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Fusions of operators in the minimal and N = 1 superconformal theories
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Starting from the fusion rules of primary operators, all the fusion coefficients of the minimal con-
formal theories are explicitly obtained in closed formulas using only the second-order Fuchsian-type
differential equations with monodromy and crossing symmetry. These are explicitly demonstrated
in the case of conformal theory with a central charge c =

—,
' .

I. INTRODUCTION

All the physics of the conformal theories is encoded
into the operator-product expansions (OPE's) of primary
operators. In free theories with central charges —,

' and 1,
their OPE can be explicitly evaluated using the correla-
tion functions of spinors and scalars. For example, the
primary operators in the bosonic string theory are the

I

vertex operators which are polynomials of BX multiplied
by e' . The fusion of the two simplest primary operators

ik
1
X(z) ik2X(0)

e ' and e ' is computed from the correlation
function

(X(z)X(0)) = —i~

as

e ' e ' =z ' 'I 1+zik, "c)X„(0)+—,'z [ik, "ik BX„(z)c)X (0)+k,"Bc)X„(0)]+ Ie

with analogous expressions in the antiholomorphic parts.
Two tachyons couple to higher-spin particles in the string
theories. But the OPE for general conformal theories is
very difficult to compute. These OPE's can be examined
at two different levels. One can study what primary
operators are present in the expansion of two primary
operators. At this level, one examines the fusion rules

0 0) = X A;, "4k .
k

(3)

$(z)$(0)=gg C; z ' ' " 'I3;
k I k,. I

The next step in a more detailed understanding of the
OPE requires quite laborious analyses to determine the
fusion coefricients

fusion rules. We show that the fusion coefficients in the
sense of Eq. (4) for all the minimal conformal theories can
be determined only from the second-order Fuchsian-type
differential equations with monodromy and crossing sym-
metry. In Sec. II we fix the notation by computing the
fusion rules of minimal unitary as well as nonunitary con-
formal theories. Section III discusses the fusion rules of
N=1 superconformal theories. The operator-product ex-
pansion of all the conformal theories in the sense of Eq.
(4) is shown in Sec. IV to be calculated using only the
second-order Fuchsian differential equation with mono-
dromy and crossing symmetry. The main results of this
paper are Eqs. (45), (49)—(51), (53), and (54), which give all
the fusion coefficients explicitly in closed formulas. In
Sec. V we illustrate the general discussion of Secs. II and
IV with a specific example of c =

—,', theory.

XL I, L k pk(0). (4)

As computed for some conformal field theories in Refs.
1 and 2, the fusion coefIicients C, - are generally compli-
cated expressions involving gamma functions.

Recently, in some elegant papers, ' the role of map-
ping class groups in understanding conformal theories is
emphasized. The modular transformations of characters
are intimately connected to the fusion rules in the sense
of Eq. (3).

In this paper we obtain a closed formula for fusion
rules in the sense of Eq. (3) in all the minimal conformal
and superconformal theories. Starting from the charac-
ters of primary operators, we calculate the modular
transformation of the characters and determine the

II. MINIMAL UNITARY AND NONUNITARY
CONFORMAL THEORIES

Minimal conformal theories with the central charge'

6(p —p')
PP

(5)

(rp —sp')' —(p —p')'
(r, s) (p' —r, p —s) 4'

1~r ~p' —1, 1&s~p —1 .

The modular transformation of y(„,)
is given as

have a finite number of primary operators with conformal
dimensions:
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0;(b)X, = ~;)"Xk . (10)
+(r, s)

with

1 ( r' p' —1, 1 (s' (p —1,s'p' ( r'p
&(„,)'" ' 'y(„, )(r) (7)

The operators P;(a) insert the primary operators P; at
o. =0 and o. =m. Since the trace is taken over the descen-
dent states of the primary operators P., we have charac-
ters g on the right-hand side as

C, (~)x, =~, (1)x . (11)

s I I

(r, s)

1/2
I I I

rs'+ r's+1 err ~P &&sin, s1n
p p

k —y S ng (n)(S n)n (12)

The modular transformation matrix S determines the
fusion rules 2 by

S is symmetric and real, satisfying
I I II II

r', s'

(8)

(9)

where the condition A;0"=5,"determines

S;"
~ (n) S"

0
(13)

We review the essential formula to determine the fusion
rules and the reader is directed to Ref. 3 for details (see
also Ref. 5). The operators P;(b) insert the primary
operators P; at both the initial time t=0 and final time
t =~, while the trace y is taken over the descendent
states of the primary operators P . According to the
fusion rules of Eq. (3), the trace is taken over the states k
as

The similarity transformation of A, by S gives the fusion
rules as

k' k —~ S (r)sg , (r, s)(S (r, s))n
(r, s,. )(r. , s. ) ~ (r. ,s. ) (r, , s,. ) (ri, , sk )

r, s

(14)

The fusion rule A is symmetric in i and j. The summa-
tion over r and s gives

4( rr s,. )0( r. ,s. )

min(r, . + r. —1,2p' —r —r' —1) min(s, . +s.—1,2p —s —s' —1)

X X
r = i((r. —r. ~+1, r, . +r. —r =1mod2 s = is. —s. i+1,s. +s.—s =1mod2

J l J l J l J

4(r, s)

The result of Eq. (15) agrees with the results of the indi-
cial equations of the differential equations of the four-
point correlators. '

SU(2) 2SSU(2)2
SU(2)

(17)

III. FUSION RULES FOR %=1SUPERCONFORMAL
THEORIES

The X= 1 superconformal algebras have two conserved
currents: spin 2 (energy-momentum tensor) and spin —,'
(its superpartner). A discrete series of unitary models ex-
ists with the central charge

where the subscript denotes the level of SU(2) Kac-
Moody algebra. The coset space decomposition of char-
acters y( (z, r) of representation I (twice of spin) in the
level-m SU(2) Kac-Moody algebra is

m+1
&l —), m 2(z r)Xr 2(z —r) y bp q (r)Xq —i,

q =1

(18)

where the branching coefficient b (")(r) has the sym-
metries

=3 8c = l m =3,4, 5, . . . .
2 m(m+2)

The coset construction for this model by Ref. 6 is

(16) (r) g, (2—r)
bp, q bm —p, m —

q +2

b„"=0 if p —qC2Z+r+1,
and has the modular transformation

(19)

I
b (r)

pq 7

2
m(m +2)

1/2
rrpp' . vrqq' . vr(r + 1 )(r'+1)

Sln S1n sin
p'=1 q'=1 '=0 4

(20)

From the symmetry of Eq. (19), we can restrict the (p, q) to be

1&p&m —1, p&q&m+1, 0&r&2. (21)
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The fusion rules for these branching coefficients are

(pqr)
( r )

m —1 m+1 2 ~(p,. q,. r,. )
Pkqk "k —~ ~ ~ g (pqr) ' ' ' (g (pqr()e

(p,.q,.r,. )(p&qj r& ) ~ ~ ~ (p&qj r& ) + (pqr) (PI, qk r& )

p=l q=l r=0 (110)

The summation over p, q, and r gives

(22)

(r,. ) (r. )

bp,.q,

''
bp, q

min(2m —
p,.

—p. —l,p,. +p. —1)

Pg lP; P~ l+1

min(2m —
q,.

—q. +3,q,. +q. —1)

qk
= Iq,

—
q, I+1

(23)

where rk =r, +r mod2,

P. +PJ. Pk
+~~ ~k

where NS (for Neveu-Schwarz), NS, and R (for Ramond)
denote the boundary condition ( ——), (+ —), and ( —+ )

along the o. and r directions. Generally the fusion rules
are

When there are several terms allowed in the summation
which are equivalent by symmetry of Eq. (19), only a sin-
gle term is allowed. The superconformal characters are
given in terms of b as

,'(b' '+b—' ') p —
q &even,

~NS@~NS y ~NS ~NS@~NS ()

x"x'= g x", x 'x '= gy ',
~ 'x'=o, x'x'=&x '.

(25)

~NS= ((b(o' —b' ~) p —q Eeven,
pq T pq pq

R 1

pq &'2 pq '

(24) All the nonvanishing fusion coefficients for m=3 super-
conformal theories (which are related to m =4 conformal
theories with conformal dimension- —, operators identified
with the supercharge) are

~NS@~NS ~NS ~NS@ ~NS ~NS ~NS@ ~R ~R ~NS@ ~R ~R ~NS@ ~NS ~NS+~NS

~NS@~R ~R +~R ~NS@~R ~R ~NS@~NS ~NS ~NS@ ~NS ~NS

~NS@~NS ~NS+~NS ~R @~R ~NS+~NS ~R c ~R ~NS

The fusion rules for m =4 superconformal theories are also listed:

~NS@~NS ~NS ~NS@ ~NS ~NS ~NS@~NS ~NS NS@ R R NS R R NS R

~NSCI ~R ~R ~NS@ ~NS ~NS+~NS+~NS ~NS@~NS ~NS ~NS@ R

~NS@ ~R ~R +~R ~NS@~R ~R ~NS@ ~R ~R ~NS@~NS ~NS ~NS@,~R ~R

(26)

~NS@~R ~R ~NS@~R ~R ~NS@~R ~R ~R @~R ~NS+~NS ~R @ ~R ~NS+~NS

~R @~R ~NS ~R @~R ~NS ~R @ ~R ~NS+~NS ~R @ ~R ~NS

~R @~R ~NS ~R @ ~R ~NS+~NS ~R @~R ~NS ~R @~R ~NS+~NS+~NS

IV. FUSION COEFFICIENTS IN THE ARBITRARY
MINIMAL UNITARY CONFORMAL THEORIES

To obtain more detailed information of operator-
product expansions of primary operators, we use the
four-point correlators

(Pk(Z(, Z()P((Z2, Z2)P„(Z3,Z3)(t' (Z4, 24))

satisfying the differential equation given by the decou-
pling of the spurious states. One can move three of four
z s at arbitrary points due to the SL(2,C) invariance, and
we choose these points z, = ~,z2=1,z4=0, respectively.
Also the same reasoning applies to the antiholomorphic

parts. From now on, we will drop the antiholomorphic
coordinates for typographical simplicity. If the primary
operator P„(z) generates the null state at grade d, then
the four-point correlator satisfies the dth-order differen-
tial equation. ' One should solve generally the differential
equation of order d to fix all the conformal blocks in Eq.
(4). However if we want to obtain the fusion coefficients
C; only, there is enormous simplification using the cross-
ing symmetry

(Pk ( ~ )P(( i )P„(x)P (O) )

=(P ( )P (i)y„(l — )y, (O)) . (2&)

Therefore, one can determine all of the fusion coefficients
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without solving the higher-order (d ~ 3) differential equa-
tions. We choose P„which generates the null state at
grade 2, so the differential equations become second or-
der. The differential equation for the four-point correla-
tor is

3 d 1 —2x d+2(2h„+1) dx~ x(1—x) dx

(b„—bI, )x +(5 +6k —bI —h„)x b-
x (1—x)

X (/k', (h„(x)p ) =0, (29)

where 6,. is the conformal dimension. of primary operator
P;. The solution is

A, x (1 x)~F(—a, b„c,x)+ A2x (1—x)~x'

XF(a —c + l, b —c + 1,2 —c,x), (30)

where

=—'
I 1 —b, '+[(1 b, ') +46—. b. ']'

I

f3 =,' l l —S-'+[(I—a-')'+4a, a-']'"I,
y+= —,

'
I 2b, ' —I+[(2b, ' —1) +4(51, b, „)b, ']'~ I, —

=2(2g +1) .

Here, a,P take one of the values of a+,P+, respectively,
and the a is chosen to be b —6„—5, where 6 is the
conformal dimension of the intermediate operator. The

I

arguments of the hypergeometric function are given by

a =a++P~+y+, b =a++P++y+, c =1+a+—a+ .

The correlator should be a single-valued function un-
der rotation of x and x around x=0 or 1 as well as x.
This monodromy requirement fixes the four unknown
coeScients apart from overall normalization in the corre-
lator, where each term is multiplied by the antiholo-
morphic part. The mon odromy condition about the
point x =0 allows only the following;

Mix (1 x)~F—(a, b, c,x)(AH)+ A2x (1—x)~x'

XF(a —c + l, b —c +1,2 —c,x)(AH), (31)

where (AH) means the antiholomorphic part.
To investigate the behavior under the transformation

(1—x)~(1—x)e ', let us change the x dependence of
the solution into 1 —x via hypergeometric function iden-
tities:

F(a, b, c,x)= F(a, b, a+b —c+1,1 —x)I (c)I (c —a b)—
I c —aI c b-

. . .r(c)r(a +b —c)
r(a)r(b)

X F(c —a, c b, c —a— b+—1, 1 —x) .

(32)

The monodromy requirement of x around 1 fixes the rela-
tive coeKcients as

I (c)I (c)1 (1—a)I"(1—b)I (a —c + 1)I (b —c +1)
I"(c —a)I (c —b)I'(a)I'(b)l (2 —c)1 (2—c)

(33)

using Eq. (32) and

F(a, b, c,x) =(1—x)' ' "F(c a, c —b, c,x) . —(34)

Here we present an argument that all the fusion
coefficients in Eq. (4) of the minimal conformal theories
can be determined from the second-order Fuchsian

differential equations with the monodromy and the cross-
ing symmetry.

We restrict the case on unitary theory, so the central
charge becomes

c =1—,m =3,4, . . .6
m m+1

2 2
I

i2', 1
I

I

3', 3'
3&2
3'1

I
I
I
I

i
I
I
1

4;4
4'3
4', 2
4', 1

3,'4
3,'5
3', 6
37
3', 8

I
I

2 3
2,'4
2, 5
2', 6
2', 7
2I8

I
1

I

I

1 '2
I

1 ', 3
4

1,5
1', 6
1 ', 7

FIG. l. A path for the determination of fusion coefficients
C j in Eq. (4) of the m = 8 minimal conformal theory. The C;
matrix is calculated in the order of C(i I) C(12) C(13) . as
shown by arrows.

and the conformal dimension of the primary operator

1--~ 0--g 3--3 4-& )-W Z--g'4. -g
2 1. 3 g 4-3. 5'+ 2 -4 1 3.

8--1. 4-2. 5-+ 8 + f -4
4--~ 8-g 6-a i-g '

5 -1. O'-2, P 3-
7 -1

FIG. 2. Alternative path for the determination of C;j .
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f( q) 1S

[(m + l)p —mq] —1
(p, q) (m —p, m —q+1)

1 ~p ~[m/2], 1 ~q ~m . (35)

The fusion coefficients C; " can be regarded as a (j,k)
element of the C; matrix where i, j, and k can take any
pair of (p, q) as in Eq. (35). All these fusion coefficient
matrices can be determined using the second-order
differential equation with the monodromy condition and
the crossing symmetries. There are two paths where the
new fusion coefficient can be expressed in terms of the
previously determined ones. Of course, the results are in-
dependent of path. Here we present the general results
following the path in Fig. 1.

1. Fusion matrix C[»}

C[»} is a unit diagonal matrix since the primary
operator P(») is an identity operator.

C(1,2 }(1,1 }(1,2 } (36)

Using Eq. (33), C(1 2)(1 2)(1 3) can be determined via the
monodromy condition of the correlator

((1,2)(1,2)(1,2)(1,2) &,

—= (p„2)( )&„2)(1)$„2)(x,X)(I)„2)(0)&

in shorthand notation. The result is

2. Fusion matrix C(z 2}

The C[1 2} matrix can be determined using the mono-
dromy and crossing symmetry of the four-point correla-
tor.

(i) Monodromy condition. As was discussed before,
the monodromy requirements can fix the relative ratio of
fusion coefficients. Since there are only one or two non-
vanishing elements in each row of the C[, 2} matrix, and
since C; is totally symmetric, we can determine some
parts of the C[, 2} matrix.

One can start from

2=[C(1,2)(1,2)(1,3) ]

2m —1 m

m+1 m+1

1 r 2 —m

m+1 m+1
2m

m+1

2

2 (37)

By the same method, one can fix the next row of C[1 2} successively until it terminates at C~»}~1 1}~, }. The explicit
form of the fusion coefficients corresponding to this series is

2

k

(1,2)(),k)(l, k+1) ) ( ) II2 k —1

1=2

r rlm —1 (l —1)m
m+1 m+1 I (2 —l)m +2

m+1

(1—l)m +2 (2—l)m +1r
m +1 m+1

2 (38)

which is the result of the monodromy requirement on the correlator ((1,2)(1,k)(1,2)(1,k) ) with 2 ~ k ~ m —l.
(ii) Crossing symmetry. The remaining row of the C(, 2) matrix can be fixed by crossing symmetry of the four-point

correlator in addition to the monodromy conditions. First, let us consider the relation

((2, 1)(2, 1)(1,2)(1,2) ) = ((2, 1)(1,2)(1,2)(2, 1) ) )

According to Eq. (31), the expression of the above correlators is obtained as

x (1— )x~ (F,a, b, c)x( HA)=[ C2())(2, )(22)] x (1 x)~I'(a, b, a+—b —c+1,1 —x)(AH)

with

(39)

(40)

1 2 2 mb= —1, c= a=m+1' ' m+1' 2(m+1)'
Thus the fusion coefficient is

1

2

2=[C(1,2)(2, 1)(2,2) ]

2 m+2
m+1 m+1

1 m+3
m+1 m+1

2

=(1)
2 (41)

Now, ((2,k), (2, k + 1)) elements of the C(, 2) matrix are successively determined by the monodromy condition as
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I (I —1)m —2 (l —2)m —1rm+1 m +1
2 k —1

k[C„„„„, , ] =(—)
4 (=2 (2—I)m +3 (3—l)m +2I Im+1 m+1

I (3—l)m +3
m+1

I (I —1)m —1

m+1

2

(2 k m —1).

To evaluate the ((s, 1),(s, 2) ) matrix elements of the C(1 2) matrix, let us consider the crossing symmetry

((s, 1)(s, 1)(1,2)(1,2) )„=((s, 1)(1,2)(1,2)(s, 1) ) )

By repeating the same steps, one obtains the fusion coefFicient
2

2 (s —1)m+s
m+1 m+12=

(1,2)(s, 1)(s,2) ]
1 (s —1)m +s+ 1

m+1 m+1

(42)

(43)

(44)

which is a simple rational number in general. The remaining part of C~, 2) matrix can be determined from monodromy
of the correlator ((1,2)(s, k)(1,2)(s, k))„as

T 2

2 — k —1[C(1,2)(s, k)(s, k + 1) 1

2 r (s —1)m +s
m+1 m+1

1 r (s —1)m +s+1
m+1 m+1

r (1—s + l)m —s (I —s)m + 1 —sr
k m+1 m+1

'(s —l)m +s +1 (s —l +1)m +sI rm+1 m+1

r (s —l +1)m +s+ 1

m+1

r (1—s+l)m+1 —s
m+1

2

2 (45)

This formula includes Eqs. (38), (42), and (44) with s= 1, s=2, and k= 1, respectively.

3. Fusion matrix C(r ) (qAI)

Genera&ly, C(p q)( p)(y $) can be obtained from the crossing symmetry

& «,p)(y, 5)(1,2)(p, q
—1)&„=((a,p)(p, q

—1)(1,2)(y, 5) ), (46)

Note that q& 1 and we will use another crossing symmetry later for the case q= l. The left-hand side of Eq. (46) he-
comes

x( 1 x)(AH)[C(~p)(ys)(pq)(12)(pq))(pq)(&g&x)(AH)

+C( p)(z &)(~q 2)C(, 2)(t, q ))(~q 2)x' 'F(a —c+1,b —c+1,2 —c,x)(AH)],

where

a= 1

2(m +1) [(q —p +a P y+—5)m—+(1—p +a —y)],

b= 1

2(m +1) [(q —p —a+P —y+5)m +(1—p —a —y)],

c = [(q —p)m +(1—p)] .1

m+1
The right-hand side also gives the similar form in 1 —x dependence as

(47)

x (1—x)P(AH)[C( p)(, )( z+))C() 2)( &)( &+))F(a,b, a+b —c+1,1 —x)(AH)

+C( p)(, )( S)C)(, 2)( S)( S)(1)—x) ' F(c b, c —a, c —a b+—1, 1 —x)(AH)] —.
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Since Eqs. (47) and (48) are equal via the crossing symmetry, one can compare directly through Eqs. (32) and (34), and
finally obtain the following recursion relations for the fusion coefFicients C(p q)(~ &)(z &).

2

C C
I (c)I (c —a b—)

(a, f))(y, S)(p, q) (1,2)(p, q
—1)(p, q) I ( )I ( b)

(a,P)(y, 5)(p, q
—2) (1,2)(p, q

—1)(p, q
—2)

I (2—c)I (c —a b—)
I (1—a)I (1 b)—

2

C(a,p)(p, q
—1)(y,6+1)C(1,2)(y, S)(y, 6+1)

2
I"(c)I (a +b —c)

(1»)(p q
—1)(p q) I.( )I-(b)

r(Z —c)r(a+b —c)
(a P)(y S)(p q

—» (1»)(p q
—1)(p q

—» I-(a C +1)l.(b C +1)

2

C(~ P)(p q 1)(y g 1)C(1 2)(y ~)(y ~ —,) . (50)

Note that when 5=1 or m, Eqs. (50) or (49) drop out, respectively, and when 2~5 ~m —1, two equations give con-
sistent results. Furthermore, the second terms of the left-hand side of Eqs. (49) and (50) disappear when q=2.

4. Fusion matrix C(~ »

The remaining matrices are C(p 1) (2 p [m/2j). Fusion matrices C(, ) correspond to the initial entries in the left
half of the boxes describing the path in Fig. 1. First, C(2, ) can be obtained similarly to that of C(, 2) using monodromy
and crossing symmetry as

'2
2 (k —1)m —1r — r

2 s —1

(2, 1)(s,k)(s+ l, k) )
1 (k —1)m —2I — I

m m

r (I —k)m +I —1 (I —k +1)m +I +1r
S m m

(k —I +1)m +1 I —(k —l)m —I —1r
m m

r (k I + 1)m ——I

r (I —k + 1)m + I

2

J

2 (51)

The C(„,) (p ~ 3) matrix can be also determined from the relation

((a,P)(y, P)(2, 1)(p —1, 1))„=((a,P)(p —1, 1)(2,1)(y,P) )1

which gives the recursion relation for C(p 1)( &)(z &) as
r

C C
I"(c')I'(c' —a' b')—

(a, lS)(y, P)(p, I) (2, 1)(p —1, 1)(p, 1) I (

(52)

+C(a, P)( y, /3)(p —2, 1) (2, 1)(p —1, 1)(p —2, 1)

2
I (2—c')I (c' —a' —b')

(a, g)(p —1, 1)(y+ ),P) (2, ) )(y, P)(y+ 1, )3) (53)

and

(~,P)(y, P)(p, 1) (2, 1)(p —1, 1)(p, 1)
I (c')I (a'+b' c')—

I (a')I (b')

2

I (2 —c')I (a'+b' —c')
(,0)(y, f3)(p —2, 1) (2, 1)(p —1, 1)(p —2, 1) I-( +1)l-(b + 1) (a, P)(p —1, 1)(y—),P) (2, ()(y, )q)(y —(,P) (54)

where

a'=— m+1, m+1
a, c'=— C

and a, b, c are in Eq. (47). Through steps (1)—(4) we have computed all fusion coefficients for the arbitrary minimal uni-
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TABLE I. Fusion coefficient matrices A;J in Eq. (3) of the tricritical Ising model are listed. The pri-
mary operators are labeled by ( r, s) as in Eq. (6), where the primary operators are ordered in increasing
conformal dimensions.

0
A(]

0

0 0 0 0 0
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

0

0
A(2, 1)

0

0 0 1 0 0
0 1 0 1 0
1 0 0 0 0
0 0 0 0 1

1 0 0 0 0
0 0 1 0 0

0

0
A(P P) 0

0

1 0 0 0 0
0 1 0 1 1

1 0 1 0 0
0 1 0 1 0
1 0 1 0 0
1 0 0 0 0

0

0
A(3, 2)

0

0 0 0 1 0
1 0 1 0 0
0 1 0 0 1

1 0 0 0 0
0 0 0 1 0
0 1 0 0 0

A(3, 3)

0
0
1

0
0
0

0 1 0 0 0
1 0 1 0 0
0 0 0 1 0
1 0 0 0 0
0 1 0 0 1

0 0 0 1 0

0
0
0

A(3

0 0 0 0
1 0 0 0
0 0 0 1

0 0 1 0
0 1 0 0
0 0 0 0

1

0
0
0

tary conformal theories. In fact, there is another path for the complete determination of C;, which is shown in Fig. 2,
and the parallel procedure can be done to obtain the similar recursion relation as in Eqs. (49), (50), (53), and (54). As
was shown before, the roles of C~ & 2~ and C&2 & ~

were crucial in those steps. The basic reason for this is that the primary
operators which generate the null state at grade 2 are P~, z~ and $~2, ~. For these reasons, there are two kinds of deter-
mining paths as in Figs. 1 and 2. In Fig. 2 the roles of C~ & 2 ~

and C~z, ~
are interchanged from those in Fig. 1, but the

final results are, of course, consistent.

V. A SPECIFIC EXAMPLE OF FUSION COEFFICIENTS

We will demonstrate the procedures of Secs. II and IV explicitly with c =
—,
' conformal theories. The six primary

operators are ordered according to their conformal dimensions as (p, q) =(1,1), (2,2), (3,3), (2, 1), (3,2), and (3,1) in the in-
creasing order of conformal dimensions 0, —,'„—,', —,'„—', , and —', , respectively. The real symmetric modular transforma-
tion matrix [Eq. (8)] for m=4 is

1S=

sin—
5

2
27T

2'
sin

7T&2 sin—
52'

sin
5

Sln
5

2
2

0

&2 sin—
5

7r—&2 sin—
5

2&—&2 sin
5

2m'
sin

7T&2 sin—
5

sin
5

2m&2 sin
5

S1Q
5

2m'
sin

5

7T&2 sin—
5

0
2m—&2 sin
5

0

2
27T

5
—&2 sin—

5

2m
sin

—&2 sin—
5

—sin—
5

2, 27I

5
—sin—

52'
sin

5

sin—
5

2K—+2 sin
5

2%
sin

5
—&2 sin—

5
277

sin
5

sin
5

(55)

The fusion rules A;- in Eq. (3) are obtained as in Table I, and fusion coeKcients C; in Eq. (4) are determined accord-
ing to the procedure discussed in the previous section. Their explicit values are listed below and the correlators (or
their relation) which we have used are given inside the curly brackets.

(1) C~ » ~

=I (unit diagonal 6 X 6 matrix).
(2) C(, 2) matrix:



398 I. G. KOH AND B.C. PARK

C(1,2)(1,1)(1,2)

r(-', )[r(-', )]' ' '"
C(1,2)(1,2)(1,3) 3 r( ') )[r( 3 )]3

5 5

C(12)(13)(14)7{((1,2)(1,3)(1,2)(1,3)&„I

C(1,2)(2,2)(2, 2)

) C(1,3) matrix:

C(1 2)(2 ))(3 2)
=

—,
'

{((2, 1)(2, 1)(1,2)(1,2) &
= ((2, 1)(1,2)(1,2)(2, 1) &1

r(-', )[r(-,' )]'
{((1,2)(2,2)(1,2)(2, 2) &„J .

r( —,
' )[r(—', )]'

(1 3)(1,1)(1,3)

C(1,3)(2,2)(2,2)

C(1,3)(2,2)(2, 1)

C(1,3)(1,3)(1,3)

{((2,2)(2,2)(1,2)(1,2) &„=((2,2)(1,2)(1,2)(2, 2) &1

I ( ( 1, 3 )( 1,3 )( 1,2 )( 1,2 ) &
= ( ( 1,3 )( 1,2 )( 1,2 )( 1,3 ) & 1

r( )[r( & )]
6 r(5)[r( —', )]

=—,'{((2,2)(2, 1)(1,2)(1,2) &„=((2,2)(1,2)(1,2)(2, 1) &1 „j,
r(-;)[r(-')]' '"

=2
r(-,')fr (-', )]'

(4) C(, 4) matrix:

C(14, )(1,1)(1„4)

C(, 4)(2 2)(2 2)
=

—,', {((2,2)(2, 2)(1,2)(1,3) &„=((2,2)(1,3)(1,2)(2, 2) &,

C(14)(2 1)(21)= ~~ {((2 1)(2 1)(1 2)(l 3) & =((2 1)(1 3)(l 2)(2 1) &1

The remaining coefficients are equivalent to one of the above via the symmetry property of fusion matrices. Of
course, one can proceed further to obtain C(2 1) and C(2 2) but it will reproduce the previous values related by symmetry
of fusion coeScients. Note that the path to compute the fusion coeScients for the tricritical Ising model is not unique,
but the final results are independent of path.

Tote added. After we finished the manuscript, Zamolodchikov kindly informed us that Pogossian and he have used a
recursion algorithm on the superconformal theory [Yad. Fiz. (to be published)]. Also Kitazawa et al. ' have studied
the operator-product expansion in the N= I superconformal theory using the Dotsenko and Fateev method.
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APPENDIX

For references, we compute p;. coeff1cients in Eq. (4) and multipoint correlator in terms of fusion coefficients and

p; ". The descendent states of primary operators pk at grade X in the OPE in Eq. (4) are

l&~k&= X P;, 'L
k,

k), . . . , k„g k, =)V
(A 1)

From the conformal symmetries, the descendent states satisfy the recursion formulas

L.IX+n, bk &
= {K+b —t; —~, +(n+ i)a; IIX,~k & . (A2)

The lowest few terms are listed below:

~k&=P~j (I- )l&k& I2 &k&=P—) )I 21&k&+13kj(—

with
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P,",~'~ =(b,,+b, ,
—b, )/26„,

(4b, k+c/2)(b, „+5, b, )—(1+6,, b,—+5„)/2b, k
—3(2h, —b, +b,„)

166q + ( 2c —10)b k +c

(4b k+c/2)(6k+25, ;
—b )

—3(AI, +b, , 6)(1—+6; b, +—bk. )

166,k + (2c —10)b, k +c

The next terms of P are presented for the b.; =A. case only for simplicity as

EI, +(4h; —1)6k+25; „, „„„,86k+(c —2)h k+366.;+2 c

325k+(4c —20)bl, +2c " " "
384bI, +(48c —20)bk+24c

(A3)

(A4)

The expression of n-point correlators (n ) 5) can be obtained using the conformal symmetries and standard OPE. Thus
one can obtain the full expression of multipoint correlators once the fusion coe%cients are known. The five-point corre-
lator, for example, is obtained as

((b k(~)P (11)$;(y)P„( x)P (0))= g C„" C„Cki,x " " g P„' x 'D(k )(y, z)y
rs Ik)I

(k~pl(z)L
( k )

~s )

where D(„)(y, z) is
'2

a a a , a , a+, D(„)= +, D(z) = —y —z +b, ,y +b(z
By Bz By Bz By Bz

(A6)

with its antiholomorphic part.
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