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Some problems with extended inflation
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The recently proposed extended inflation scenario is examined. Upper bounds on the Brans-
Dicke parameter co are obtained by requiring that the recovery from the supercooled regime be such
that the presently observed Universe could have emerged. These bounds are well below the
present-day experimental limits, implying that one must use models which have a potential to fix the
present value of the Brans-Dicke-like scalar field. The implications for extended infIation in such
models are discussed.

I. INTRODUCTION

The inflationary universe model' was proposed some
time ago as a solution to a number of cosmological puz-
zles, most notably the horizon and flatness problems. Its
essential feature is a period of rapid expansion, during
which the energy density of the Universe remains essen-
tially constant, followed by a period of thermalization, in
which this energy density is converted to radiation. A
successful resolution of the cosmological problems re-
quires that the expansion period be long enough that the
cosmic scale factor R (t) can increase by a factor of at
least 10

In "old inflation, " the scenario which was originally
suggested, the inflationary scheme was implemented by
means of a first-order phase transition during which the
Universe supercooled into a de Sitter-like regime where
R (t) grew exponentially with time. This inflationary
period was to be terminated by the completion of the
transition and the concomitant release and thermaliza-
tion of the latent heat. However, it was shown that this
completion never occurs. ' The new phase, although oc-
cupying an ever-increasing fraction of space, never per-
colates, but instead remains confined to finite clusters of
bubbles. Detailed analysis of the distribution of bubbles
within these clusters shows that it is extremely unlikely
that a homogeneous thermalized region of sufhcient size
to contain the observed Universe would emerge.

An exception occurs in models with unusually fiat sca-
lar potentials. In contrast with the usual case, these mod-
els allow the possibility of our Universe developing
within the interior of a single bubble. The difhculty with
this "new inflation" ' scenario is that it appears to re-
quire extreme fine-tuning of the parameters of the parti-
cle physics theory responsible for the phase transition.
Similar problems arise in the "chaotic inflation" varia-
tion of this scheme.

La and Steinhardt ' have recently proposed a new
scenario, which they term "extended inflation. " Like old
inflation, it is based on a supercooled first-order transi-
tion which is globally completed throughout space. The
essential difference is that gravity is described not by gen-
eral relativity, but by the scalar-tensor Brans-Dicke
theory. The effect of this is that during the vacuum-

dominated era R does not grow exponentially, but rather
as t"+' (for large t), where co is the dimensionless
Brans-Dicke parameter. Since time-delay experiments'
require that co) 500, the enormous increase in 8 needed
for successful inflation can easily be achieved. At the
same time, the change from exponential to power-law be-
havior is enough to ensure that percolation eventually
occurs.

It is not necessary that the scalar-tensor gravity theory
be fundamental. For example, such a theory could arise
as an effective theory in the context of superstring mod-
els, " although typically one would then expect to obtain
an co of order unity. Furthermore, the extended inflation
scheme can be readily adapted to models in which there
is a nontrivial potential for the scalar field.

In this paper I examine this scenario in some detail, to
see whether it really does offer the possibility of obtaining
inflation without unnatural fine-tuning of parameters. I
begin by reviewing some relevant facts concerning
cosmological phase transitions and old inflation in Sec.
II. In Sec. III, I outline the details of extended inflation
and obtain some constraints on the bubble nucleation
rate. The kinematics of bubble nucleation and growth in
the supercooled regime are studied in Sec. IV, with par-
ticular emphasis on the implications for the thermaliza-
tion and reheating process. I argue that this process
could yield the homogeneity and isotropy of the present
Universe, if at all, only with values of ~ we11 below the as-
trophysical bounds. A discussion of these results and of
possible variations on the scenario is contained in Sec. V.
The Appendix contains some results concerning the
Robertson-Walker solutions of the Brans-Dicke equa-
tions.

II. COSMOLOGICAL FIRST-ORDER PHASE
TRANSITIONS

It is believed that as the early Universe expanded and
cooled it experienced a series of phase transitions. Of in-
terest here is the case of a first-order transition, in which
the high-temperature phase remains metastable at tem-
peratures below the critical temperature T, . (This metas-
tability may eventually disappear, or, as will be assumed
for the remainder of this discussion, may survive down to
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T =0.) Because the transition proceeds by the nucleation
of bubbles of the low-temperature phase, it cannot occur
instantaneously when the critical temperature is reached.
Since the cosmic expansion continues to drive the tem-
perature downward, the Universe enters a period of su-

percooling. The ultimate degree of this supercooling is
determined by the competition between the rates of bub-
ble nucleation and of the cosmic expansion.

The bubble nucleation rate per unit volume A, can be
calculated by semiclassical methods. At high tempera-
ture, where bubble nucleation is driven by thermal fluc-
tuations, these give' '

A, ( T)= A ( T)e (2.1)

where E ( T) may be interpreted as the energy of a bubble
of critical size. The prefactor A (T) is equal to M times
terms expected to be of order unity, where M- T, is the
mass scale characterizing the phase transition. As the
temperature falls from T, the critical bubble size, and
thus E(T), decreases, giving a rapid rise in A, . This effect
is eventually offset by the reduction in thermal fluctua-
tions, signaled by the growth of the 1/T factor in the ex-
ponent. The result is that, after reaching a value A, „at
a temperature T*, the thermal nucleation rate decreases
sharply. At low temperatures, the dominant mechanism
for bubble nucleation is quantum-mechanical tunneling,
the rate of which can be written in the form' '

A,0= A0e (2.2)

pvac

3M'
(2.3)

and t =0 is defined to be the beginning of the vacuum-
dominated era.

One measure of the progress of the transition is the
fraction of space which remains in the high-temperature
phase at time t. If the t~ denotes the time at which bub-
ble nucleation begins, this is given by'

p(t)=exp — Ct'l(t')R'(t') r'(t, t')
lg 3

(2.4)

Here S is the action of the "bounce" solution of the Eu-
clideanized field equations and again the prefactor is
equal to M times terms of order unity.

The velocity with which the bubbles expand after nu-
cleation varies with temperature. For the low-
temperature bubbles nucleated according to Eq. (2.2),
which are the ones we will be primarily concerned with,
this velocity rapidly approaches that of light. ' This im-
plies that the region outside the bubbles cannot be
affected by them, and thus justifies the use of a
Robertson-%'alker metric to describe the old-phase re-
gions even though their homogeneity is manifestly des-
troyed by the presence of bubbles.

With gravity described by general relativity, the
growth of the cosmic scale factor is controlled by the en-
ergy density p(T). As the Universe cools below T„ the
radiation component of p is soon dominated by the vacu-
um contribution p„„,and R =R (0)exp(yt), where

1/2

where r ( t, t '
) is the coordinate radius at time t of a bubble

which was nucleated at t'. It is relatively straightforward
to reexpress this formula in terms of temperature. For
T (T, one obtains'

~max T* Tp(T)=exp ~ — c, 4

3

0 T
+c2 4 ln

X' T (2.5)

0
60= 4x

(2.6)

is less than a critical value e„which lies in the range
0.24 )e„)l. 1 X 10 . (Somewhat less rigorous argu-
ments' suggest e„=0.03.)

The explanation of this result lies in the existence of
event horizons in an exponentially expanding Universe.
Even expanding at the speed of light, a bubble which nu-
cleates at a time t can only grow to a finite comoving ra-
dius r„(t)-y 'exp( yt). One cons—equence is that if the
separation between two bubbles at time t is greater than
2r„(t), the bubbles will never meet. Therefore the bub-
bles nucleated in a time interval of duration of, say, y
can never fill space by themselves, but instead only occu-
py a fraction of order e0 of the region which remained in
the old phase at the time that they were nucleated. Al-
though bubble nucleation continues indefinitely, the bub-
bles produced have smaller and smaller comoving volume
and so can fit in the remaining regions of old phase
without overlapping. Indeed, the physical volume of the
old phase region, which is proportional to R (t)p(t), is
an increasing function of time.

Given that the new phase never percolates, one must
address the possibility that the observed Universe could
have developed within either a single bubble or a finite
cluster of bubbles. The difhculty with the former is that
the energy released as the expanding bubble converts old
phase to new is not distributed throughout the bubble,

where c
&

and c2 are factors of order unity.
Two cases are clearly distinguished, depending on

whether A. ,„/y is much greater or much less than unity.
In the former case, which might be termed a "fast transi-
tion, " the Universe will be essentially all converted to
true vacuum before T* is reached, and there will be no
extreme supercooling. The transition proceeds very rap-
idly once A,(T) (which increases rapidly for T ) T') be-
comes greater than g . Many bubbles nucleate, expand,
and coalesce on a time scale much shorter than that of
the cosmic expansion, making the transition very much
like a noncosmological one.

The latter, "slow transition, "case is the one envisioned
in old inflation. Although initially very small, the ex-
ponent in Eq. (2.5) does eventually become large, and

p (t) asymptotically approaches zero. However, the tran-
sition is never quite completed. One symptom of this is
the failure of the new phase to percolate, i.e., to form a
bubble cluster of infinite extent. Specifically, it can be
shown that percolation fails to occur if
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but is instead carried forward in a thin shell at the bubble
wall. ' The bubble interior itself remains a region of
essentially pure true vacuum until collisions with other
bubbles cause the bubble walls to dissolve. Only in the
case of very exceptional sorts of dynamics (those giving
rise to new infiation) can the interior of an uncollided
bubble be consistent with the observed universe.

In finite bubble clusters, some of the latent heat is dis-
tributed through the interior. The difficulty lies in
achieving a homogeneous and isotropic distribution of
this energy over a region large enough to develop into the
presently observed Universe. We might expect horno-
geneous therrnalization to occur if many bubbles of com-
parable size coalesced within a short period of time. This
is precisely what happens in a fast cosmological (or al-
most any noncosmological) first-order transition, where
essentially all of the bubbles are produced within a short
spurt of nucleation. In a slow transition, where the bub-
bles are nucleated steadily over a long period of time,
there is instead a very broad distribution of bubble sizes.
Analysis of the kinematics of bubble collisions shows
that these are overwhelmingly likely to be between bub-
bles of very disparate size, and that any cluster is dom-
inated by a single bubble much larger than all the rest. '

One might guess, and detailed examination verifies, that
such unequal collisions do not yield the required homo-
geneity and isotropy.

R (t) t(2ro+2)/(3co+4)

q)( t ) t 2/(3'+ 4)

(3.4a)

(3.4b)

while for the radiation-dominated case the power-law
solution is the same as in general relativity: namely,

, (/z

N =const.

(3.5a)

(3.5b)

There is also a power-law solution for the k =0
vacuum-dominated case. If t =0 is defined to be the be-
ginning of the vacuum-dominated era, and the arbitrari-
ness in the scale of R is fixed by setting R (0)=1, this
solution takes the form

the present value of N be equal to Mz. The third bound-
ary condition must be treated as a free parameter. Thus,
for a particular form of p and a fixed value of k there will
be a one-parameter family of solutions, rather than the
single solution of general-relativistic cosmology.

Since the curvature term in Eq. (3.2) is negligible com-
pared to the energy-density term for small R, it is
sufhcient to consider only k =0. For this case there are
power-law solutions both for a matter-dominated and for
a radiation-dominated universe. While these correspond
to special values of the initial conditions, all other solu-
tions approach these at large time. ' The matter-
dorninated solution is

III. INFI.ATION IN A BRANS-DICKE CONTEXT

(a„e)'S=f d x&g —4R+co " +16mÃ, «„ (3.1)

La and Steinhardt ' suggest that these problems might
be evaded by working in the context of Brans-Dicke
theory. The action for this theory is

r

R (t)=(1+Bt)"+'",
N =@(0)(1+Bt)

where
' 1/2

327Tpygg

(6'+ 5 )(2'+ 3 )@(0)

(3.6a)

(3.6b)

(3.7)

k co N E. 4'+
6 4 8 C

@+3
R Srt(p —3p)
R 2'+ 3

(3.3)

where k= 1, 0, or —1 for a closed, Aat, or open universe.
These equations require three boundary conditions. One
is fixed, as in general relativity, by the definition of the
zero of time. A second follows from the requirement that

Here N is a scalar field which plays the role of a time-
dependent gravitational coupling; it is normalized so that
its present value is equal to the square of the Planck
mass, M~. The interactions of the other fields are de-
scribed by X,«,„', these are assumed to be such that there
is a first-order phase transition- which can give rise to the
supercooling needed to drive the inflation. The dimen-
sionless parameter co characterizes the theory; in the limit
cu —+ ~, the theory reduces to general relativity. As noted
earlier, experiment requires that m & 500.

For a homogeneous and isotropic universe described
by a Robertson-Walker metric, the field equations of this
theory reduce to

2 2
R 8' (3.2)
R 3N

(co+ —,
' )B

H(t)= —=
R 1+Bt (3.8)

so that the constant eo of Eq. (2.6) is replaced by the
time-dependent quantity

AQ AQe(t): „=, (1—+Bt)4 .
H ( t)" [(co+—,

' )B]
(3.9)

With a suitably small nucleation rate kQ, e can be small
enough at the beginning of the vacuum-dominated era to
give a long period of supercooling. During the course of
the transition it will increase, so that eventually, after a
time of order cokQ ', the criterion for percolation will be

In the general relativity limit, cu~ ~, the scale factor be-
comes an exponential, R (t)-exp(yt), where y is given by
Eq. (2.3), but with Mf, replaced by N(0). For large but
finite co, one can distinguish an exponential regime,
t ~ B ', and a power-law regime, t ~ B '. The approach
of other solutions to this power-law form is discussed in
the Appendix.

The Hubble parameter is not constant in a vacuum-
dominated universe, as in general relativity, but varies
with time according to
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t,„d =q (co —
—,')A, o

'/ (3.10)

met. Similarly, one finds that the physical volume of old
phase per unit comoving volume, p(t)R (t), initially in-
creases, but then begins to decrease after a time of order
ct)A p ~ It therefore seems reasonable to expect the
phase transition to be completed at a time

Alternatively, Eq. (2.2), with Ao =M, gives
4

M
(3.16)

A further condition follows from the last inequality in
Eq. (3.10). This implies that A, ,„([p„„/4(0)],and
hence that

where q is of order unity.
During the course of the transition the scale factor will

increase by a factor
max

Xp

4 4
MP MP

C(0)' M
(3.17)

R (t,„,)
R (0)

' (co+ i /2)/2
N t,„d

4(0) (3.1 1)

The growth of 4(t) in any subsequent radiation- or
matter-dominated eras will be small [see Eq. (A9)], so
@(t,„d)=Mt . In order to justify the neglect of quantum
gravity effects, we must require that the initial value of 4
be greater than M, where M- T, -p,'„ is the mass scale
characterizing the phase transition. Requiring that the
scale factor grow by at least 27 orders of magnitude
yields the inequality

co+ 1/2
R (t,„d) Mt10"&
R(0) M

(3.12)

H (0)
Xp

(3.13)

The second relationship is obtained by noting that the
zero-temperature bubble nucleation rate is less than the
maximum value of the high-temperature nucleation rate;
because both quantities vary exponentially [see Eqs. (2.1)
and (2.2)], the inequality is almost certainly strong. The
final inequality follows from the very fact that the
Universe has reached a strongly supercooled state; if it
were not satisfied, the transition would have been "fast"
and would have been completed by high-temperature
bubble nucleation.

From this inequality, together with Eqs. (3.6b) and
(3.10), it follows that

32mq (co—
—,') p„„

N(t, „,) = (6co+5)(2co+ 3)A,O

2
Pvac

3A, '"p

(3.14)

with the second line being valid for large co. Since
4&( t,„d ) =MP,

8m.

3

2 2
4 Pvac

q
P

(3.15)

For M-10' GeV, this only requires that co & 6, a far less
stringent restriction than the experimental bound.

Almost all of the transition takes place during the
power-law regime, t )8 '. This can be seen by combin-
ing Eqs. (3.8) and (3.10) to yield

CO H4(0) )]. /4

Bt,„d =q )) )1.
CO+

& max

Note that Eqs. (3.15) and (3.16) involve neither co nor
N(0). The only adjustable parameters are those of the
particle physics theory, which determine both p„, and
A p. These parameters must be chosen to be such that
these equations are satisfi. ed. This is not fine-tuning in the
technical sense, since in the Brans-Dicke context the
Planck mass is simply the evolved value of the gravita-
tional coupling, and Eq. (3.15) describes the outcome of
that evolution. Nevertheless, the fact that MP has a par-
ticular experimentally determined value severely con-
strains the choice of models for extended inflation. In
particular, the fact that 5 typically varies inversely with
coupling constants makes it likely that these couplings
must be at least moderately strong if Eq. (3.16) is to be
satisfied with a plausible value for M (Ref. 23).

IV. RECOVERY FROM THK SUPKRCOOI. KD REGIME

The failure of old inflation is often attributed simply to
the nonpercolation of the new phase. However, percola-
tion by itself would not be sufticient to ensure successful
inflation. The latent heat, which is released as the bubble
walls dissolve in bubble collisions, must be converted to
radiation in thermal equilibrium, and this thermalization
must occur at a temperature high enough that the suc-
cessful features of the standard cosmology can be
recovered. Furthermore, this reheating process must
yield a universe which is homogeneous and isotropic over
a region large enough to contain the presently observed
Universe. In this section I will examine the question of
whether these additional requirements can be met within
the context of extended inflation.

For this analysis we will need to know the densities of
bubbles of various sizes, as well as some statistics which
describe the collisions between various bubbles. When
deriving these, it is most convenient to work in terms of
comoving coordinates and volumes, with the time coordi-
nate being the Robertson-Walker time in the old phase
region. (Because bubble nucleation and expansion can be
described "from the outside, " the metric inside the bub-
bles is not yet relevant. ) The conversion to physical di-
mensions can always be done by multiplying by appropri-
ate powers of R (t). In particular, the nucleation rate per
unit comoving volume is A,OR (t).

To begin, consider the growth of a single bubble. It is
a good approximation to treat this as nucleating with
zero radius at a time tp and then expanding along light-
like geodesics. Assuming that it has not lost its identity
through collisions with other bubbles, its coordinate ra-
dius at some later time t will be
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r(t, t, )=f p ( t) =exp ——
q co

3 tend

4

1 1

B(~—
—,') (1+Bt,)

1

( 1 +Bt )
ra 1/—2

(4.1)
with

4 ro
=exp ——

q m
3 r„(t) (4.8)

As t ~ Do, this approaches a finite asymptotic value

r„(to)= 1 1

B (~—1
) ( 1+Bt )cu

—1/2 (4.2)

For later reference, note that solving these equations for
to gives

1/( t0 —1/2)r„(t)
r +r„(t)

( )
' 1/(a) —1/2)

=(1+Bt) r„(t, )

1+Bto=(1+Bt)

(4.3)

A convenient reference point for setting the scale of
bubble sizes is r„(t,„d):—ro. At the completion of the
transition this corresponds to a physical distance

1+Bt,„d
0 ( end )

2

CO
2

(4.9)

[It may seem a bit disturbing that although p(t) can be-
come quite small, it never quite vanishes. This is inevit-
able, given the random nature of bubble nucleation.
However, once p(t) becomes sufficiently small there is a
high probability of finding a suitably large region —much
greater than the presently observed Universe —which is
entirely in the new phase, and this is all that is really
needed. ]

Now let p(r, t)dr be the number of bubbles per unit
coordinate volume whose radii lie in the range r to r +dr.
These bubbles were nucleated at a time to given by Eq.
(4.3). The nucleation rate per unit coordinate volume at
that time was A,OR (to), while the fraction of space avail-
able for bubble nucleation was p (to ). Therefore,

dto
p(r, t)=A,oR (t )p0(t )o dr

=qX "4

MP
1/2

pvac
(4.4)

niv ro
29 M

P
(4.5)

The fraction of space still remaining in the old phase at
time t is given by Eq. (2.4). Substituting Eqs. (3.6) and
(4.1) into this expression, and using Eq. (3.15) to eliminate
A,o, yields

This should be compared to the radius rU„;, of
the region which evolved into the presently observed por-
tion of the Universe. If the subsequent expansion
was approximately adiabatic, then rU„;,R(t,„d)T(t,„d)
=rU„;„R(t„)T„=10,where T(t,„d ) is the tempera-
ture established at the completion of the transition. As-
suming this to be of order p,'„-M,

=A,OR (t )0p(t )o.

r„(t)
p(to(r)) .

In particular, at t =t,„d,

4
1+B

p(r, t,„d)=q
end

' 4 4
1 ro

r +ro r +ro

1
q r +ro

4
ro

r +ro

Xexp ——
q co4

3

ro

r +ro

Using Eqs. (3.6), (3.10), (4.2), and (4.3), we find

4 1+Bt
p(r, t) =q

Bt,„d

(4.10)

(4.11)

p(to(r))

(4.12)

p (t) =exp
mq (co —

—,')
[(1+Bt)g (co) —1

3(Bt,„,)'

+O((l+Bt) ' '/ ')]

where

g(co)=1 — +24 12
2Q)+ 7 2'+ 3

8

6'+ 5

For Bt and co both large, this reduces to

(4.6)

(4.7)

This expression represents the average of the number
density over all of space. When examined on distance
scales of order r, this density varies considerably from
place to place. It vanishes in regions occupied by bubbles
much larger than r, while in the spaces between such
bubbles the suppression by p(to(r)) (i.e., the exponential
factor in the second line) should be omitted. It follows
that, given any bubble of radius r, there will typically be a
bubble of equal or greater radius within a distance of or-
der rq (r jro) / .

In addition to the number density, we will also need to
know the volume occupied by large bubbles, in particular
the volume fraction V&(r, t,„d ) contained in bubbles
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greater than a given size r at t,„z. Multiplying the ex-
pression in Eq. (4.12) by (4m/3)r and then integrating
would give an overestimate, since regions lying in the
overlaps of two or more bubbles would be counted twice.
These overlaps can be taken into account by using Eq.
(2.4), but with A.Q replaced by A,DO(t* —t), where t ' is the
nucleation time corresponding to bubble radius r at t,„~.
Thus,

V, (r, t,„,) =1—exp —f dt'k+ '(t') r'(t, t')
0

4 1= 1 —exp ——
q co ——

3 2

X (t) = A (t)I (t), (4.18)

where

X (t) = f dt'ADR '(t') {[r„(t')+ r„(t)]'
0

—[r„(t')—r„(t)] ] . (4.17)

(This is actually an overestimate, since the fact that these
bubbles cannot form within one another has been ig-
nored. ) By changing variables to y =r„(t)/r„(t') and
using Eqs. (3.6), (3.10), (3.13), and (4.2), this can be
rewritten as

V) (r, t,„~ ) =in[p '(t,„~)] r
(4.14)

(4.13)

where the second of these equalities is valid for Bt*))1
and r ))r0 For .r large enough that V&(r, t,„z) is small,
the expansion of the exponential, together with Eq. (4.8),
gives

and

A (t)= A,,«4, (t)R4(t)= q44~ , , 4~ , ro

r„(t)

I =2f dy(3+y )y

].+5r„(t)+O(5)+0
3 r„(0)

(4.19)

(4.20)

r'(r„(t)+r„(t') . (4.15)

In order that spacetime point where the younger of the
two bubbles nucleates not be already within the older
bubble, we must also require that

r') ~r„(t)—r„(t')~ . (4.16)

The probability that the reference bubble will collide with
a bubble formed in the interval t' to t'+dt' is equal to
A, DR (t')dt' times the coordinate volume of the region
defined by Eqs. (4.15) and (4.16). In particular, the ex-
pected number of older bubbles which collide with the
reference bubble is

The bubble distribution described by Eqs. (4.12) and
(4.13) depends on a scale ra, but that dependence is rather
weak. Once r is large enough that r +rp =r, the distribu-
tion is essentially scale invariant until (r/r0) begins to
differ significantly from unity. With large co, and thus
small 6, this deviation from a scale-invariant
distribution —such as one had with old inflation —begins
only at enormous values of r. It is only when one exam-
ines the distribution on such scales that the suppression
of large bubbles can be seen. Thus, if we want a random-
ly chosen region to neither lie within a single bubble nor
have any large fraction within a single bubble, we must
require that radius d of the region be such that (d/r0) is
not too close to unity. Requiring, for example, that the
presently observed portion of the Universe should be
such a region would place an upper bound on co,' some
considerations leading to stronger bounds will be pursued
below.

Now consider the set of bubbles which collide with a
given reference bubble, which is nucleated at a time t.
Without any loss of generality, the center of the reference
bubble can be chosen to be at r =0. A bubble which nu-
cleates at a point with radial coordinate r' at a time t'
can collide with the reference bubble if

The expected volume in these bubbles, measured in units
of the asymptotic volume of the reference bubble r„(t),
and with the overlaps between bubbles double counted, is
V (t)= A (t)J (t), where

2 y 3+@ y
—(&—5)

r„(0)=3 (4.21)
«„(t)

Similar calculations for the younger bubbles give
X+ (t) = A (t)I+ (t) and V+(t) = 3 (t)J+ (t), with

r„(t)=3 (4.22)
rp

L

J+ =2f dy(3+y )y

+O(5)+0
3

rp

r„(t) (4.23)

Just as in old inflation, a bubble will collide with many
more younger than older bubbles, although the latter will
be far greater in total volume. For very large bubbles
(those large enough to see the departure from a scale-
invariant bubble distribution) A(t) is small, so that most
such bubbles collide only with smaller bubbles. Compar-
ison of Eqs. (4.13) and (4.19) shows that most of the
volume is occupied by bubbles with small values of A (t)

I.et us now turn to the thermalization process. As not-
ed previously, the latent heat of the phase transition is in-
itially stored in the walls of the expanding bubbles;'"
these "walls" are essentially thin regions in which the
scalar field responsible for the transition varies rapidly
between its new phase and old phase values. When two
bubbles collide, the bubble walls separating them disap-
pear and the stored energy can begin to spread through
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the bubble interior. This energy initially appears as
coherent scalar field waves propagating into the bubble
interior, but is presumably converted to incoherent radi-
ation through the interactions of the scalar field with it-
self and with the other matter fields. This radiation must
then evolve into a homogeneous and isotropic thermal
distribution.

How long does this process take within any given bub-
ble? A clear lower bound is a few times the time required
for light to cross the bubble. To calculate this we need to
know the details of the metric inside the bubble. Before
the bubble has undergone any collisions, its interior is
essentially a pure vacuum of the new phase, and so has a
metric which is either de Sitter-like or Oat, depending on
the vacuum energy density of the new phase. Once the
latent energy of the transition starts propagating into the
bubble interior this simple picture is lost and the best we
can hope for is a rough approximation to the metric. A
plausible guess is that the energy released as the waves in
the scalar field propagate through the interior gives a re-
gion which expands at roughly the same rate as a
radiation-dominated Robertson-Walker universe. This
gives a picture in which the larger bubbles, where the
thermalization and homogenization of the latent heat is
still taking place, expand at the same rate as the sur-
rounding regions, evolved from smaller bubbles, which
have already entered the standard radiation-dominated
Robertson-Walker scenario. The region within a bubble
of coordinate radius r will not complete the recovery
from the supercooled regime until after the horizon dis-
tance dH(T)-Mp/T has become equal or greater than
rR (t). If R (t)-R (t,„)dT(t,„)d/T(t)-R (t,„d )M/T(t),
the temperature of the Universe will have fallen by that
time to Mro/r.

There will clearly be convicts with the standard
cosmology if too many large bubbles are still completing
the thermalization process at nucleosynthesis, or even
later, times. Such considerations can be used to place
upper bounds on co. If we require that the fraction of
space in such regions be less than 10 " when the temper-
ature is T, then

4 log, o(M/T) 4(—log,o, (4.24)
n +log&o in[@ '(t,„d)]

where the second inequality follows from the fairly mild
assumption that p(t,„d)(1/e. Given the quantitative
success of the predictions for the nucleosynthesis of the
light elements, it is hardly extreme to require that no
more than 10% of space be still undergoing thermaliza-
tion when T=100 keV. If M ='10' CxeV, this translates
into the bound m(76. A more stringent bound can be
obtained by considering the Universe at the time of
recombination. To maintain the bounds on the anisotro-
py of the microwave background, let us require that no
more than 10 to 10 of space be still undergoing
thermalization at T=4000 K. This gives an upper bound
on co which ranges from 24 to 32.

While these bounds are certainly not precise, it is clear

that values of m large enough to meet the present-day ex-
perimental limits cannot be accommodated. Further-
more, even meeting these bounds would hardly be
sufhcient to assure a satisfactory reheating process, since
the arguments above have clearly underestimated the
difBculties in obtaining large-scale homogeneous thermal-
ization. This is particularly true of the largest bubbles,
which tend to collide primarily with much smaller bub-
bles, since we should expect the energy released in such
collisions to primarily Now outward from the larger bub-
ble.

Another aspect of the reheating process also leads one
to low values of co. In a general Robertson-Walker
universe there is a preferred choice of the time coordi-
nate, namely, that in which hypersurfaces of constant
time are homogeneous and isotropic. In the process of
reestablishing a hot Robertson-Walker universe from the
aftermath of the supercooled inflationary period, there
must be some means of ensuring that the same preferred
coordinate frame is established everywhere.

Some sense of the obstacles to this can be gained by
considering the situation in old

inflation,

where the
vacuum-dominated universe locally approximates a de
Sitter spacetime. Because the O(4, 1) de Sitter symmetry
includes Lorentz-like transformations which mix space
and time coordinates, there is no uniquely preferred coor-
dinate frame. As bubble clusters form during the course
of the (never-ending) transition, the random nucleation of
bubbles picks out certain choices of the time coordinate
in some regions (e.g., in the overlap of two bubbles, those
choices which make the two bubbles have the same age),
but there is no correlation of these choices between
diFerent clusters.

In extended inflation the bubble clusters meet to form
an infinite region of new phase, but the problem of ob-
taining the same distinguished coordinate system in wide-
ly separated regions still remains. It is clear from causali-
ty considerations that this frame cannot be newly estab-
lished after the inflationary period. Instead, there must
be some mechanism for retaining a memory of the origi-
nal Robertson-Walker frame. In a transition which was
completed at high temperature the necessary information
could be carried by the temperature, but this surely plays
no role in an inAationary transition which supercools to
essentially T=O. Instead, we must look to either the
record of the time evolution of R, as rejected in the dis-
tribution of bubble sizes, or to the value of the Brans-
Dicke scalar field 4; these are essentially equivalent,
since in the old phase regions H =E. /8 -+ ' -t
Since the case of constant H and N corresponds to the de
Sitter case, where there is no distinguished frame, we
must require that there be a significant variation of these
quantities. The time scale over which we should look is
that relevant for the presently observed Universe, i.e., the
interval from t(r U), when bubbles with asymptotic
coordinate size equal to that of the observed Universe
were being nucleated, until t,„d. In fact, since the. horno-
geneity and isotropy were certainly established by the
time of recombination, and most likely well before nu-
cleosynthesis took place, the relevant interval is even
shorter. From Eqs. (3.8) and (4.3),
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H(r)
H(t, „d )

' i/(ru —i/2)
ras

ro

' 1/(co —
1. /2)

M
T

(4.25)

where T is the temperature corresponding to r„(t) A.

variation of at least one order of magnitude in H over the
interval defined by the nucleosynthesis temperature
would then require that co ( 18+logio(M/10' GeV).
While it is not certain that a variation of this magnitude
would be enough to differentiate the situation from the de
Sitter case (it might conceivably even be a bit more than
is needed), it is clear that we are once again being led to
values of m which are far too low to be consistent with
present-day observation.

V. CONCLUDING REMARKS

%'e have seen that the extended inflation scenario with
a pure Brans-Dicke theory can yield a cosmologically ac-
ceptable outcome only if co is not too great. The ex-
istence of such an upper bound should not be surprising,
since in the co~ (x) limit, where Brans-Dicke theory
reduces to general relativity, extended inflation should
coincide with old inAation, which is known to fail. The
difficulty lies not with the existence of an upper bound on
co, but rather with its value.

For a phase transition characterized by a mass scale M
of the order of 10' GeV, the arguments of Sec. IV give
upper bounds on co of several tens, certainly well below
100. These bounds become stronger as M is decreased.
Increasing M weakens the bounds slightly, but the re-
quirement that M &M~, together with the restrictions
[(3.15)—(3.17)j on the bubble nucleation rate, preclude
any significant gain from moving in this direction.
Furthermore, the true bound on co is probably even lower
than the values cited here, for two reasons. First, the
difficulties of converting latent heat to homogeneous and
isotropic thermal energy, either within a single bubble or
over a much larger region, were certainly underestimat-
ed. Second, these bounds were obtained by requiring
consistency with the standard cosmology at nucleosyn-
thesis and later times. Obtaining a satisfactory scenario
at earlier times (e.g. , up to electroweak or higher temper-
atures) and requiring sufficient baryogenesis might well
place further restrictions on co. In fact, it is quite plausi-
ble that there is no value of co which is large enough to
give sufficient inAation and yet low enough to give a satis-
factory reheating process.

In any case, co must certainly lie below the present-day
experimental limits. We must therefore abandon the
pure Brans-Dicke theory and work with models which
have a potential to fix the present value of @ at M~. The
simplest example one could imagine would have a V(@)

which was essentially Aat up to some value No & Mz and
then had a minimum at @=M~. Assuming that V(+)
was small compared to the vacuum energy of the matter
fields, the scenario would proceed very much as in the
pure Brans-Dicke theory provided that the transition was
completed before 4 was trapped at its present value. (If
the transition were not completed by this point, the
scenario would pass over into the general relativistic old
inf(ation. ) This requirement would imply a restriction of

the form A,o(M /Mp [cf. Eq. (3.15)], as well as the in-
equality (3.17). Because Mz is an input parameter of this
model, rather than simply the outcome of the Brans-
Dicke evolution, any fine-tuning needed to satisfy these
inequalities should be viewed as unnatural.

One can easily envision more complicated models.
The general requirements are clear. One wants the
effective gravitational coupling to evolve at the same time
that the matter fields are undergoing a first-order phase
transition. This should occur in such a manner that the
Hubble parameter, while initially large enough that
A, ,„/H 5 1, eventually decreases to the point that
A, o/H &e„. This evolution should be relatively pro-
longed, so that there will be sufficient inAation. Finally,
to obtain a satisfactory thermalization and reheating pro-
cess, the final decrease in H should be relatively rapid,
probably faster than the I/t behavior of the pure Brans-
Dicke theory. Showing that such a model can be con-
structed, preferably without unnaturally fine-tuned pa-
rameters, remains an outstanding challenge.
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APPENDIX

Consider first the case of a radiation-dominated k =0
universe. As in general relativity,

pR—:A =const. (A 1)

Since p=3p, Eq. (3.3) implies that

4R =—8 =const. (A2)

These results, together with Eq. (3.2), give

~ 1R= —8+ 2'+3, 32~
3

'+3' (A3)

where

f=@R
From Eqs. (A2) —(A4) it follows that

1/2

(A4)

~ 1g=+—
R

2'+ 3 ~ 2+ 32TT ~ ~3 3
(A5)

and hence that

dR R R
dg 1t' 2g 2CO+ 3 2 3277

3
'+3' 1/2

(A6)

This equation is readily integrated, and one finally ob-
tains
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++3/(2')+ 3)
32nd NR
(2'+ 3)B

N=C
2

- 1/2
32nd NR
(2'+ 3)B

(A7)

R
R

~ . 344+

2co+ 3

3

2co+ 3

3

32mp„„+
(A 10)

3@

32~p„,+
34

32m' C (t,„d )R'(t,„d) 32rrp(r, „,)4(t,„,)

(2u~+3)B' (2co+3)4'(t,„d)

6'+ 5

4
(Ag)

Substituting this into Eq. (A7), and using 4(oo )=C, we
obtain

where C is a constant of integration. For either choice of
sign, N tends toward this constant as R becomes large.
Equation (3.2) then reduces to the usual general-
relativistic equation, whose solution is Eq. (3.5).

We can estimate the growth of 4 after an inflationary
era by matching this solution onto a vacuum-dominated
solution of the form of Eq. (3.6). Assuming for simplicity
a sharp transition from the vacuum-dominated to the
radiation-dominated regime at t =t,„d, with p„d=p„„
and with R, N, and N all continuous, we would have

32~pvac

2'+ 3
(A 1 1)

Now consider the possibilities for the large-time behavior
of z—:4 /4; to have gravity attractive, let us assume that
N, hence z, are positive (note that N cannot change sign
without the solution becoming singular). I will also as-
sume that cu) 0. If z tends toward a constant value, the
upper choice of sign gives a solution which approaches
that of Eq. (3.6); the lower sign leads to a solution with
negative Cl. If z were to approach 0, the first and last
terms in Eq. (Al 1) would dominate; these would imply
N- t and hence z -const, contradicting the assumption
z ~0. Finally, the hypothesis that z becomes
arbitrarily large leads to z —t ' ~', with p =
—I+&6co+9; for either sign choice this is a decreasing
function, again contradicting the hypothesis.

Thus, any solution with positive N should tend toward
the form of Eq. (3.6) at large time. To verify this, at least
for nearby solutions, let C&(t) =C&o(t)+5@(t), where C&o(t)

is given by Eq. (3.6). To first order in 5N, Eq. (Al 1) (with
the upper choice of sign) becomes

4(oo)
4&(t,„d )

' + +3/(2co+3)

&6co+9+2

6'+ 1

2
64

1+Bt
B 54 =0 . (A12)

(1+Bt)2

=1+—+O(ni ) .2 —2

CO

The general solution of this is

5@=et(1+Bt) ' "+" +c2(1+Br) (A13)

Next consider a vacuum-dominated universe, also with
k =0. As usual, p„„=—p„„. Solving Eq. (3.2) for 8 /8
and then substituting the result into Eq. (3.3) yields

The first term on the right-hand side falls rapidly with
time, as expected. The second term grows linearly, but
can be eliminated by shifting the zero of time, i.e., by the
transformation r ~ t +c2 l[2B4&(0)].
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