAD

1

COSQBD

sing AD 8

2rAD cos II/ AD
2

154AD

2"AD COSPAD
+( A~B)+O(M ) (3.14)

or

1+sing AIT =2r AlsinfAI+2M ln . +M
1 —sin

4 1

cosg A(lr Asling Az +rBIsingBI) COSPAI

1

COSQBI

4 sin& AI
2

2"AIcos
+(A~B)+O(M ), (3.15)

respectively. [In the past literature, coordinates
(x„;,xB;) defined by xA,. =—r si Af nxAB;=—rB;sin1tB, are
often used, instead of (gA;, gB; ). ]

The M term in (3.13)—(3.15) represents the round-trip
travel time "in the absence of the -Sun. " The M' term in
(3.13), which is the post-Newtonian time delay, agrees
with the result given by Shapiro, Ross and Schiff, and
Dyson. The post-Newtonian term in [(3.14) and (3.15)]
agrees with the result given by Ross and Schift; Misner,
Thorne, and Wheeler, and Will. ' (In the post-
Newtonian approximation, the isotropic formula has the
same form as the de Donder one. ) Though our result
finally coincides with the ones obtained by those above,

we should note that they do not correctly appreciate the
implicit assumption of the identification rule in their cal-
culation. Furthermore, their calculation appears disput-
able. The result given by Weinberg and Wald ' and
Logunov and Loskutov ' is incomplete in the separation
of the total time into the Newtonian and post-Newtonian
parts, and does not agree with our result. The M term
in (3.13)—(3.15) represents the post-post-Newtonian time
delay. [In Ref. 10, Epstein and Shapiro state that they
obtained a post-post-Newtonian formula (unfortunately
unpublished). A post-post-Newtonian formula is ob-
tained also in Ref. 11, but the separation into the
Newtonian, post-Newtonian, post-post-Newtonian, . . .
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terms is incomplete. ] The decomposition (3.13)—(3.15)
does not coincide with each other.

It is useful to estimate the order of each term. If we
take Mars as a planet (8), under a suitable identification
rule, the Newtonian term amounts to -2500 s, the post-
Newtonian term -250 ps, and the post-post-Newtonian
term some tens of picoseconds, at a superior conjunction.
Because the inevitable ambiguity amounts to some tens of
microseconds, the above estimation must be used careful-
ly. As is well known, the post-Newtonian effect is
confirmed by the experiment using the Viking spacecraft
with high accuracy. ' Though the post-post-
Newtonian effect is very small, this level of accuracy also
is not always impossible from the technical viewpoint.
Unfortunately, such an experiment is impossible in the
near future, mainly from economical reasons. For fur-
ther detail about experiments, see Ref. 12.

Finally note that the post-post-Newtonian term in
these formulas is divergent in the limit g +sr (i.—e., the su-
perior conjunction), in which limit g z, ~m /2 and

gii; ~vr/2 as is known from (3.6) and the similar expres-
sions for i =D,I. Thus this term becomes the same order
of magnitude with the post-Newtonian term if

(3.16)

is satisfied. [Fortunately, for the (real) Sun such an ex-
treme condition is not realized because of its large ra-
dius. ] In this case the perturbation expansion, with
respect to M, of T breaks down. In order to deal with
such an extreme case, we must rely on another suitable
approximation rather than the perturbation with respect
to M.

IV. REMARKS AND CONCLUSIONS

We have some remarks about the results of this paper.
(1) The different results of (3.13)—(3.15) should not be re-
garded as coordinate dependence or ambiguity of the pre-
diction of general relativity. It is merely due to the free-
dom of identification rules in perturbation around Aat
space-time. The inevitable ambiguity reAects merely the
geometrical nature of general relativity. It is never a
difficulty of the theory. In this point, we do not agree
with the statement of Ref. 5. (2) As well as the
identification rule, such a notion as the "additional non-
Newtonian delay" has no intrinsic meaning. Note that
the quantity obtained by the radar-echo experiment is not
the delay time but the total trip time, which is uniquely
predicted. Quantities obtained by experiments can be
completely explained by the correct theory (general rela-
tivity) only and require no comparison with another in-
correct theory (Newton theory).

We have pointed out inevitable ambiguity in perturba-
tion around Aat space-time. Although the problem ap-
pears in a familiar gravitational system such as the
radar-echo test, it has been overlooked so far. The ambi-
guity comes from the freedom of the identification rules
in the comparison between curved and Aat space-times.
To show this fact explicitly, we have concretely calculat-
ed the radar-echo delay-time formula. Some technical

and interpretative mistakes of past works about the for-
mula have been pointed out. The formula has been sys-
tematically obtained up to the post-post-Newtonian or-
der 28

Note added. After completion of the present work, we
have become aware that Zel'dovich and Grishchuk dis-
cuss, following the standpoint of Ross and Schiff, a simi-
lar problem and criticize Logunov and Loskutov. In ad-
dition, a counterargument to Zel'dovich and Grishchuk
is presented by Logunov himself recently. A thought
experiment proposed by Logunov, which "demon-
strates" the arbitrariness in the predictions of general re-
lativity, merely demonstrates the inevitable ambiguity of
"the non-Newtonian delay" discussed in the present pa-
per (see Sec. III 8), which is by no means a difficulty of
general relativity. A critique for the present view has
also appeared recently. ' We consider the critique to be
unreasonable.
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APPENDIX A: A BRIEF NOTE ON THE ORBIT
OF LIGHT

In the Schwarzschild geometry the orbits of light can
be classified into three types: (I) m ) 1/3 V'3, (II)
m = I/3&3, and (III) m ( I/3&3 cases, where m is
defined by (2.4). The orbits of type (I) connect points at
infinity with the "center" of the black hole. These orbits
have no turning point. The orbit of type (II) represents a
circle with the "radius" rz=3M [rD=2M, ri
=(1+&3/2)M]. Because this orbit is unstable, it can
easily change into the orbits of types (I) or (III) by small
perturbations. The orbits of type (III) are composed of
two cases: the orbits restricted outside (case a) or inside
(case P) the "critical sphere, " rz =3M [rD =2M,
rJ=(1+&3/2)M]. These orbits have only one turning
point, corresponding to the "perihelion" (case a) or
"aphelion" (case /3). Ends of the orbits are points at
infinity (case a) or "center" of the black hole (case P), re-
spectively. It should be noted that the light, which cuts
across the critical sphere from outside into inside, never
escapes from that sphere.

When two points A, B are given around a black hole
(with mass M), is the orbit of light passing through them
uniquely determined? The answer is no. There are
infinitely many orbits, in general. Examples of them are
drawn in Figs. 4(a) —4(d). Perhaps no further explanation
is necessary. The orbits are classified by an integer n,
"winding number. " The point of nearest approach to the
black hole is denoted by C, whose radial i coordinate is
ro; . In general, the larger

~
n ~, the smaller ros —3M

[roD —2M, roi —(1+&3/2)M] As far as the (.real) Sun
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is concerned, only the orbit of n=0 is realistic because
the points C of the orbits of n&0 are inside the Sun. The
orbits of n&0, however, must be considered in the gen-
eral situation. It is important to note that the post-post-
Newtonian orbit of light (3.7) is an approximation of the
orbit of n=0 T. herefore, b, (or ro;) is uniquely deter-
mined in (3.8). Because the orbit of n&0 is intrinsically
nonperturbative, the exact solution (or a suitably approx-
imated solution) is necessarily used in order to get ro,
concerning them. It is very interesting that the orbits of
n&0 exist even if A and B are the same point. [In Fig. 4
we depict only the cases in which both the points 2 and
8 are outside the critical sphere (and the point C lies in
between A and B) Bec.ause the other cases are easily dis-
cussed in the same manner, we omit them. ]

See Sec. 25.6 of the text by Misner, Thorne, and
Wheeler, for further detail.

1. Derivation of (2.1)

The motion of light in the gravitational field of the Sun
(mass M) is determined by the action

S=f „",dX,
(81)

2
ds
di,

2M1— dt 2M
T

2

APPENDIX 8: CALCULATIONS OF THE LIGHT
DEFLECTION ANGLE

In this appendix we give detailed derivation of Eqs.
(2.1) and (2.5), which appear in the text (Sec. II A)
without derivation.

2
dO . 2 dp+»n „~

2'

r
\

I 1
i

/V/ i
~~~OP

( & 3

where the variable A, (affine parameter) parametrizes the
light path x"=x"(A, ) and we have taken the standard
coordinate system (t, rs, 0,$), defined in (1.1). (In this ap-
pendix we omit the suffix S for the sake of simplicity. )
Variations of (Bl) with respect to t, 8, and P, respectively,
give the (geodesic) equations

T

d
'

2M dt
I.

2

dp . d 2d0r sinO cosL9 — r =0, (82a)

r sing — =0.
( b 3

Instead of the equation derived from the variation with
respect to r, we may take the null condition

'2 ', 2
d$ ' 2M dt

7.

( c 3

r

+sin 0
dI9

2

(82b)

Because of the spherical symmetry of the metric, light
moves on a plane, which is assured by the second equa-
tion of (82a). We may take it to be the O=vr/2 plane.
Then, the second equation of (82a) is trivially satisfied,
and the first and the third ones are easily integrated out
to be

FIR. 4. Examples of possible orbits of light around a black
hole (mass M): The orbits are classified by an integer n, "wind-
ing number. " C represents a point of nearest approach to the
black hole. The critical sphere is depicted by a dashed line. (a)
n=O. (b) n= 1. (c) n = —l. (d) n = —2.

2M dt 2d1—
7

=b (const), r =h (const), (83)
dA,

where the integration constants b and h have the physical
meaning of the relativistic energy and the angular
momentum, respectively. Using Eq. (83) and the rela-
tion, derived from (83),
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dr dr dP h dr
dA, dP dk r~ dP

(84) F(U)

we can obtain the equation of the orbit of light r =r (P)
from (82b) as

2M
T

—1 2
h d
r4 dP

+r h =0 (85) 6
2m

In terms of the variables (u, m, h), defined in (2.4), (85)
can be rewritten in the form

d 1—+ F(u)= —v +1+2mu
du F(v)~~2

(86)

From the definition of the defiection angle 5 (see Fig. 1),
its (exact) expression is obviously given by (2.1).

2. Derivation of (2.5)

We perturbatively evaluate the right-hand side of Eq.
(2.1) (with the standard coordinate system), i.e.,

0 dVI(m)=2 I F(u)= —v +1+2mv
F(U)1/2

(87)

with respect to m (0(m ((1). If we denote three roots
of the cubic equation F(u)=0 as vo, —v, , and a/2m,
F(u) can be written as

F(u)=(vo —u)(v+u, )(a —2mu) .

FIG. 5. Graph of the function F(U), which appears in calcu-
lations of the light defiection angle [see (88a)].

The three roots vp, U, , and o. are related through the rela-
tion

2rnVOV1 1a= 1+2m (v&
—uo) =

Up Ul VOUl
(88b)

The graph of F(u), in the present case (0&m (&1), is
drawn in Fig. 5. Inserting (88a) into (87), and expanding
with respect to m, we obtain

Up 2 3 2 2

a'~2 o [(uo —u)(v+u&)]'~ a o [(uo —v)(u+u&)]' a o [(vo —u)(v+v~)]

I (m)+ I, (m)+ I2(m)+O(m ) .2 2m 2m

CX
3/2 5/2 2

The three integrals contained in (89) are easily integrated out to be
1/2

(89)

Up 1
Io(m) = dU =2 arcsin

[(vo —u)(u +u, )]'
Up

Ul +Up
1/2

0 UI, (m)=: du =(vov& )' +(uo —
u& )arcsin

o [(uo —u)(u + v& )]'
Vp 2

I2(m) =—
2

dU
0 Vp

—
U U+V&

Up

Ul +Vp
(810)

Vl +Up

2

2
1T Vl Vp——

—,
' sin 2 arcsin

4 4 1+Vp

Ul Up—
—,
' arcsin

V 1+Up
1/2

u, )(uou—, )'~~+(uo+u, )arcsin
Up

Ul+Up

On the other hand, the two roots uo and —u
&

of F(v) =o
can be iteratively solved as,

Making use of the relation (88b) with (8 1 la), a is evalu-
ated to be

vo= 1+m+ —,'m +O(m ),
—v, = —1+m —

—,'m +O(m ) .
(8 1 la)

a=1 —4m +O(m ) .

Therefore, (810) with (Bl la) and (Bl lb) results in

(Bl lb)
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Inserting (Bl lb) and (812) into (89), we finally obtain

I(m)=~+4m+ m +O(m ) .15m'
(813)

Io(m)= —+m+0(m ), I, (m)=1+ —m+0(m ),
(812)

I (m)= —+O(m) .2

J(m)=—2f G(v)'

G(u)= —u +2v+2e+2m u',
where u, and u2 are two roots of G (u) =0 (u2 ) u, ). If we
write another root as a/2m, G(u) can be written in the
form

Therefore, the deffection angle 5 [=I(m) —m] is given by
(2.5).

APPENDIX C: CALCULATIONS OF THE PERIHELION
SHIFT ANGLE

G(u)=(u —u, )(vz —u)(a —2m v) .

U1, U2, and a are related by

2(1 —m u, u2)a=1 —2m (u, +u2)=
V1+U2 U1U2

(C5)

(C6)

In this appendix we give detailed derivation of Eqs.
(2.6) and (2.10), which appear in the text (Sec. IIB)
without derivation.

The graph of G(u) is depicted in Fig. 6. In order for the
"Mercury" to be bounded around the Sun, e must be re-
stricted within the region

1. Derivation of (2.6)
—

—,
' &m&0 . (C7)

The orbit of "Mercury" in the gravitational Geld of the
Sun is determined by the geodesic equation derived from
(81). (As in Appendix 8, we take the standard coordi-
nate system and omit the suffix S. ) The diff'erent point,
from the case of light (Appendix 8), is that we cannot use
the null condition (82b) but can choose, as the affine pa-
rameter 2, the proper time A, =r(= —s). Therefore, the
equations of motion, in the "Mercury" case, are given by
(82a) and

Inserting (C5) into (C4), and expanding with respect to
m, we obtain

U2 1J(m)=
A 1 U U1 U2 U

m' 3 m4
X 1+ u+ — u dv+O(m ) .

CK 2

(C8)

ds 2M
di.

dt
dX

2 In order to evaluate the above expression, we use the in-
tegral formulas

Up dU

U1 U U1 U2 U
1/2

2
d9 . 2 dp+sin 6I

2

(C 1)

2 U dU
(Vi+U2)

[(V —
Ui )(U2 —V)]

As in Appendix 8, we may choose O=vr/2, and Eqs.
(82a) are solved as (83). Inserting (83) and (84) into (Cl),
we obtain the equation of the orbit of "Mercury":

2
$2 1 h dr h1=

2M y4 dP r21—
(C2)

2M

In terms of the new variables (u, m, e) defined in (2.9), Eq.
(C2) is rewritten in the form

dd 1'=+ G(u)= —u +2 +u2e+2m u' .
dv G(u)'~

(C3)

'2 =—[—', (u, +u2)+u, u2] .
[(u —v, )(u, —u)]'~'

Then, (C8) becomes

G(U)

By the definition of the angle 5 of the perihelion shift (see
Fig. 2), we easily obtain its exact expression (2.6) (for the
case of the standard coordinate system).

2. Derivation of (2.10) ~e

We evaluate, perturbatively with respect to m ( ((1),
the right-hand side of Eq. (2.6), i.e.,

FIG. 6. Graph of the function G(U}, which appears in calcu-
lations of the perihelion shift angle [see (CS)].
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J(m)= + m (u, +v2)

4
+ ™—[—,'(u, +u2)+u, u2]+0(m ) .

4 ~5/2 (C10)

From the relation (C6) with (Cl la) we obtain

a=1—4m —8m (2+@)+0(m ) . (Cl lb)

Finally, inserting (Cl la) and (Cl lb) into (C10) we get

J(m) =m[2+6m + —", m (7+2@)]+0 (m ), (C12)

which leads to the result (2.10), with 2~+5= J(m).

On the other hand, by solving the equation G(v)=0,
we obtain the iterative solutions for the two roots, v

&
and

U2, as

2 [1 (1+2') ]
u, =1—(I+2m)'~ —m +0(m ),

( 1 +2E)l/2
(Cl la)

1/2 3
=1+(I+2m)' + +0( ) .(I+Ze)'"

—F(v)=
2

dv +v —1 —2mv =0,
dP

(D3a)

dv

« p=o

which specifies the origin of the angle P.
We seek a solution of (D3a) in the form

u(P):—uo(P)+mu, (P)+m u2(P)+0(m ) .

(D3b)

Inserting (D4) into (D3a), differential equations for the
functions vo(P), u, (P), and uz(P) are obtained as

2
dvp

+vo —1=0,

dvo dv]
+upui —uo

2

(DSa)

(D5b)

which is already derived in Appendix B. As the initial
condition we may choose

APPENDIX D: CALCULATIONS OF TIME DELAY
OF RADAR ECHOES

+uou~ —3uoui —, u i+

These equations can be solved successively:

(DSc)

In this appendix we give detailed derivation of Eqs.
(3.1), (3.7), and (3.9), which appear in the text (Sec. III)
without derivation.

uo(P) =sin(/+a),
v, (P}=1+cos(/+a)+Pcos(/+a),
uz(P ) = —

—,'(P —5 )sin(P+ a) —P sin[2(P+ a) ]
——,'cos(/+a)sin[2(/+a)]
——",(/+a)cos(/+a)+y cos(/+a),

(D6)

1. Derivation of (3.1)

where a, P, and y are arbitrary integral constants. They
are determined by the initial condition (D3b):

15m.a= —,P=O, y=2' '
8

(D7)
dr dr dt b dr
dA, dt di, 2M dt

(Dl)
Putting back (D7) into (D6), we obtain

uo(P)=cosP, u, (P)=1+sin P,

The equations of motion of light are already given in
Appendix 8, viz. , (82a) and (82b), which are solved as
(83) with 8=m/2. (As in Appendixes 8 and C, we take
the standard coordinate system and omit the suffix S. )

Because the physical quantity which we want to measure
is the time interval, we use the following relation instead
of (84):

where (83) has been used. Using Eqs. (83) and (Dl), Eq.
(82b) (with H=n. /2) becomes

dt 1

dr H(r)'~

u2(P) = —", P sing+ —', cosP ——,'sing sin(2$) .

Equation (D4) with (D8) is nothing but (3.7).

(D8)

2MH(r)= 1—
r

2M
r 2 r

3. Derivation of (3.9)

%'e evaluate the expression

where we have put b, =h /b as in (2.4). Then the
definition of the round-trip travel time [see Fig. 3(a)]
gives the expression (3.1) with i =S. The similar method
can be applied to derive the i =D or i =I formulas.

2. Derivation of (3.7)

%'e have only to solve the equation of the orbit of light
(86), i.e.,

"0 H (r}'

2MH(r)= 1—
'2 2M

2 1—
ro r1—
r2 2M1—

ro

(D9)
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2ro
Q2

2M
rp

(D10)

which is obtained from (3.1) and (3.2) (with the standard
coordinate system), where use has been made of the rela-
tion (3.4): i.e.,

Although ro can be expressed, by solving (D10), in terms
of M and 6, we postpone explicitly writing it out until
Eq. (D14).

We consider the case in which light moves only outside
the critical sphere (r„,rtt ~ r ~ ro ) 3M; see Appendix A).
Expanding the integrand of (D9) with respect to M, we
obtain

T 1 2 ro1+M —+
[ 1 ( r /r)2]1/2 r (r +re)r

+M2 +
r 2

2o 2 3 ro

(r+ro)r2 (r+ro)r 2 (r+ro) r
dr+(A~B)+O(M ) . (D 1 1)

In order to evaluate (D 1 1) explicitly, we use the integral formulas

2 2 )1/28r 2 2 1/2=(r„—r ) = ln
y [1 (r / )2]1/2 ~ o

p (
2 2)1/2 ro

1/2

f r
—rp

y (
2 2)3/2

dr-
r ro

rw —rp

ro r„+ro
dr 1 r——arccsc

(r —r2 )1/2r ro 20 ro
1/2

8r 1 m——arccsc(r+r )'/'(r r)I/— ro

rw —ro

rg +rp (D12)

8r
"o (r+r ) (r r)'— ro

ro ra+ro

f A 8r 1 ——arccsc
( + )5/2( )1/2r r 3 ro

4
r& —ro

r~+ro

1/2 1/2
1 ro r~ —ro

3 r~+ro rz+ro

T
0(r2 r2 )1/2+M 2111

rp

where 0 ~ arccsc(rz /rII ) ~ Ir/2. Using these formulas, (Dl 1) is completely integrated out to be

+(r2 r2 )1/2

M
rp

—"~——"arccsc —24 2 r0

ro

ra+ro

1/2
1 ro

2 rg +ro
rw —ro

rw+rp

' 1/2

+(A~B)+O(M ) . (D13)

Now remember ro depends on 6 and M through (D10). Solving (D10) with respect to b, and M, we obtain

r =b, —M — M +O(M ) .
3

0 2h (D14)

Substituting this expression into (D13), and expanding with respect to M once more, we finally reach the result

r +(r„—b, )'
=(r„' —a2)I/2+M —' +2ln "

2 (
2 g2)1/2

+M ( —,'r„4b. )+——5I—r ——",arccsc(„2 g2)3/2 +(A+-+B)+O(M ), (D15)

which is nothing but (3.9).
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Because the proper energy (per unit proper mass) is 1 in our
unit, E:=b —1 can be interpreted as the Newtonian energy.
When the relativistic effect is small, E ((1, the approxima-
tion E =(b —1)/2 is very good. Note that e in (2.9) is essen-
tially E in this approximation.

~4A necessary (but not sufticient) condition for the finite orbit to
exist is m ~ 1/2&3.

~5Note that there are two kinds of parameters m and e, which,
intuitively speaking, parametrize general-relativistic effects of
the Sun's gravity and special-relativistic ones of Mercury's
motion, respectively. For our cases, perturbation with

respect to e is not suitable because e-1 corresponds to the
Newtonian approximation when the orbit of "Mercury" is
bounded. On the other hand, m is very small in the usual sit-
uation (for example, m —10 for Mercury).
These motions are by no means negligible, but can be taken
into account in a straightforward way in reducing the obser-
vational data. [In addition to them, there are some important
factors, such as the effect of solar corona, etc., which have to
be considered in the practical experiment (Refs. 26 and 27).]
The coordinate time expression is used for simplicity, though
the proper time one (on Earth, for example) must be used for
physical interpretation of "time." (The coordinate time is not
the "time" but the "name. ")
Furthermore, we restrict ourselves to the case that the point
C, corresponding to ro;, lies in between Earth (A) and the
planet (B) on the orbit of light, such as Fig. 3(a) or 4. When
this condition is not satisfied, a slight modification is neces-
sary for expression (3.1). [Note that the above condition is
not satisfied by the orbit of n=0 (see Appendix A) with
r~ Wr~ when the arrangement of Earth and the planet is near
the inferior conjunction. ]

The true (i.e., proper) distance, which is meaningful only when
a reference frame is specified, is defined by the integration of
dl—:( g „=&y „dx dx")', where y „ is the metric of a
three-dimensional space (reference frame) which is deter-
mined by the metric g„of four-dimensional space-time (see
Landau-Lifshitz or Miler of Ref. 2). As far as the coordi-
nate systems belonging to the same reference frame are con-
cerned, dl is independent of the coordinate choice. [A proof
is presented in Sec. 9.16 (or Appendix 4 in the first edition) of
Me(lier's textbook (Ref. 2).] The physically meaningful dis-
tance is defined only outside the black hole. Usually it is said
that the Sun would become a black hole if' it were crushed
into 3 km, which is the "Schwarzschild radius" of the Sun.
Thereby it is very important to realize that this value 3 km
means not the real distance but merely the name in the stan-
dard coordinate system. (If we adopt the de Donder coordi-
nate system or the isotropic one, the "Schwarzschild radius"
of the Sun becomes

2
or 4 km, respectively. )

oIn order to avoid a misunderstanding, we make a comment.
For definiteness, consider the case of the radar-echo predic-
tion: The total trip time between two points A and B on the
fiat geometry can be numerically compared with the one be-
tween two points A' and B' on the curved geometry, of
course. But we can never take A = A', B =B' because of the
difference of geometry. On the other hand, when we want to
derive "the non-Newtonian delay, " we must assume A = A',
B =B' somehow. The way of that assumption is nothing but
the "identification rule" discussed in the text.
The orbit of light is not unique in general. Only the simplest
orbit, corresponding to Eq. (3.7), is depicted in Fig. 3(a). See
Appendix A in this respect.

The statement given by Wald (Ref. 2), that either ro; or 6 can
be regarded as independent of M, is incorrect. Because of this
fact, the separation into Newtonian and post-Newtonian
parts in incomplete in his result. [He incorrectly considers
that (~~s ros) +(res ~os) represents the Newtonian
time delay. The same mistake is shared by Weinberg (Ref. 2).
The method of Logunov and Loskutov (Ref. 5) is an improved
version. See also Ref. 24.]
Many authors make use of the plane trigonometry, which is
not correct in curved space-time, to derive the post-
Newtonian time delay. Since the deviation from the plane tri-
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gonometry amounts to 0 (M), such a method seems nonsense
at first. Their explanation (not the calculation) contains dou-
ble mistakes and the result luckily becomes correct: First
they say that a straight line can be used as an approximate or-
bit because of Fermat's principle. Next they use plane tri-
gonometry. Careful examination, however, shows that their
calculation is based not on the straight orbit but on the
curved one defined so that the plane trigonometric formulas
hold formally. (A real straight line, if any, is never accommo-
dated in the four-dimensional curved space-time in general. )

Owing to Fermat's principle, such a (slight) modification does
not inAuence the round-trip travel time in the post-
Newtonian approximation. Their method cannot be applied
in order to derive the post-post-Newtonian formula.
Logunov and Loskutov do not calculate the full post-
Newtonian formula. ' They directly give a post-Newtonian
formula based on the approximation r„z,r» « roy. But
when estimating (r~s ~os) and (~Bs ~os) ', they impli-
citly assume that 5z, in (3.12), is zero (this means r» =r~~),
and use plane trigonometry. Fortunately, their result is very
similar to the correct one with r„z, rzz « re.

25In Ref. 26, two kinds of anomalous time delay are reported:
(1) The measured time delay is about 5 ps systematically
larger than the theoretical prediction over the one-month
period centered at the superior conjunction; (2) the measured
data, even after adding 5 ps constant, differs from the theoret-
ical one (systematically) near the superior conjunction (5
days) about 5 —15 ps. The present authors suggested, in the
original manuscript of the present paper, the possibility that

the anomalous time delay of (1) may stem from the unsuitable
treatment of the inevitable ambiguity. This possibility, how-
ever, has been denied. In Ref. 27, which is the complete ver-
sion of Ref. 26, the anomalous time delay of (1) vanishes.
(Unfortunately, this important fact is not explicitly stated in
Ref. 27.) As for the anomalous time delay of (2), no definitive
explanation has been obtained.
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