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We develop a method for determining the source direction (8,$) and the two waveforms h+(t),
h &, (t) of a gravitational-wave burst using noisy data from three wideband gravitational-wave detec-
tors running in coincidence. The scheme does not rely on any assumptions about the waveforms
and in fact it works for gravitational-wave bursts of any kind. To improve the accuracy of the solu-
tion for (9,$), h+ (t), h „(t), we construct a near optimal filter for the noisy data which is deduced
from the data themselves. We implement the method numerically using simulated data for detec-
tors that operate, with white Gaussian noise, in the frequency band of 500-2500 Hz. We show that
for broadband signals centered around 1 kHz with a conventional signal-to-noise ratio of at least 10
in each detector we are able to locate the source within a solid angle of 1X10 ' sr. If the signals
and the detectors' band were scaled downwards in frequency by a factor ~, at fixed signal-to-noise
ratio, then the solid angle of the source's error box would increase by a factor ~ . The simulated
data are assumed to be produced by three detectors: one on the east coast of the United States of
America, one on the west coast of the United States of America, and the third in Germany or
Western Australia. For conventional signal-to-noise ratios significantly lower than 10 the method
still converges to the correct combination of the relative time delays but it is unable to distinguish
between the two mirror-image directions defined by the relative time delays. The angular spread
around these points increases as the signal-to-noise ratio decreases. For conventional signal-to-
noise ratios near 1 the method loses its resolution completely.

I. INTRODUCTION

One of the early predictions of Einstein's general
theory of relativity was the existence of gravitational
waves. These are transverse, quadrupole waves which
travel at the speed of light. They interact with matter by
changing the proper distance between test masses.

Gravitational waves are generated whenever the
motion of matter results in a time-changing mass quadru-
pole moment. The total energy radiated in the form of
gravitational waves depends on the source's mass, on the
velocity of its motion and on the shape and size of its Aow
of matter. The estimated total energy radiated in the
form of gravitational waves from a typical supernova ex-
plosion is ~ 10 ergs. '

The detection of gravitational waves relies on sensing
the change in the proper distance induced by the wave on
test masses which may be coupled together mechanically
or may be free. The dimensionless wave amplitude h is
related to the response of the detector by h -51/lo where

lo is the reference length between the test masses and 5l is
the change in length caused by the wave.

For a typical supernova explosion in our Galaxy the
energy Aux on the surface of the Earth is ~ 10 ergs/cm,
depending on the asymmetry in the stellar collapse. ' If
one assumes that the mean frequency of the gravitational
waves is about 1 kHz, then the corresponding dimension-
less wave amplitude will be ~ 10 ' . Using the formula
above we see that for Earth-based detectors with arm
lengths of the order of 1 km the change in the distance

between the test masses is ~ 10 ' cm. Since the event
rate for supernovae in our Galaxy is approximately one
in every 30 years, the detectors have to be capable of ob-
serving events located at larger distances in order to get a
reasonable event rate. For example, for sources located
in the Virgo cluster of galaxies the event rate is about 30
explosions per year. The corresponding dimensionless
wave amplitude is 10 ' which causes a length change
of 10 ' cm between the test masses. Although typical
supernovae might turn out to be highly symmetric and
thus poor gravitational-wave emitters, other sources are
likely to produce wave bursts at Earth with h —10 ' to
lo ~~ (Ref 2)

The astrophysical sources of gravitational radiation are
expected to emit in a wide frequency range from less than
one per year for early Universe sources and cosmic
strings to 10 Hz for normal binary systems or large
black-hole interactions through 10 —10 ' Hz for com-
pact binary stars to 10 Hz or so for stellar collapses and
neutron-star binary coalescences. The optimal choice of
the detection method depends on the anticipated frequen-
cy of the radiation. This is because of the differing noise
characteristics of the detector designs in different fre-
quency ranges.

The experimental efforts for the detection of gravita-
tional radiation with Earth-based detectors have led to
two basic antenna designs: resonant bar antennas and
laser interferometric antennas.

A bar detector is a solid bar whose longitudinal
mechanical vibrations are monitored by very sensitive
transducers. It is isolated from external disturbances so
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that the major cause of the oscillations of the bar is gravi-
tational waves. Presently, only the lowest frequency nor-
mal mode of the bar is monitored. The weakness of the
coupling of the bar to present transducers requires that
the transducers operate only over very narrow band-
widths b,f /f &&1. However, in the future the develop-
ment of lower-noise sensors and tighter coupling to the
bars may expand the bandwidth of these detectors.

A laser interferometric gravitational-wave detector
consists of four test masses placed in pairs along two or-
thogonal directions. The relative distance between the
test masses along an arm is compared to that along the
other arm by forming either two delay lines or two
Fabry-Perot cavities in these arms. The outputs of the
optical systems in each arm are then combined to give an
interference fringe. When a gravitational wave hits the
detector it changes the relative length of the arms and
this can be observed by monitoring the interference
fringe. ' Such a detector is sensitive to a wide range of
frequencies (between 500 and 2000 Hz in present proto-
types; between 10 and 10 Hz in planned detectors).
Seismic noise, thermal noise in the masses suspensions,
and gravity gradient noise produce the low-frequency
cutoff photon counting statistics, noise in the servo sys-
tems, and thermal noise in the test masses produce the
high-frequency cutoff'.

Despite eft'orts by several experimental research groups
in the world since 1960 an unambiguous detection of
gravitational waves has not yet been accomplished. At
present there are several groups around the world pro-
posing to build a network of several laser interferometric
gravitational-wave detectors with arm lengths longer
than 1 km which could reach the required sensitivity by
the turn of the century.

The detector response is a function of four variables
the angles (8,$) associated with the direction of the in-
coming wave and the wave's two amplitudes h+(t) and
h &&(t ) corresponding to the two independent polarization
states referred to a given coordinate system. In order to
solve for these four unknowns data from a suKciently
large network of detectors widely located on the Earth
and running in coincidence are necessary. From a simple
counting argument we deduce that the minimum size of
the network is three if the instruments are broadband; a
three detector network in principle can determine (8,$),
h+ (t), and h „(t). By contrast, the minimum size is four
if they are narrow band; and such a four-detector net-
work can determine only (8,$) and the Fourier trans-
forms of h+(t) and h x(t) at the detectors' frequencies.
To see this notice that each detector provides only its
response amplitude at any given time. In addition laser
interferometers have sufticient time resolution to deter-
mine the time delay between two events in two detectors.
Therefore, a network of N broadband detectors can pro-
vide 2N —1 parameters for the wave (N response ampli-
tudes which are functions of time and N —1 time-
independent time delays), which means that N = 3 is the
minimum to determine (8,$), h+(t), and h „(t), while a
network of N narrow-band resonant bar antennas can
only provide N time-independent parameters [convolu-
tions of h+(t) and h x(t) with the detector transfer func-

tions], which means that N =4 is the minimum.
Since the waveform contains information about the na-

ture of the emitter and information about cosmological
parameters, it is very important to be able to solve the
so-called "inverse problem" "' the calculation of the
four unknowns [8,$,h+(t), hx(t)] associated with a
gravitational wave from the time-evolving responses of
the detectors and their associated relative time delays.

In this paper we develop a data-analysis algorithm
which solves the inverse problem in the case of a network
of three wideband detectors (either resonant bars or laser
interferometers) observing a broadband gravitational-
wave burst in coincidence. ' We will investigate in forth-
coming papers the inverse problem for other types of sig-
nals: the narrow-band but frequency-sweeping signals
from coalescing compact binaries, the periodic signals
from spinning neutron stars, and a stochastic background
of gravitational waves.

This paper's presentation of the algorithm for broad-
band bursts is organized as follows: in Sec. II we write
the analytical expression for the response function R (t)
of a detector when the wavelength of the signal is much
larger than the detector's size. This function depends on
the direction of the source (8,$), on the wave's two am-
plitudes h+(t) and h„(t), and on angles (a,P, y)
representing the geographic orientation, latitude, and
longitude of the detector.

In Sec. III we develop a method of computing the time
delays and solving for the wave's parameters with a net-
work of three wideband detectors in the idealized case
where the detectors are noise free. Our scheme does not
rely on any assumptions about the two waveforms
h+(t), h &&(t); and in fact it works for gravitational-wave
bursts of any kind. In Sec. IV we extend the method to
cover noisy detector responses. In Sec. V we develop a
near optimal filter for the noisy data, which is to be ap-
plied to the data before they are fed into the algorithm of
Sec. IV. In Sec. VI we deduce expressions for the expect-
ed errors in our algorithm's estimates of the source loca-
tions and waveforms. The numerical implementation of
our algorithm is discussed in detail in Sec. VII and the re-
sults of simulations are given in Sec. VIII. Our simula-
tions entail detectors that operate in the band 500—2500
Hz, and broadband signals centered at 1 kHz. These
simulations show, with white Gaussian noise, that the
scheme is usable whenever the root-mean-squared
response amplitude in each detector is greater than 10
times the root-mean-squared noise level. For lower am-
plitudes the resolution of the method degrades rapidly.
The simulated data are assumed to be produced by three
detectors: one on the east coast of the United States of
America (USA), one on the west coast of the USA and
one in Germany or Western Australia. If the signal-to-
noise ratio is at least 10 in each detector we are able to lo-
cate the source within a solid angle of AQ=1X10 sr.
This figure gets smaller as the signal-to-noise ratio in-
creases; and for detectors and signals at lower frequencies
and at fixed signal-to-noise ratio, it gets worse as the in-
verse square of the signal frequency. In Sec. IX we dis-
cuss our conclusions about the inverse problem for
gravitational-wave bursts.
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II.THK DETECTOR RESPONSE FUNCTION

The response of a gravitational-wave detector to a
plane wave, the wavelength of which is much larger than
the size of the detector, is given in the litera-
ture. "'"' ' Here we brieAy summarize the derivation
of that response using the notation and the language of
Dhurandhar and Tinto, ' and we refer the reader to
them for a more complete discussion. In what follows we
will use geometrical units in which the speed of light c
and the gravitational constant G are set to 1:c =6 = 1.

Consider a plane gravitational wave with amplitudes
h+ (t) and h „(t)associated with the two independent po-
larizations and with a direction of propagation n incident
on a detector. Let the wave coordinate system be
(X, Y,Z ) with the wave traveling in the Z direction and
let the axes with respect to which h+ (t) and h x (t) are re-
ferred be the (X, Y) axes. The detector coordinate sys-
tem (x',y', z') is obtained from them by a rotation de-
scribed by the Euler angles (O', P', g') (Fig. I). In what
follows we will choose as (X, Y ) axes those for which the
angle g' is equal to zero. Since f' merely determines the
orientation of the waves' (X, Y') axes in the X-Y plane,
this choice is just a solution of convention for identi-
fying h+ (t) and h ~ (t); for any other choice,

[h+ (t)+ih &&(t)]„,~=[h+(t)+ih && (t)],id e '~. In the
transverse-traceless (TT) gauge and in the wave coordi-
nate system, the tensor h;- has the nonvanishing com-
ponents

hxx = —br' =h+ (t), (2. l)

In the detector coordinate system h; are complicated
functions of the Euler angles.

Let us now consider the null vector m defined by

1m= —(ex + i er),
2

(2.2)

where ez and cz are the unit vectors in the X, F direc-
tions, respectively. The tensor h; is then just
2h+ (t) Re(m;m )+2h ~ (t) Im(m, m ). We define the
symmetric-trace-free (STF) wave tensor W, (t) to be half
of the tensor h, -:

W; (t) = h+(t) Re(m;m ) + h~(t) Im(m, m, ) . (2.3)

The factor one-half is inherited from the geodesic devia-
tion equation. In the detector coordinate system the
components of W(t) can be obtained by finding the com-
ponents of m in this system. The vector m can be written
as

1
m = —[(cosf' i cos8' sing' )—e„

2

+ ( sing'+i cos9' cosP')e .+ (i sin 8')e, ],
(2.4)

and we note that the vector m is the same as the one that
appears in the Newman-Penrose formalism. ' The vector
n in the detector coordinate system assumes the follow-
ing form:

n=(sin8'sing')e .+( —sinO'cosP')e +(cos8')e, . (2.5)

The detector can also be represented by an STF tensor
D;-. The form of this tensor depends on the kind of
detector —whether it is an interfc:rometer or a resonant
bar. ' For an interferometer with its arms in the direction
of the unit vectors 1, and l2, the detector tensor D,'"' is
equal to

(2.6)

while for a cylindrical bar detector whose longitudinal
axis is in the direction /, the detector tensor is

N D bar
IJ I J 3 IJ (2.7)

FIG. 1. The detector and the wave coordinates. The x', y',
and z' axes are the detector's coordinate axes with the origin
chosen to coincide with the corner mass of the interferometer.
The detector lies in the x',y' plane with the x' axis bisecting the
angle 2Q between the arms of the detector. The X, Y, Z axes
are the coordinate axes for the incoming gravitational wave.
The Z axis is parallel to the direction of propagation of the
wave. The X, Y axes are the ones with respect to which h+(t)
and ii && (t) are defined. The angles 0' and P' are the usual Euler
angles. The angle lt' represents a rotation of the X, Y axes. It is
measured from the line of nodes X to the X axis. In our analysis
the angle g' is chosen to be zero.

R(t) =D,, W"(t) . (2 8)

If there is more than one detector then it is convenient
to introduce a common orthonormal coordinate system
(x,y, z ) and refer to it the detectors and the wave tensors.
In what follows we will focus our attention on networks
of three detectors. We will choose the (x,y ) plane of the
coordinate system to coincide with the plane defined by

The response amplitude R (t) of a detector is then simply
determined by the scalar product between the STF tensor
of the wave and the STF tensor of the detector:
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the positions of the detectors and we will choose the x
axis to lie in the direction of the linc which connects a
particular pair of detectors. The reason behind these
choices is the following: a network of three wideband
detectors provides two independent relative time delays
which in turn yield two source directions. In this coordi-
nate system these directions are mirror images of each
other with respect to the (x,y) plane (Fig. 2). Thy fact
makes the implementation of our method particularly

eKcient and elegant if we use the (x,y, z) coordinates. In
this coordinate system Eq. (2.7) becomes

R (t)=F+ (g, p, rz, p, y )h+ (t)+F&, (O, p, a, p, y )h &((t),

(2.9)

where p, y are the latitude and longitude of the detector;
a is measured in the plane tangent to the Earth at the lo-
cation (p, y) and it is the angle between the bisector of

FIG. 2. The coordinate system with respect to which the source location is computed. The Earth coordinate system is defined by
choosing the x" axis to lie in the direction of the line passing through the center of the Earth and the intersection of the meridian
passing through Greenwich, England and the equator. The z" axis is chosen to lie in the direction of the line passing through the
center of the Earth and the North Pole. The y" axis is chosen to form a right-handed Cartesian coordinate system with the x" and
z" axis. The vector r; defines the position of detector i with respect to the origin of the Earth coordinate system. p;, y; are the lati-
tude and longitude of the detector i; a; is the angle between the bisector of the arms of the detector i and the local east-west direction.
It is measured in the plane tangent to the Earth at the location (P;,y; ). The x axis is chosen to coincide with the line passing through
the positions of the detectors 1 and 2. The y axis is in the plane defined by the three detector locations and it is orthogonal to the x
axis. The z axis is orthogonal to the (x,y) plane forming a right-handed coordinate system (x,y, z). n is the direction of propagation
of the incoming gravitational wave; the Euler angles defining the source direction n in this coordinate system are denoted by 8 and P.
8 is measured from the z axis to the source direction; P is measured from the x axis to the line of nodes N in the (x,y, z) coordinate
system.
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the arms of the detectors and the local East-West direc-
tion; (8,$) are the Euler angles of the source in the
(x,y, z) coordinate system and h+(t), hx(t) are the two
independent wave amplitudes. The "beam-pattern func-
tions" F+ and F&, depend only on the location and orien-
tation of the detectors (a,P, y) and the source direction
(8,$); they are less than 1 in absolute value, except when
the source direction and the polarization are precisely op-
timal and (for interferometers) the angle between the two
arms is precisely 90', in which case one of F+ or F~ is
+1 and the other is zero. A method for computing them
explicitly is given in Appendix A.

We note that the response function is a linear combina-
tion of the wave's two amplitudes. Since the detectors
will be widely separated on the Earth, they will register
different combinations of It+ (r) and h x (t) which may be
out of phase with each other. These facts may seriously
afFect the determination of the relative time delays be-
tween events detected at difFerent sites.

In order to understand this point quantitatively, let us
consider a realistic example: The case of a signal coming
from a coalescing binary system containing compact ob-
jects (such as neutron stars or black holes). At present,
among all sources of gravitational waves, these are the
ones whose strengths and event rates are most confidently

understood.
In the Newtonian regime, if we orient the wave's polar-

ization axes along the axes of the elliptical projection of
the orbital plane on the sky, then the wave's amplitudes
assume the following form:

Ii+(t)=2(1+cos i) + (mMf ) i cos(2mft),
e

(2.10a)

it „(t)=4cosi
T

(mMf )
i sin(2vrft), (2.10b)

where i is the inclination of the orbit to the line of sight
of the detector; M and p are the total and reduced
masses; r is the absolute distance to the binary; and f is
the frequency of the waves which gradually sweeps up-
ward as the two stars spiral together. We assume for
simplicity that the orbit is circular and the frequency f
does not change appreciably during the travel time of the
wave from one detector to the other. From Eq. (2.9) we
deduce the following expression for the response func-
tions of two detectors located at the points r, and r2
which are referred to the origin of the coordinate system
(x,y, z);.

1+Ri(t )= (mMf) F +(F
r 2

1/2

cos(2m ft, —k r, +g, ), (2.11a)

12

R, (&, )= +(~Mf )'" F,+

1/2

cos(2~ft2 —k r2+g2) . (2.11b)

We have denoted by t i and t2 the (proper) time as mea-
sured at the two sites, and the phases g, 2 have the follow-
ing form:

2F] 2&& cosl
g, 2=arctan

F, 2+(1+cos i)
(2.12)

Notice that the time delay between the two sinusoidal
detector outputs R i (t) and R2(t) is

n (r, —r, ) + (2.13)
C 2mf

where n=k/ski. In other words, the time shift between

the data that the experimenters compute for this signal is
the sum of the real time delay n (r, —r2)/c and an extra
delay (g, g2)/2vrf depend—ing on the relative orienta-
tions of the detectors, the inclination of the binary's or-
bital plane, and the frequency of the signal.

We have computed the difFerence ig, —
g2i in the case

of circularly polarized waves (i =0) (Ref. 21) and for
various pairs of laser interferometric detectors located in
North America and Europe where they are planned to be
constructed. We find that i/i —g'z varies in the interval
[0.5, 2.0] as the angles (8,$) vary in the ranges [O, m] and
[0,2n ], respectively. For frequencies in the interval
[100,1000] Hz in which the laser interferometric detec-

TABLE I. Orientations and locations of the detectors used in the simulations. P, y are the latitude and longitude of the detector;
a is the angle between the bisector of the arms of the detectors and the local east-west direction. It is measured in the plane tangent
to the Earth at the location (P, )').

Eastern site (on the east coast of USA)
Western site (on the west coast of USA)
Western site (as above, rotated)
Europe (Germany)
Australia (near Perth)

Orientation
a {deg)

72.0
12.0
57.0
0.0

76.0

Latitude
P (deg)

45.0
36.0
36.0
48.0

—32.0

Longitude

y (deg)

—67.5
—115.0
—115.0

11.5
117.0
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contain many different frequencies, each of which will be
phase shifted by a different amount at different locations.
This implies that the shape of the signal will be different
at those sites. A simple correlation scheme to deduce the
location of the source will not work unless the signals are
corrected for those phase shifts.

As shown above, at any moment of time the response

INCOMING WAVE AMPLITUDE h+(t)

R(t) =F+(8,p, a, p, y }/t+(t)+Fx(8, p, a, p, y)h ~(t)

of a given detector depends on the instantaneous values
/t+ (t} and h

&&
(t) of the two incoming waveforms, on the

direction (8,$) of the source, and on the location (p, y ) of
the detector on Earth and its orientation a. For a given
source location (8,$), a fixed detector location (p, y),
orientation a, and waveforms h+(t), /t

&& (t), the response
R (t) is a function of time. We plot the maximum ampli-
tude of the absolute value of this function of time, nor-
malized as a percentage of the absolute maximum of the
function R (t) with respect to 8,$, and t, as a function of
the source location (8,$). Figures 3 —5 show the result-
ing contour plots for detector locations and orientations
summarized in Table I. In Figs. 3 and 4, the waveforms
are

8A

-8

The arbitrary waveform
h+(t) = /i+ cos(cot), hx(t) = hx sin(cot) .

The relationship between the amplitudes h+ and hx is
given in the title of each figure. In Fig. 5 an arbitrary
waveform with unrelated h+(t) and h&&(t) is used. The
forms of these functions are shown in Fig. 6. These con-
tour plots can be thought of as "antenna beam patterns. "

III. SOLUTION TO THE INVERSE PROBLEM
FOR NOISE-FREE -DETECTORS

-'10
0.00

I

0.32
I

0.6'1
I

0.96

TIME (msec)
l.28 l.60

Let us assume that the clocks at the three sites have
been synchronized and let us denote by R i(t), R2(t), and
R 3 ( t ) the three response functions at time t of three wide-
band detectors located at sites 1, 2, and 3. The accuracy
of the synchronization needed is well within the current
technology.

If we restrict ourselves to the case of ideal, noise-free
detectors, we can write their responses to a
gravitational-wave burst as follows:

INCOMING WAVE AMPLITUDE h„(t)
R ) (t) =Fi+ (8,$)h+ (t)+F, &((8,$)h )& (t), (3.1a)

18

R,(t+r») =F,+ (8,P)h+ (t)+F» (8,P)h x (t), (3.1b)

R3(t+&,3)=F3+(8,$)h+(t)+F3X(8,$)h)&(t), (3.1c)

where we denote the relative real time delays between
detectors 1 and 2 and detectors 1 and 3 by

r, z=—n (rz —r, ), ~i3=n (r3 —r, ) (3.2)

The ar bi tr ary w'avef orm

-30
0.00 0.32 0.6'1 0.96 1.28 1.60

TIME (msec)

FIG. 6. The two amplitudes (a) h+(t) and (b) h&&(t) of the
nonsinusoidal waveform.

respectively, and the functions F,+(8,$), F, x(8,$) refer
to the beam-pattern functions F+ (8,P, a, , /3;, y, ) and
F„(8,((),a, ,p, , y,. ) for the detector i We no.te that the
time delays ~&2, ~» are functions of the source location
(8,$). We choose the detector 1 as the reference detector
without loss of generality. The functions R, (t), R2(t),
and R3(t) are assumed to last only for a finite interval of
time.

Let us assume that we know the exact time delays 7,2,
~» . We will drop this assumption later when we derive
our method for solving the inverse problem. From Eqs.
(3.1) we see that the waveforms /i+(t) and h „(t) are the
same functions in the three detectors at times related by
the relative time delays ~&2, ~,3, but the responses are
different because they are different linear combinations of
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h+(t) and h x(t) with different coefficients F+ and Fx.
The two independent relative time delays ~,2, ~» provide
two source directions which are mirror images of each
other with respect to the (x,y) plane. We denote these
directions (0„,$„)and (Bti, ps). For each source direc-
tion J where J = 3 or J = B, we can solve for hJ (t),
hz (t) as linear combinations of two of the three response

X

functions. By inverting for instance Eqs. (3.1b), (3.1c) we
deduce the following expressions for hJ (t) and hJ (t):

+ X

FJ 3xR2(t+r, 3)
hJ +(t)=

J 2+FJ 3X J 2X J 3+

I(B,p, t)=K, (0,$)R, (t)+K (20, $)R,(t+ r»)

+K3(0,$)R 3(t +r13) (3.7)

where

gravitational-wave burst, independently of the time
dependence of the wave's two amplitudes h+(t), h x (t).

Consider the functions i)(0,$) and g(0, $) given in Eq.
(3.5). The common denominator F2+ F3x —F3x F3+
could vanish for certain source locations. For these
source directions the template T(t, r, 2, r, 3) will be ill
defined. In order to avoid this problem we define a new
least-squares integrand as follows:

FJ ~xR3(t+r, 3)

FJ 2+FJ 3x J 2x J 3+

Fj 3+R3(t+7 13)
h~ x(t)=

FJ 2+FJ 3X
—FJ 2XFJ 3+

(3.3a) K, (0,$)=F2+ F3x F2x F—3+

K2(0, $)=F3 F, F3 F—,

3(0 4)=F1+Fax FixF—2+ .

(3.8a)

(3.8b)

(3.8c)

FJ 3+R2(t+r, ~)

J2+ J 3X J2X J3+
(3.3b)

The square of this I(B,p, t) is readily shown to be Ki
times the integrand of Eq. (3.6); and, as a result, the in-
tegral

Since we know the explicit form for the output from
detector 1 as given in Eq. (3.1a), by substituting Eqs.
(3.3a), (3.3b) into Eq. (3.1a) we obtain two expressions for
the output from detector I in terms of two outputs from
detectors 2 and 3 respectively. The result is

TJ(ter»p713)=q(BJ, JJ)R2(t+r12)+g(B~, QJ)R3(t+~, 3)

(3.4)

where the functions il(0, $) and g(0, $) have the following
form:

L(0,$)= f I'(B,P, t )dt (3.9)

like Eq. (3.6) takes on its minimum value (zero) when
(0,$) is the true direction to the source. This L(0,$) has
the advantage over the one defined by Eq. (3.6) that it is
well-defined everywhere and it is totally symmetric under
permutations of the detector indices I 1, 2, 3). The sym-
metry of L(0,$) under the permutation of the detector
indices can be proven in the following way.

Given three detectors there are three relative time de-
lays ~,2, ~», and ~23 which are linearly dependent:

F3x F]+ —Fix F3+
il(0, $)=

F2+ F3x F2x 3+
(3.5a) 7» 7]2+723 (3.10)

g(0, $)= Fi x F2+ F2x F1+
F2+ F3x —F2x F3+

(3.5b)

It is clear that of the two functions TJ only the one which
is constructed from the true direction (A or 8) will ex-
actly reproduce R, (t). This enables one to discriminate
the real source location from the spurious one.

If we now drop our initial assumption of knowing the
relative time delays, we can still regard the function

T(t, 0,$)=rt(0, $)R,[t+r»(0, $)]

+g( 0$)R [3t +,r( 30$)]

as a two-parameter family of templates where the angles
(0,$) are the parameters. Since we know that for the
correct source location (0,$) the template T(t, 0, $) will
uniquely reproduce the output R, (t), the search for the
correct time delays can be performed by minimizing the
following function (least-squares-fit method):

When a permutation of the detector indices is applied to
the integral, the explicit angular functions K, (0,$),
K2(0, $), K3(0,$) and the detector responses R, (t),
R2(t), R3(t) interchange properly to preserve the in-
tegrand. However, the arguments of the detector
responses do not immediately permute to the correct or-
der. This can be resolved by using Eq. (3,10), the fact
that the integral is invariant under time translations and
the fact that the relative time delays change sign under
transposition of the detector indices.

Once the source direction has been determined by
minimizing the integral given by Eq. (3.9), the waveforms
of the gravitational wave can be solved for using Eqs.
(3.3a), (3.3b). Note that since we have three responses
and only two independent waveforms, there are three dis-
tinct, seemingly equivalent ways for reconstructing each
of the waveforms:

F3xR2(t+r12) —F2xR3( F13)h+(t)=
1

L(0,$)= f [R,(t) —T(t, 0,$)]2dt . (3.6) F1xR3(t +113) F3x R 1(t)

K2
Note that the minimum of the function L(0,$) is exactly
equal to zero. We point out that the method here
developed for locating the source works for any

F2xR1(t) FixRz(t+rip)
K3

(3.11)
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F2+R3(t++]3) F3+R2(t+r]2)
h ~(t)=

1

R3~(t+r]3)=F3+(8,$)h+(t)+F3X(8, $)h „(t)
+A3(t+r]3) . (4.1c)

F3+R, (t) —F]+R3( ]+T]3)
K2

F] ~ R ~ ( t + r]2 ) F2—+R ] ( t )

K3
(3.12)

IV. LEAST-SQUARES METHOD
FOR NOISY DETECTOR RESPONSES

The functions E„E2,and K3 can vanish for particular
source directions making the expressions for h+(t) and
h~(t) involving that angular function ill defined. For
detectors that are not in the same plane and with arms
not parallel to each other, all three angular functions can
simultaneously vanish only at one point.

+K3(8,$)R3A(t +7 ]3) (4.2)

where the functions E&, Kz, and E3 are as defined in Eqs.
(3.8a), (3.8b), and (3.8c); r»=r»(8, $) and r]3 7]3(8,$)
are defined by Eq. (3.2). The new least-squares function
LA(8, $) is defined as

Here Ai(t), A2(t), and A3(t) are random processes
representing the noise in each detector. We assume that
these processes are not correlated either with each other
or with the signal. We also assume that these are station-
ary random processes with a Gaussian distribution.

We define a new least-squares integrand IA(B, P, t) in
the following manner:

I~(8,$, t ) =K](8,$)R]~(t)+Kq(8, $)R2A(t+r]2)

In the case of three real detectors the three response
functions [which we now denote R,A(t), R2~(t), and
R 3A( t)) will contain noise as well as the signal:

LA(8, $)= f IA(B, p, t)dt, (4.3)

R2A(t +r]2) =F2+ (8,$)h+ (t)+F2X (8,$)h x (t)

+A2(t+r]z), (4.1b)

R ~](t) =F]+(8,$)h+ (t)+F]„(8,$)h )& (t)+A](t),
(4.1a)

where ht =t, to. The tim—e interval (to, t, ) is chosen in
such a way that it contains the gravitational-wave pulse
for each trial source location under consideration and it
is not any longer than necessary. We will discuss the
choice of the integration interval later in this section.

The least-squares function L~ (8,P ) can be expressed as

LA(8, $)=L(8,$)+ f [K](B,Q)A](t)+K~(B, Q)A2(t+r]2)+Ki(8, $)A3(t+r]3)] dt
At &o

+ f I(B,P, t)[K](8,$)A](t)+K, (8,$)A, (t+r]2)+K, (8,$)A,(t+r»)]dt,ht &0
(4.4)

where L (8,$) is given by

L(8,$)= f I'(B,g, t)dt . (4.5)

The function I(8,$, t ) is

I(B,p, t) =K](8,$)R](t)+K2(8,$)R2(t+r]2)

+K3(8,$)R3(t+r]3) (4.6)

and the functions R, (t), R2(t+r]2), R3(t+r») are the
noise-free responses.

We minimize L~(8,$) to find the direction to the
source. For the correct source direction (8„$,), the
function L(8„$,) and the cross term in Eq. (4.4) will
vanish leaving only the pure noise term to contribute to
the minimized function: N (x.—p. )

standard least-squares function= g (4.8)

Note that when the noise amplitudes are reduced to zero,
this value goes to zero as well, matching the noise-free
least-squares function. At any other point (8,$) the func-
tion L(8,$) is greater than zero and the pure-noise term
in Eq. (4.4) is greater than or equal to zero. However the
cross term in Eq. (4.4) could be negative leading to the re-
sult that the minimum of LA(8, $) may not coincide with
the minimum of L(8,$). This causes the method to miss
the correct source direction and to produce an incorrect
result. The error in determining the source direction will
depend on the signal-to-noise ratio in general.

We point out that the least-squares function deAned by
Eq. (4.3) does not correspond to the standard least-
squares function with imprecise data:

L~(8„$,)= f IK](8„$,)A, (t)

+K2(8„$,)A2[t+r]2(8„$, )]

+K,(8„$,)A, [t+r]3(B„Q,)]j'dt .

(4.7)

where x; are noisy discrete data (numbers, not functions
of time) with standard errors cr;, and p; is the theoretical
function to be fitted to the noisy data. Note that the
standard least-squares function is normalized by the
root-mean-squared (rms) noise level cr, , but the least-
squares function Lz(8, P) given by Eq. (4.3) does not have
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+K]R ] (t) +K2R 2( t +1 ]p)

+K3R3(t+a]3) j dt (4.9)

where we have formally grouped the noise terms togeth-
er. We can interpret the terms in this equation in the fol-
lowing manner:

T'(t, 6,$)= K,R]—(t)—K2R~(t+r]2) —K3R3( t+7]3)

is analogous to the theoretical fit function in the standard
least-squares formula;

K ] A] ( t ) +Kp A2( t +r]2 ) +K3 A3( t +r]3 )

is analogous to the noise that is contaminating the data.
These data are identically equal to zero in our case since
the theoretical fit function T'(t, 6,$) vanishes at the
source location.

Consider a source location (6„$,). Assume that the
time interval (to, t, ) is subdivided into N equal-length,
small intervals. Define t; =to+](t] to)IN where —i is an
integer in the interval [O,N]. The noisy datum

d](6gyyg ) K]A](t] )+K2A3(t] +r]g)+K3A3(t] +r]3)

at a particular time t,- is a linear combination of uncorre-
lated Gaussian random processes AJ(t; ) with zero mean
and with variances 0. - where j=1,2, 3. Using a well-
known result, we deduce that the probability distribu-
tion p of d;(6„$, ) is also a Gaussian distribution with
zero mean and with variance K&0.&+K&0.&+K&0.&', its
analytic expression is given by

d;(6„P, )'
p(d;(6„$, ))=exp —— ' . (4.10)

K]0 ]+K202+K30 3

Since the theoretical fit function T'(t, ,6„$,) is zero,
the noisy datum d;(6„$, ) is normally (Gaussian) distri-
buted around the theoretical fit function at the source lo-
cation. At any other point in the sky (6,$), the noisy da-
tum d;(6, $) is normally distributed around the mean
value T'(t;, 6,$). Hence, the probability density of the
datum d, (6,$) fitting the mean T'(t, , 6,$) is given by

[d, (6,$) T'(t;, 6,$)]-
p(d;(6, +) ) =exp K2~2+K2~2+K2~2 (4.1 1)

The probability of the entire set of noisy data d,.(6,$),
i =O, N fitting the theoretical fit function T'(t;, 6,$),
i =O, N at the corresponding times within a constant ac-
curacy b A' (i.e., ~ [d;(6,$)—T'(t;, 6, $)] ~

~ b A'!2) is
given by

such a normalizing factor. We will now give an argu-
ment that motivates inserting such a normalizing factor
into LA(6, $).

Equation (4.3) can be written as

tl
L ~(6,$)= f [ [K]A](t)+K2A3(t +r]~)ht &p

+K3A3(t+r]3)]

1 [d;(6,$) T—'(t, , 6,$))
P(6,$)= +exp ——

2 z z 2 2 2
hA' .

=0 2 K ]0 ]+K202+K30 3

(4.12)

Bn Bnhr]2=r]2 b,6+ b,p (4.15)

Bn Bn
Er]3 I ]3 66+

where r&2 and r» are the separation vectors between sites
1,2 and 1,3 respectively. The vector n is the direction of
propagation of the gravitational wave as defined in Sec.
'II. Equations (4.15) and (4.16) imply that the errors in
the relative time delays and the angular resolution are op-
timized in conjunction. Therefore, the two different im-
plementations of the minimization procedure described
above are equivalent.

In the absence of noise the integrand I(6,g, t) in Eq.
(3.9) is nonzero only in a finite time interval. This follows
from the fact that for a finite-duration gravity wave the
detector responses are finite duration pulses. The length
of this interval depends on the angles 6 and P since the

When the point (6,$) is far away from the source loca-
tion, the noisy data will not have the same mean as the
theoretical fit function causing a reduction in the proba-
bility given in Eq. (4.12). This probability attains a max-
imum when the point under consideration is near the
source location for large signal-to-noise ratios. Maximiz-
ing this probability is equivalent to minimizing the nega-
tive of its logarithm:

]v 1 [d, (6,$) T'(t, ,—6,$)]'—ln(P)= g —
2 z 2

—N ln(b, A') .
02 K1%1+K2a2+K3e3

(4.13)

Since N and b,A are constants, minimizing Eq. (4.13) is
equivalent to minimizing a new least-squares function
L &(6,$) defined with a normalizing noise factor as

IA(6, , t)L' (A6, $)= dt . (4.14)
'p K +K +K202

Note that the least-squares function LA(6, $) given in Eq.
(4.14) is completely symmetric under permutations of
detector indices. It is this least-squares function that we
will use as the basis of our method for determining the
source locations.

One can try to minimize the least-squares function
LA(6, $) in terms of the angles (6,$) or one can express
the angles in terms of the trial time delays ~,2, ~, ~ and
perform the minimization using the time delays directly.
Note that the two time delays give two possible source lo-
cations. Hence, the minimization has to be performed lo-
cally in a neighborhood of each point. The resulting two
minima are then compared with each other to decide on
the correct source location. The errors in the two rela-
tive time delays ~,2 and ~,z are related to the angular er-
rors in the source location b,6, hP by the linear relations

T
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FixR3A(t+r, i) —FzxR3A +ri3)
h, +(t)=

1

F3x R3(t+r, 2) —F3x R 3(t+Wi3)

K)

F3x AQ(t+Si2) F2x A3(t +r&3)+ (4.17)
E)

FixR3w( +ri3) —F3xR,w(t)
h2+(t) =

2

F, R x(t+3)r—i3F3„R,(t)
K2

F, x A3(t+Vi3) F3x Af(t)+
K 7

2

F2x R i~(t) Fix R3A(t+&i2)
h3+(t)=

3

(4.18)

relative trial time delays are functions of them. In this
noise-free case, it is easy to compute the length of this
time interval because the starting times and the durations
of the individual responses are known. Note that the
durations of the responses are all equal since they are
determined by h+(t) and hx(t), but the shapes of the
responses are different.

When the noise is present, it is no longer possible to
identify the starting times and the durations of the
responses precisely. They can only be determined with a
statistical accuracy. In this case the interval of integra-
tion (to, t, ) has to be finite because if it is unnecessarily
large the noise will be integrated causing a reduction in
the overall signal-to-noise ratio in the search for the
correct (0,$). The starting and ending times of the
pulses will have to be determined using a threshold cri-
terion. Since the durations of the pulses are theoretically
equal, a good guess for the duration of the pulses can be
obtained, in cases where the amplitudes of the responses
are nearly the same, by averaging the individual dura-
tions obtained by the threshold criterion. The interval of
integration determined using the threshold criterion de-
pends on the tria1 time delays. In the next section we wi11

give an optimal choice for the interval of integration.
Qnce the source location has been determined, the

wave amplitudes h+(t) and h x (t) can be solved for using
Eqs. (3.11) and (3.12) with the noise-free responses re-
placed by the true noisy responses. However, the equali-
ties between different ways of determining a given wave
amplitude will not hold since the contributions of noise to
each of the terms are different. There is an optimal linear
combination of the three equations for each wave ampli-
tude which results in the least amount of root-mean-
squared noise in the reconstructed waveform. Consider
three distinct reconstructions of h + ( t ):

h,„,+(t)=a+(0,$) h, +(t)+b+(0, $) h, +(t)

+c+(0,$) h3+(t),
where

(4.20)

a+(0, b) + b +(0,$) + c+(0,$)=1, (4.21)

since h, ~, + (t) should reduce to the noise-free waveform
h + ( t ) when the noise amplitudes are reduced to zero.
We define the root-mean-squared error 5h + in the
reconstructed waveform as

1/2

I [h, ,+(t)—h+(t)]2 dt (4.22)

We minimize this expression with respect to a+(0, $),
b+(0, $), and c+(0,$) subject to the constraint given by
Eq. (4.21) to obtain three linear equations for them; only
two of these equations are linearly independent. We
choose one of these coefficients to be a free parameter and
express the others in terms of it and the angular functions

and K;. When the optimally reconstructed
waveform h, ,+(t) is expressed in terms of the noisy
detector responses R,A(t), R2A(t), and R3A(t) according
to Eqs. (4.17), (4.18), and (4.19) using the coefficients
a+(0, $), b+(0, $), and c+(0,$) derived above, the
dependence on the free parameter cancels out, resulting
in a unique optimal reconstruction.

The same argument can be applied in computing the
optimal linear combination h, ~, x (t) for the other
waveform h„(t). The analytic forms of the coefficients
a+, b+, c+,a x, b ~,c ~ in these linear combinations are
given in Appendix C. [Note that the formula (4.22) and
its analog for 5h x give the errors in the reconstructed
waveforms solely due to the noise in the detectors. The
errors in the determination of the source location will
also contribute to the errors in the reconstructed
waveforms. Their effect is given by Eqs. (6.9)—(6.11).]

V. A NEAR-OPTIMAL FILTER
FOR THE LEAST-SQUARES FUNCTION

The accuracy of the source location determined by
minimizing the least-squares function given in Eq. (4.14)
depends on the magnitude of the noise terms in that
equation. If the contribution of these terms to the least-
squares integral can be reduced by filtering then this ac-
curacy will improve.

A linear filter is a map which relates its output to its
input as defined by

O(t)= J "C(t')J(t —t')dt' (5.1)

where we have formally separated the contributions of
the noise from the noise-free waveforms. Let the optimal
linear combination h, ,+ (t) which gives the least amount
of noise in the reconstructed waveform be

F2xRi(t) —Fix 2(t+&iz)
X3

F2xA1(t) —F,x A2(t+r, 2)+
K

or equivalently

O(t)= I C(t —t')J(t')dt', (5.2)

(4.19)
where the output O(t) is obtained from the input J(t)
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through linear operations with coefficients @(t). In what
follows we call the function @(r) the "filter. "The filtering
operation can also be performed in the frequency domain.
The equivalent form of Eqs. (5.1), (5.2) in the frequency
domain is

O(co) =4&(m)J(co) (5.3)

and

(5.4)

If the noise-free form Q(t) of the noisy input signal J(t)
is known, then the "optimal filter, " i.e., the filter which
maximizes the signal-to-noise ratio at the output O(t) is
given by

( Q7 ) —I cut
4&(co) = coe

S~(co)
(5.5)

Here 4(co) is the Fourier transform of the filter 4(t),
4(co)=I e ' '4(t)dt, (5.6)

and its inverse is

I Cc) tC(r)= e' '4(co)dao;
277

(5.7)

Q'(co) is the complex conjugate of the Fourier transform
of the noise-free form of the input signal Q(t); S~(co) is
the spectral density of the random process A(t) which
represents the noise; co is an arbitrary complex constant;
t is the time at which the signal-to-noise ratio is max-P

ltd I
imum; and the factor e ~ serves only to move the
maximum signal in O(t) from t = 0 back to its location
in theinput, t = I; .

This optimal filter does not preserve the form of the in-
put signal. This can be seen in the following way: As-
sume that the noise in the input signal is white so that
SA(co) is a constant. Then choose the arbitrary constant
co in the filter [Eq. (5.5)] to be equal to the spectral densi-
ty of the noise. The filter then becomes

are other optimal filters. In particular, the filter that min-
imizes the difference between the output signal and the
noise-free signal is given by

IQ

ig(co)f +SA(co)
(5.11)

NOISY DIGITIZED DETECTOR RESPONSE Ri~(t)

S/N = 10
8 = 27', 4 = 85'

where Q(co) is the Fourier transform of the noise-free sig-
nal and S„(ro) is the spectral density of the noise.

When the form of the input signal is not known both of
the filters described above are unrealizable. However,
there are methods which enable one to construct a
"near-optimal" filter.

These methods rely on the fact that the spectrum of
the signal is distinguishable from that of the noise. If this
assumption is true then one can approximate a noise-free
signal spectrum by extrapolating the part of the power
spectrum of the noisy signal where the signal is dominant
to the other parts of the frequency range. Similarly, one
can obtain an approximate full noise spectrum by either
extrapolating the spectrum of noise to the frequency
range where the signal is dominant or by simply comput-
ing the spectrum of the noise when the signal is absent.
Since we are dealing with finite duration bursts the latter
will be used in our method. Note that since the optimal
filter (5.5) is obtained through an extremization pro-
cedure, the errors in the determination of the optimal
filter result in second-order differences in the perfor-
mance of this filter. This means that a fairly crudely

@(~)=Q*(~)e (5.8)

Now, choose t = 0 and assume that the input signal J(t)
is free of noise. Then Q (co)=J'(co) and the filtered
function O(t) becomes

Gl

2 o&

O(t) = J e' 'J*(co)J(co)des,
2 7T oo

(5.9)

which is equal to the autocorrelation of the input signal
J(t):

( 500 Hz & Detector Band~6th & 8500 Hz )

O(r)= f J(r')J(r + r')dr' . (5.10)

TIME (msec)
It is clear from this equation that the output function
O(t) cannot have the same form as the input function
J(t) in general. In particular it is easy to prove that if
the input function has a finite duration do then the auto-
correlation has the duration 2do (Ref. 24).

The filter mentioned above is optimal in the sense that
it maximizes the signal-to-noise ratio at its output. There

FIG. 7. The noisy digitized response for the east-coast detec-
tor in the receiver configuration as in Fig. 3. The source is as-
sumed to be at the indicated location and the overall signal-to-
noise ratio is 10. The two amplitudes of the incoming gravita-
tional wave are shown in Figs. 16(a) and 16(b). The symbols 0
mark the digitized data points.
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in the power spectrum of the noisy signal is compared to
the amplitude in the corresponding bin in the sample
spectrum of the noise. If this amplitude is smaller than a
certain multiple of the corresponding amplitude in the
noise spectrum, then the corresponding frequency bins in
the real and imaginary parts of the Fourier transform of
the signal are set to zero. Ef it is larger, the correspond-
ing bins in the real and imaginary parts of the Fourier
transform of the signal are left unchanged. The power
spectrum of the resulting "combed" signal is shown in
Fig. 9. This combed signal is then transformed back to
the time domain (Fig. 10). A threshold criterion is ap-
plied to the resulting signal setting to zero the external
parts that are below the threshold value. The output of
this operation is our near-optimal filter Q (r) as shown in
Fig. 11. %"e finally apply this filter to the original signal
as described in Eqs. (5.4), (5.5) and the resulting filtered
detector response is shown in Fig. 12.

We note that the detector responses for widely separat-
ed detectors on Earth do not have similar shapes (Fig.
13). This implies that the near-optimal filter derived for
one of them is not in general near-optimal for the others.
If each of the responses were filtered with its own near
optimal filter then the time-delay information would be
altered since di6'erent filters have difFerent time delays.
This would cause the method described in the previous
section to break down.

The solution to this problem can be obtained by ob-
serving the fact that the least-squares function IA(8, p, t )

as given in Eq. (4.2) should be filtered instead of the indi-
vidual detector responses, since the source location is
determined by minimizing the integral of IA (8,P, t ).

To derive the near-optimal filter for IA(8, g, t) we
proceed in the following manner: Let 4I(co), 4&z(co), and
4&z(co) be the near-optimal filters in the frequency domain
for the detector responses R, A(t), RiA(t), and R iA(t), re-
spectively. Because of the linearity of the filter one can
easily prove that the near-optimal filter for the function
given by Eq. (4.2) is a linear combination of the near op-
timal filters for the individual responses. If we define
41(co) to be the near-optimal filter in the frequency
domain for the function given by Eq. (4.2), we get

K,S,A(co)4, (co)c,(~)=
K iS IA(co)+KzS2A(ro)+K3S3A(co)

K IS,A(co)+KzSi„(co)+K&S3A(a )

K3S3A ( co )4,( co )

K,S,A(co)+KiSi„(co)+K3S3A(co)
(5.12)

where S, A(co), SzA(co), and SiA(co) are the spectral densi-
ties of the noise processes A, (t), Az(t), and A&(t), respec-
tively. Note that when we multiply the filter given by Eq.
(5.12) by the Fourier transform of Eq. (4.2) and inverse
Fourier transform the result, we obtain nine di6'erent
terms which represent filtered responses of the detectors.
More specifically, the near-optimally-filtered version of

NOISE —FREE DIGITIZED DETECTOR RESPONSES

OPTIMALLY FILTERED DETECTOR RESPONSE R,~ (t)
12

300

ZOO

S/N = 10
8 = 27', Ci = 85' R, (t)

100

-100

-200

-300
-10

( 500 Hz & Detector Sandwidt?x & 2500 Hz )
a & s I i t s I i ~ ~ I

-6 -2 2

TIME (msec)
10

-12
-10

8 = 22', C) = 25'
( Enfinite Detector Bandwidth )

I I I I l I I I I I

TIME (msec)

FIG. 12. The optimally filtered noisy response corresponding
to 8 &A(t) shown in Fig. 7 filtered with the filter shown in Fig.
11.

FIG. 13. The noise-free detector responses in the detector
configuration as in Fig. 3 illustrating the difference of the shapes
of the functions as well as the relative time delays. The symbols
0 mark the digitized data points.
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IA(B, p, t) is

C(8, (tt, t)=- f [K)R)A(co)+KzRzA(co)e "+K3R3A(co)e "](I)t(CO)e' 'dco
2~ oo

+1R 1A ~ ++2R 2A ~ e +K3R 3P co2'
K)S)A(co)CIi)(co)+KzSzA(co)@z(co)+K3S3A(co)C 3(CO)

X e dco
K)S(A(co)+KzSzA(co)+K3S3A(co)

Expanding the terms out, we obtain

(5.13)

C(B,P, t)= 1

2'
+ R(A(co)S)A(co)+1(co) + R)A(co)SzA(co)C'z(co)

dco
OO G B, , co OO G(B,P, CO)

+E1K3
+" R)A(co)S3A(co)%3(co) . +„RzA(co)S,A(co)@,(co);„(t+, )

e ""'dco+A, K
G(B,P, CO)

' —m G(B,P, CO)

RzA(~)SzA(~)C z(~),.„+, ) RzA(co)S3A(co)CI&3(co);„(t+, )

2 e "dco+KzK3
oo G(8, (}t,co)

+ „R3A(co)S»(co)@,(co) + cQ R 3A ( ct) )SzA ( co )C z( & ) i ttt( t + w) 3 )+K1E3 "dco+KzK3
G B, , co) G(8, P, co)

+%3
+ ~ R 3A(co)S3A(co)C'3(co);„(t+, )"'d

G(B,P, co)
(5.14)

where

Q) (CO)
4, (co)= (5.15)

G(B,P, CO) =K)S(A(co)+KzSzA(co)+K3S3A(co) .

In terms of the nearly noise-free waveforms Q;(t),
i =1,2, 3 obtained using our near-optimal filter deter-
mination procedure, the near-optimal filters Ct,. (co ),
i = 1,2, 3 become

I

constant. In this case, the spectral density SA(co) can be
factored out of the function G and the resulting

G(8,$)=K +K +K

can also be factored out of the integral in Eq. (5.18). (iii)
The spectral densities of the noise in the detectors are not
constant and they are all different. In this case the in-
tegral remains unchanged.

In the case (i), the typical term given by Eq. (5.18) can
be written as

Q z ( co ) —i tttw)
&4z(co) = e

SzA (co)

Q3*(co)
@3(co)= e

(5.16) 1 R 3A(t+&)3
t

where 6( 8, t}t ) is as given in that case and

R 3A (t +r)3 —r)z)(2)

After substituting Eqs. (5.15)—(5.17) in Eq. (5.14), consid-
er a typical term in the resulting equation:

(z) 1 + R3A(co)gz (co); (t+,„—,„)
V',"(8,(f, )=

f R3A(co)gz (co)e " "d
oo

In the case (ii), the typical term given by Eq. (5.18) can
be written as

(5.18)

where V'3A(B, ttt, t) is the response R3A filtered with the
filter Cz. We consider three cases. (i) The spectral densi-
ties of the noise in the detectors are constants (possibly
different). In this case, the function

G ( 8,$ ) —K )S(A +K zS zA +K 3S3A

is independent of the frequency and it can be factored out
of the integral in Eq. (5.18). (ii) The spectral densities of
the noise in the detectors are the same, but they are not

1
3V(A, 8(tft)= R 3A (t+ r, 3 7(z)—

7

where G(8, $) is as given in that case and

R3'A (t+ &13
—&)z)

(2)

f-+ -. R3A(~)Qz (~) (t+.„—.„)
2' "— SA(co)

Note that the definition of R3A(t+r» —r, z) is difFerent



NEAR OPTIMAL SOLUTION TO THE INVERSE PROBLEM FOR. . . 3901

in each case.
In these cases, the function R'3&(t+r» —F12} can be

interpreted as the response R3A(t) filtered with the filter
%2 and shifted by the relative time delay ~,3

—v, 2. Hence
each of the frequency domain integrals in the functions
R„'~'(t), m, n =1,2, 3, has to be performed only once be-

fore the search for the correct time delays starts. The re-
sulting functions are shifted as required by the relative
trial time delays. The point is that the unfiltered
responses have to be filtered only once. Then the filtered
functions are used in the minimization procedure.

Define C'(8, $, t ) in the cases (i) and (ii) by

1
[K1R ig(t}+K2R2„'(t)+K3R3~(t)+K,K2R 2'A(t+r, 2)+K, K2R1A(t r, 2)—+K1K3R3A'(t+r13)

+K1K3R1A(t &13}+K2K3R3A(t+rli r12}+K2K3R2A(t +13+&12}l

In terms of this function C'(8, P, t ), the near-optimally-filtered least-squares integral L ~ (8,P) becomes

(5.19)

L'A(8, $)= f C'(e, p, t)dt . (5.20)

The advantage of this procedure is that we do not have to perform inverse Fourier transforms for each combination
of time delays during the search because the exponential factors containing the trial time delays in the filter functions
correspond to time-shifted filtered functions.

In the case (iii), the factorization of the angular functions from the frequency domain integrals cannot be accom-
plished in general. The filter still functions as described; however, an inverse Fourier transform has to be performed at
each step in the search for the optimal time delays making the filtering procedure computationally more expensive. The
least-squares integral L z (8,$) retains its form given in Eq. (5.20), but the integrand C'(8, $, t ) becomes

c (e, y, t ) =K', v",„'(e,y, t )+K2V,",'(e, y, t )+K', v",,'(e, y, t )+K,K, v,",'(e, y, t )+K,K, VI'„'(e, y, t )

+K,K3V3~(8 $ &t)&+K,K3V,~(8&$&t)+K2K3V3~(8&$&t)+K2K3V2&~(8&$&t) .

In the following, we will compute the eft'ect of the near optimal filtering process on the value of the least-squares
function L A (8„$,} at the source location (8„$,). This value is used in the next section to derive the estimates for the
angular errors (b,e, b,P) in the source location.

The near optimal filter described above is made out of three operations: The first one is the combing operation in the
frequency domain; the second is the threshold operation in the time domain and the subsequent Fourier transform to
the frequency domain; the third consists of the multiplication of the Fourier transform of the noisy signal with the func-
tion obtained in the first two operations, the division of the resulting function by the spectral density of the noise, and
the subsequent inverse Fourier transform back to the time domain. The first operation can be represented mathemati-
cally in terms of a function Z, (to) which has a constant value when the power spectrum of the original signal at the fre-
quency u is above a certain multiple of the corresponding noise spectrum at the same frequency and it has the value 0
when the opposite condition holds. It is normalized in the frequency domain in the following way:

f Zi(co)de —g
COp

where g is the ratio of the total range of frequencies (bandwidth) in which Zi(co)%0 to the full band of integration,
co, —coo. The combing operation is then simply multiplication of the Fourier transform of the original signal by the
function Zi(co) in the frequency domain. The resulting function is then transformed back to the time domain where a
threshold operation is performed on it. This threshold operation can be represented by a multiplication with a rec-
tangular window with height 1 when the function is above the threshold value and height 0 when the opposite condition
holds. The last multiplication with the rectangular window can be represented by a convolution in the frequency
domain. Hence, the function U(e, p, to) which corresponds to the function Q(co) in Eq. (5.5) is given in the frequency
domain by the expression

U(e, g, to) =f Z2(a) co')Zi (co')I„(e,g—, co')dao', (5.21)

where I~(e, p, co) is the Fourier transform of the function I„(e,p, t ) given in Eq. (4.2) and Z2(co) is the Fourier trans-
form of the window function described above. The filtered function C'(e, p, co) becomes

C'(e, g, co) =I„(e,g, oi) 6 8, &co
(5.22)

Since I~(e, p, co) =I(e,p, to)+MA(e, p, to) where l(e, p, co) is the Fourier transform of the expression given in Eq. (3.7)
and

MA(e, g, co) =K, (8,$)A, (m)+K2(8, $)A2(o3)+K3(8, $)A3(co), (5.23)
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we obtain

I(O, P, co)+MA(O, P, co)
C'(O, g, co)= f Z2 (co —co')Z", (co')[I*(O,P, co')+MA(O, P, co') jdco' .

t t

Note that at the correct source location (8„$,) the function I(O„P„t) =0. As a result, Eq. (5.24) gives

MA(O„P„co)
C'(O„g„co)= f Z~ (co —co')Z*, (co')M~(8„$„co') co' .

G O„„co
The corresponding least-squares-integrand function in the time domain is

+ „M~(O„P„co)C'(O„p„t)= f f Z~ (co —co')Z*, (co')MA(O„P„co')des'e' 'dco .
27T 00 G ~p ~geo Go

Eq. (5.26) can be rearranged to give

M~(O„P„co)
C'(O„g„t ) = J f " "

Z2 (cu —co')Z*, (co')M~(O„P„co')e'"'den'den .
2m —~ —m G O„g„co

(5.24)

(5.25)

(5.26)

(5.27)

Since all signals under consideration except Z2 (co) are band-limited, we get

, M~(O„P„co)
C'(O„g„t ) = —f f Zq (co —co')Z i (co')MA (O„p„co')e' 'den'des

2m' ~o ~o G O~. ..co

MA (O„g„co)
J f Z2 (co —co')Z*, (co')MA(8„g„a)')e' ' de'den

f f ' ' MA(8„&„~') IZ2 (~—~')~~Z*, (~')~dc''dc@,
M~(O„P„co)

2m ~p ~p G (8„$„~ (5.28)

where coo and co, are the limits of the passed band. Note
that

MA(8„$„co), G,„(O„P„co)
MA O„g„co'

iZ,*(co—co')
i

= sin[(co —co')b, t /2]
At ~Et .

(co—co')b, t l2

Substituting these results in Eq. (5.28), we obtain

C'(O„g„t ) & ugbcob, t, (5.29)2'
where Ace=~, —coo. Note that for Gaussian white noise,
for the realistic bandwidths and pulse durations and for a
reasonable threshold setting g, C'(O„g„t ) & 1. Using Eq.
(5.20), we get

L'A'(8„$, ) &1 . (5.30)

where subscripts max and min refer to the minimum and
the maximum values attained by the spectral density
G(8„$„co) in the band ~o&co&co, . u is 1 for white
noise. Using the definition of Zi (co ) we see that

/Zi (co)/ &
CO i COO

Since Zz(t) is a rectangular window with unit height and
width At =t, —to, we get

This result will be used in the next section to derive the
estimate of the errors in the computed source location for
the filtered least-squares function.

We will use the linear optimal filter described by Eq.
(5.5) in this section. The reason for this is that the filter
described by Eq. (5.11) is much more expensive computa-
tionally than (5.5). The filter (5.11) must be computed for
each combination of trial time delays and then an inverse
Fourier transform has to be performed in order to com-
pute the value of the function LA'(8, $) at each (8,$).
Note that we cannot perform the decomposition of the
filter (5.11) in terms of the individual filters of the noisy
responses as we did for the optimal filter described by Eq.
(5.5) since the filter ill(co) described by Eq. (5.11) is non-
linear.

The construction of the near optimal filter chosen
above is not unique. An alternate method for realizing
the filter (5.5) is to "smooth" the power spectrum of the
noisy signal in the frequency band where the signal is
stronger than the noise and to use the resulting "smooth"
function as the fi1ter for the responses. This procedure
should be performed carefully to ensure that the filter
thus obtained corresponds to a real function in the time
domain. Then, the method of filtering chosen above can
be used to construct the filtered least-squares function.
One way to build such a filter is as follows: Consider the
noisy signal in the frequency domain. Since the response
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' 1/2

Re[ U(co)] =b I+a

Im[U(co)]=d P(co )

1+a

1/2

The negative frequency part of the filter U(co) is comput-
ed according to the symmetry equations given above.
This new filter U(co) has P(co) as its power spectrum am-
plitude at the frequency co and its real and imaginary
parts have the same phase relationship to each other as in
the original signal. By its construction, this filter is a real
function in the time domain. Note that the function
U(co) is not necessarily smooth, but its power spectrum
P(cu) is smooth by construction.

Up to this point, intervals of integration are chosen by
a threshold criterion. One may argue that by choosing a
function of time which multiplies the least-squares in-
tegrand and vanishes beyond the "optimal" limits of in-
tegration, one can improve the signal-to-noise ratio in the
least-squares function. Such an optimal "cutoff" function
may not be a rectangular window with constant height,

We will now argue that the optimal cutoff function is a
rectangular window whose extent is determined by the
threshold criteria described in this section. If the cutoff
function has any other shape, then finding the optimal
shape corresponds to applying yet another optimal filter

R~(t) is real in the time domain, its Fourier transform
satisfies the condition R~(co)=R~( —co). This implies
that the real part and the imaginary part of R ~(co) satis-
fy

Re[R&(co)]=Re[R „(—co)],

Im[R~(co)] = —Im[R~( —co)] .

First, one smoothes the positive frequency section of the
power spectrum of the signal. One way to do this is to
treat the positive-frequency section of the power spec-
trum as a signal itself and to apply a low-pass filter to it.
Other standard smoothing methods will also work. Let
P(co) be the amplitude in the smoothed power spectrum
at the frequency co. Consider the real and the imaginary
parts of the original signal at the same frequency. Let

~ = IRe[R, (~)] I /IIm[R, (~)]I,
b=sgn[Re[R~(co)]j, d=sgn(1m[a~(co)]] .

Construct the new real and imaginary parts of the filter
for positive frequencies in the following way:

to the minimized function which is already as optimally
filtered as possible. This will not give anything new. It is
also easy to deduce that any cutoff function whose dura-
tion exceeds the duration of our rectangular window will

simply add more noise to the minimized function without
improving the signal-to-noise ratio. Hence the rectangu-
lar window with unit height and with duration equal to
the one obtained by the method described in the previous
section is the optimal cutoff function with this near-
optimal filter.

VI. THE ESTIMATES OF ERRORS

Consider the unfiltered least-squares function L~(8,$)
as described in Sec. IV [Eq. (4.14)]. Since we expect our
solution to be near the actual source location for a good
signal-to-noise ratio, we assume the least-squares function
to be well approximated by a quadratic form in the neigh-
borhood of the minimum as follows:

LV8 0)=LV8 0 )+—,'(8 —8 4' —4'

0—0
—,'(8 —8,$—P )H' =L'A(8 4') L A(8

(6.2)
is positive definite. Therefore, the shape of the function
given by Eq. (6.1) is an elliptical paraboloid in a neighbor-
hood of the minimum. Since we assumed a good signal-
to-noise ratio, the actual source location will be in this
neighborhood somewhere on the paraboloid. As the
signal-to-noise ratio approaches infinity, the minimum
will move to the actual source location. The quadratic
form given by Eq. (6.1) is not diagonal in general. If it is
diagonalized, its eigenvalues describe the curvature of the
paraboloid along its principal directions and this provides
an estimate of the errors caused by the noise.

At the actual source location (8„$,) the value of the
least-squares function L~ (8,$) is given by

(6.1)

where H' is the Hessian matrix of L~(8,$) evaluated at
(8,$ ) . The explicit form of this H' is given in Section
A of Appendix B.

The Hessian matrix H' is formed out of the second
derivatives of the function L (~8, $) evaluated at the
minimum and it contains information about the shape of
the minimized function in the neighborhood of the
minimum. Note that since L ~ (8,P ) is positive and
L ~ (8,$) is larger than the minimum value, the quadratic
form

K)A) t +K2A2 t+T)2 +K3A3 t+7]3 dt,A K2g 2+K2~2+K20 2
(6.3)

where the functions K„K3,K3, r, 3, and r, 3 are evaluated at the source location (8„$,). Note that the value of this

L~(8„$,) is

1 + T/2 [Xl Al t() +K2 A2(t +%12) +E 3A(3t +%1 )3]
L (8~„$,)= lim—

2 2 2 2 2 2T~ oo T —T/2 K
&

o.]+K2o.2+K30 3

(6.4)
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Since the bandwidth of the detector outputs is limited,
the relaxation time for the random processes AJ(t),
j =1,2, 3, as seen through the limited bandwidth is equal
to the period of the highest frequency in the band. If the
time interval At is large compared to this relaxation time
(as will be the case in the simulations in the next section),
the actual value of L ~(8„$,) will be close to unity.

Assuming that the actual source location (8„$,) is in a
small neighborhood of the minimum (8,$ ) of L~(8,$)
so that the expansion given by Eq. (6.1) is valid, we ob-
tain

L~(8„$,) =L~(8,$,„)

+ '(8, 8— (6.5)

(6.6)

This is a quadratic equation for the errors
(8, —8,P, —P ) with coefficients specified at the
minimum point (8,$ ). We diagonalize the Hessian
matrix to solve this equation.

The diagonalized Hessian is obtained by transferring to
a new coordinate system which is determined by the
eigenvectors of the Hessian. In this coordinate system
(x„x2) Eq. (6.6) becomes

(xi, —x, ) (x2, —x2 )

(1m+)
(6.7)

where A, + and A, are the eigenvalues of the Hessian.
Note that the radii of curvature along the principal direc-
tions are given by the inverse square roots of the eigen-
values. The estimated errors in the original coordinate
system (8,$) will in general be a linear combination of
these radii. The explicit expressions for the angular er-
rors b.8 and hP in terms of the Hessian are given in Ap-
pendix D. We point out that the estimated errors will get
smaller as the noise level vanishes since the minimum
L'„(8,$,„)approaches 1.

The analysis carried out above also holds for the
filtered least-squares function defined in Sec. V. However,
because of the results obtained in Sec. V [Eq. (5.30)], Eq.
(6.6) takes the following form:

I9, —8
= Y L~(8,$ ), —

(6.8)

Substituting 1 for L ~ (8„$,), we get

8, —61

—,'(8, —8,$, —
P )H' =1 L' (8,$—) .

+ e, +(8,$, b, 8, AP)R, „(t+g, )],
3

hh, ,„(t)=g [p, &&(8,$, b8, bg)R, ~(t+g, )

(6.9)

borhood of the minimum value are smaller than the radii
of curvature of the paraboloid which represents the noisy
least-squares function in a neighborhood of its minimum.
As the signal-to-noise ratio gets lower, the paraboloid
opens up making the minimum less well defined. There-
fore, the eigenvalues of the Hessian H" are larger than
the eigenvalues of the Hessian H' if the filtering im-
proves the signal-to-noise ratio.

As the signal-to-noise ratio increases, the minimum
point of the paraboloid moves towards the actual source
location which is at the value 1 for the unfiltered least-
squares function and at the value Y for the filtered one.
The estimated errors are proportional to the ratio of the
difference between the values of the least-squares func-
tion at the actual source location and at the minimum,
and the eigenvalues of the Hessian. Hence, we deduce
that the estimated errors will be smaller for the filtered
least-squares function in general. The actual elements of
the Hessian are different for the two cases. Their explicit
forms are given in Appendix B. A method for computing
the probability distributions of the errors in the angles
(8,$) is given in Appendix D.

If the signal-to-noise ratio is too low, the estimated er-
rors given above may not be accurate. The reason for
this is that as the signal-to-noise ratio gets lower the radii
of curvature of the paraboloid defined by Eq. (6.7) grow
larger making the minimum of the paraboloid harder to
locate. Eventually, the minimization method will not be
able to discriminate between the correct source direction
and its mirror image with respect to the plane defined by
the positions of the detectors; and the computed
minimum may end up in the neighborhood of either point
with equal probability. Note that with four detectors this
diSculty is less pronounced since one will be able to per-
form the minimization around the approximate source lo-
cation determined by using three independent relative
time delays. We will examine this case in a future paper.

The errors b.8, b,P in the determination of the source
direction and the noise AJ(t) in the detector responses
R ~(t) will induce inaccuracies in the reconstructed grav-
itational waveforms h, ~,+(t) and h, ,x(t). Since these
waveforms are functions of time, the errors in them are
functions of time as well. Using Eqs. (4.17)—(4.19) and
the corresponding equations for h x (t) we get the follow-
ing expressions for the error functions b,h, ,+(t) and
b, h, ,~(t):

3

Ah, „,+ (t) = g [p,;+(8,g, b, 8, bg)R, ~(t+g, )

where H" is the Hessian matrix of L~(8,$) evaluated at
the point (8,$ ) (see Appendix B 2) and Y =L~(8„$,)

is smaller than 1.
In the absence of noise, the least-squares function can

still be expressed in quadratic form near its minimum.
The radii of curvature for the paraboloid which
represents the noise-free least-squares function in a neigh-

+e,.x(8,g, b8, bg)R, ~(t+g, )] . (6.10)

The angular functions p;+, e,.+ and p, ~, e,.~ are deter-
mined by the optimal choice of the reconstruction formu-
la for the waveforms. The function g, is the appropriate
time delay for the response used. These functions are
evaluated at the computed source direction which mini-



40 NEAR OPTIMAL SOLUTION TO THE INVERSE PROBLEM FOR. . . 3905

mizes the appropriate least-squares function. The expli-
cit form of these functions are given in Appendix C.
R;A(t) is the time derivative of the noisy response R;A(t).

Finally, one can also define a measure of the inaccura-
cies in the functions h,„,+(t) and h, ,~(t) in the follow-
ing way:

&ab

(6.11a)

(6.11b)

where the integration range At, &
= tb

—t, is the common
domain of definition of the noisy responses R;~(t),
i = 1,2, 3. Note that Eqs. (6.9)—(6.11) include both the er-
rors due to the noise in the detectors and the errors in the
determination of the source location.

VII. THE NUMERICAL IMPLEMENTATION

A. Simulation of the gravitational-wave signal

Once the detectors are built and operating, data from
them will be kept in digitized form because of the ease of
storage and manipulation. The algorithm described in
this section assumes that the data are presented in this
form. Because of the present unavailability of the data
from wide-band gravitational wave detectors containing
pulses with signal-to-noise ratios larger than 1, the in-
coming gravitational wave and the responses of the detec-
tors have to be simulated in order to test the performance
of the method described above. The simulation involves
the construction of the continuous waveforms h+(t),
h „(t), the computation of the angular functions and the
relative time delays related to the simulated source posi-
tion, and the simulation of the instrument noise which
gets added to the incoming noiseless waveforms. In addi-
tion, any other parameter of the receiving instrument
which affects the responses has to be included. In our
simulations we assume idealized detectors which are
characterized by the formalism given in Sec. II and by
the spectrum of their noise. Our idealized detectors are
assumed to have two arms with identical length along
two orthogonal directions. We assume that the noise in
the receivers is Gaussian and white and their spectral
densities are the same for all three detectors. Note that
our filtered method works when the noise is not white
and the spectral densities are different for the three detec-
tors, since its derivation was carried out with arbitrary
spectral densities. The numerical implementations are
diFerent for the cases (i), (ii), and (iii) described in Sec. V.

In our simulations, the detector responses are digitized
with a sampling rate of 10 kHz. The "continuous" signal
is simulated by a digitized waveform sampled at 80 kHz
and spline fitted to produce the values between the sam-
pling points. The clock for the continuous signal is not
synchronized with the clocks which digitize the receiver
responses. A random phase shift is added to the receiver
digitization clocks relative to the continuous signal clock
when the receiver responses are digitized. The receiver
clocks are synchronized with each other.

In the simulations, the signal is constructed from two
functions h+(t) and h „(t). In one set of simulations, we
use a one-cycle, circularly polarized sinusoid: h + ( t )
= A &2cos(cot ) and h x (r) = A &2sin(cot ), 0 ~ cot ~ 2vr

where t is measured by the continuous signal clock. The
frequency ~ of these waveforms is randomly selected to
place the largest frequency component of the wave at an
arbitrary location in the frequency band under con-
sideration. The waveforms are normalized so that the
root-mean-squared amplitude for each of them is A.

The "continuous" receiver responses R (t) are then
constructed from these waveforms using Eqs. (3.1a)—
(3.1c) with appropriately chosen angular functions and
relative time delays which correspond to the simulated
source location. These noise-free R, (t) are shown, for the
above choice of h+ (t) and h „(t) and for a specific choice
of detectors and source locations, in Fig. 13. The Gauss-
ian white noise in each receiver is simulated by a normal-
ly distributed deviate with zero mean and unit variance.
This noise is added to the "continuous" signal at each
tick of the clock for the "continuous" signal [Eqs.
(4. la) —(4.1c)]. This noisy digitized signal is then fitted by
cubic splines to supply the values between the sampling
points.

Since the root-mean-squared amplitude of the signal in
an optimally oriented detector is A, this case can be
thought of as having a signal-to-noise ratio

(7.1)

where o. is the variance of the Gaussian deviate de-
scribed above. It is instructive to reexpress our definition
(7.1) of signal-to-noise ratio in terms of the (white) spec-
tral density of the detectors' noise Sh. Denote by 2f
the sampling frequency (80 kHz) used in our noise-
generating procedure —so f,„=40kHz is the highest
frequency present in the noise. Then, because

f o Sh df =o', the spectral density of the noise is

Sh =o/f, „; and th. us our definition (7.1) is equivalent
to

S
QSh f~~

(7.2)

Figure 14 shows the spectral density Sz of the noise used
in our simulations.

Having constructed the noisy "continuous" receiver
responses R.z(t), we then filter them with a band-pass
filter that has relatively sharp cutoffs at 500 Hz and 2500
Hz (Fig. 15). This filtering operation can be interpreted
in two ways. First, the actual gravitational wave detec-
tors are band-limited devices. The noise level rises at low
frequencies due to seismic noise and other factors reduc-
ing the sensitivity and the dynamic range of the instru-
ment. At high frequencies the resonances in the mechan-
ical and electrical parts of the receiver servo system limit
the dynamic range well before the photon counting noise
becomes dominant. A high frequency cutoff is also
needed to limit the data acquisition rate to a man-
ageable level. We choose the cutoffs described above to
correspond to the current operating band of a typical
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SPECTRAL DENSITY OF UNFILTERED NOISE

0.50 I I I I I I I I I I I I I I I I I I I I I I I I

Often one encounters, for a broadband signal such as
ours, an alternative definition of the signal-to-noise ratio:
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FIG. 14. The spectral density of the unfiltered noise used in

the simulations.
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FIG. 15. The band-pass filter in the frequency domain. This
filter is applied to every noisy response.

laser interferometric gravitational wave detector proto-
type. ' ' ' Second, another way to interpret this
band-pass filtering is to regard it as a preliminary filter in
our method. The band-limited wave amphtudes h+(t)
and h

&&
(r) of the two polarizations of the incoming grav-

itational waves are shown in Figs. 16(a) and 16(b).

S
iV alternative V SIt ~fband-pass

fmax

~fband-pass

' j/2

(2P) I/2

X

Here hfb, „d „,=2 kHz is the width of our band-pass
filter. For example, this alternative definition is a good
approximation to the more sophisticated one used by
Thorne [Eq. (29) of Ref. 2]. Thus, our simulations, which
entail S/N = lp for an optimally oriented detector ac-
cording to our definition, actually entai1 a larger
(S/N), I„,„„;„,——45 for an optimally oriented detector ac-
cording to the alternative definition. For a random orien-
tation of the detector relative to the source, the signal-
to-noise ratio will be reduced from these values by rough-
ly a factor 2.

After the "continuous" detector responses are band-
pass filtered, they are digitized at the rate of 10 kHz with
synchronized receiver clocks. The minimum sampling
rate for a signal whose largest frequency component is at
-2500 Hz is 5 kHz. We choose to sample at twice the
minimum rate to be able to perform fast reconstruction
of the receiver responses from the digitized points
without causing an excessive distortion in the recon-
structed responses. We will discuss this choice in more
detail when we address the reconstruction problem later
in the followirig subsection.

In order to test the waveform independence of our
method we also used a somewhat arbitrary waveform in
another set of simulations. The band-pass filtered incom-
ing waveforms h+(t) and h~(t) corresponding to this
wave are shown in Figs. 16(c) and 16(d). In this case,
each wave amplitude is normalized in the manner de-
scribed above. By contrast, with our previous h+(t) and
II x(t), these "arbitrary" h+(t) and II x(t) are not related
to each other by a simple phase shift; i.e., this wave does
not have a well-defined polarization.

The simulation of the continuous signal is done in a
subroutine of the main program that implements our
method. This subroutine is written in such a manner as
to provide digitized detector responses to the main pro-
gram when given a source location, and it does not share
any other information with the main program. Then the
main program calls our method to get the computed
source location and the reconstructed waveforms. The
sets of Figs. 17—19 show contour plots of the maximum
response amplitudes of the detectors for a given source
location, as functions of the source location in the coordi-
nate system described in Sec. II. Note that this coordi-
nate system depends on the set of detectors under con-
sideration. Hence a given source location corresponds to
different coordinate angles for different sets of detectors.
Compare these figures with the ones in sets 3—5 showing
the geometric antenna patterns.
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continuous function is to use polynomial interpolation. If
the outputs of the detectors are sampled at an adequate
rate and they are band limited, we expect that the inter-
polated responses will not be too far off from the actual
responses. The reason for this is that the signal has to
change very rapidly between two consecutive samples in
order to differ from the interpolated value significantly.
This is not possible since the signal is band limited. The
effect of interpolation is to introduce additional noise into
the signal as compared to the signal reconstructed ac-
cording to Eq. (7.5). If the level of this noise is small
enough not to affect the accuracy of the method, the in-
terpolation is acceptable. The advantage of the interpola-
tion is that it is much faster computationally. The sim-
plest form of interpolation is the linear interpolation.
However this introduces too much noise into the interpo-
lated response because it does not have continuous first
derivatives at the sampling points. As we have seen in
Sec. VI we need continuous second time derivatives of
the responses in order to compute the estimated errors.
The simplest choice that satisfies these criteria is the cu-
bic spline interpolation, and we have chosen to imple-
ment it. Tests of the errors caused by cubic spline inter-
polation are discussed in the Sec. VII D.

C. The least-squares function

The least-squares functions are computed according to
Eqs. (4.14) or (5.20) depending on whether the unfiltered
or filtered version of the method is used. We computed
the integrals in the time domain using a constant step in-
tegration technique. The step size of the integration was
chosen to be a quarter of the sampling time, which gives
a good compromise between the accuracy of integration
and the time it takes to run the method. We note that
the computation of the least-squares function is in the in-
nermost loop of the method; hence the time it takes to
complete the search for a given source location is directly
proportional to the integration time.

The range of the integration has to be chosen carefully
in order to avoid a reduction in accuracy due to the
square-integrated noise when the signal is absent. The
range of integration depends on the trial time delays. We
separate the unsquared integrands given by Eqs. (4.2) and
(5.19) into two parts: A template and a fit function. This
separation is only employed while determining the in-
tegration range for each particular combination of the
trial time delays. In the unfiltered case we consider the
largest in absolute value of the three terms in Eq. (4.2) as
the template, and the sum of the remaining two is taken
to be the fit function. In the filtered case we consider the
sum of the terms in Eq. (5.19) which do not contain any
of the trial time delays as the template and the sum of the
remaining terms as the fit function.

The stretch of data is scanned in the direction of in-
creasing time with steps of length equal to the sampling
time. When either the absolute value of the template or
of the fit function exceeds a certain threshold, that time is
taken to be the lower limit of the integration. The scan is
then repeated starting from the other end of the stretch
in the direction of decreasing time. When the condition

described above is met, that time is taken to be the upper
limit of integration. The integration thresholds are
chosen to be a certain fraction of the maximum ampli-
tude in the template. The reason for this choice is that if
the amplitude in the responses gets too small, the entire
stretch of the data is used in the integration possibly lead-
ing to an inaccurate source location due to excessive
noise contamination. This way the program is robust
against the lack of signal in the data and it always pro-
duces an answer. The error estimates given in Sec. VI in-
dicate whether the amplitudes are too low to cause a suc-
cessful source location determination.

D. The minimizer

We minimize the least-squares functions defined by Eq.
(4.14) and (5.20) with respect to the relative time delays.
For a given pair of time delays there are two mirror im-
age points in our coordinate system. We minimize the
least squares function separately for these points. When
the minima for the set of points is computed, we compare
the values and we take the one which has the smallest
value for the least-squares function. In the very unlikely
case of equal minima we choose the upper point. In the
absence of noise these minima can never be equal. The
noise has to conspire to produce this pathological
configuration. Since we assume the signal-to-noise ratio
is larger than 2. 1 [(S/N)„„,„„;„,=10] at each detector,
the pathological case never arises. Note that for pulse
rates of about once a month and for a digitization rate of
10 kHz, the minimum threshold value for a single detec-
tor (for having one false alarm per month due to Cxauss-
ian white noise larger than this threshold) is equal
to 1.5 times the root-mean-squared noise amplitude
[(S/N), &„„„„;„,——6.6]. For three separated detectors run-
ning in coincidence, the minimum threshold goes down
to 1.0 times the root-mean-squared noise amplitude for
similar data rates and observation times [(S/N), «,„„„;„,

45]29
The minimizer needs a starting point which is relative-

ly close to the location of the expected minimum. A sim-
pleminded guess is to compute an arrival time for each of
the pulses and subtract the arrival times to get a pair of
starting time delays. In the presence of noise, this pro-
cedure is not very reliable. An alternative to this ap-
proach is to compute a "center of amplitude" for each of
the responses which is guaranteed to give a time value
within the duration of the pulse. For a given detector
response, we apply a threshold criterion to find the ap-
proximate starting and the ending times of the pulse.
The stretch of data containing the pulse is scanned in the
increasing time direction. When the absolute value of the
amplitude exceeds a certain threshold we take that time
to be the lower limit of the pulse. A similar scan is per-
formed in the opposite direction starting from the other
end of the stretch. When the same condition holds, the
resulting time is taken to be the upper limit of the pulse.
A "center of amplitude" T;„ for the pulse is then com-
puted by the following expression:
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lca

I t iR, ~(r ) ddt
'a

i =1,2, 3, (7.6)

I '"I&,,(r)ldr

where t;& and t,„are the lower and the upper limits of the
pulse R;A(t), respectively. The initial relative time delays

Tj~jt 12 and 7 jnjt 1 3 are then COmPuted by

+jnjt 12 T2 ca T1 ca & +jnjt 13 T3 ca T1 ca (7.7)

These initial time delays are not accurate enough to
compute the source location. A search has to be per-
formed in an area around this point in the two-
dimensional space of trial relative time delays. Due to
the complicated nature of the least-squares function in
the presence of noise, the standard minimization methods
that follow narrow valleys in the minimized function usu-
ally cannot reach the minimum if they are started from
the point described above. In order to circumvent this
problem, we perform an initial grid search in a patch sur-
rounding the crude startup point. We choose a rectangu-
lar patch in the space of trial relative time delays. The
size of this patch is decided by assuming a certain max-
imum error in the determination of the "center of ampli-
tude" time delays. We subdivide this patch into small
rectangles and we compute the least-squares function at
each grid point. We then pick the point with the smallest
least-squares value as the next starting point. We note
that we compute the least-squares function for both of
the mirror image source locations defined by the two trial
time delays and we choose the one with the smaller least-
squares function at each grid point. The resulting pair of
time delays corresponding to the source location with the
smallest least-squares value is used as the starting point
of the next step of the minimizer. The next stage is a
direction set minimization method known as the Powell
minimizer. ' ' This minimizer is run for a constant num-
ber of iterations on each of the two candidate source lo-
cations defined by the starting pair of relative time delays
found by the previous stage of the minimizer and the
answers it supplies are compared with each other. The
one with the smaller least-squares value is taken to be the
computed source location.

The Powell minimizer is an automatically stepping
minimizer. This means that it is free to choose any time
delay combination while searching for the minimum. If
the trial time delays are unconstrained in magnitude,
then the minimizer can get a low value by trying very
large time delays which push parts of the responses out of
the stretch of digitized data since we assume the signal is
zero outside that stretch. To prevent this we implement
a maximum trial time delay check in the least-squares in-
tegral. We estimate the accuracy of the "center of ampli-
tude" algorithm, and we constrain the minimizer to a re-
gion in the search space centered around the starting
point computed by the "center of amplitude" algorithm.
The size of this region is proportional to the estimated
accuracies for each coordinate in the search space. If the
trial time delays result in a point which is outside this re-
gion, the least-squares integral returns a very large value
which is not normally computed. This action prevents

the minimizer from trying such time delays.
The number of grid points in the initial grid search and

the number of iterations in the Powell minimizer are
chosen by considering a variety of source locations and
instances of noise. Note that in the noise-free case, the
Powell minimizer can be run in a mode where it searches
for the absolute minimum of the least-squares function
which is zero. The number of iterations is left free and
the minimizer stops when the computed minimum is in a
neighborhood of zero with a specified accuracy. It is pos-
sible that in this mode the minimizer may not reach the
absolute minimum when it is started from the initial
point described above. The program checks for this pos-
sibility and refines the grid search to locate the minimum
better.

This cannot be done in the noisy case, because the
value of the minimum depends on the particular realiza-
tion of the noise. Running the minimizer with a halting
condition that depends on the relative change in the
least-squares function (approximate local minimum) is
not advised with this function, since it has a large number
of such local minima in the presence of noise. The pro-
cedure employed above is analogous to integrating
differential equations with a given step size. In order to
check the answer one runs the integrator with a finer step
size and checks whether the answer is stable against such
disturbances.

A similar method can be applied in this case by chang-
ing the fineness of the grid search and the iteration count
of the Powell minimizer. In our program, after the
Powell minimizer has located an optimum position for
the source, another grid search in a small neighborhood
of this location is performed followed by another pass of
the Powell minimizer. The answer thus obtained is print-
ed out. The program has provisions of refining this pro-
cedure indefinitely. The only limitations to this pro-
cedure are the available precision of Qoating point arith-
metic and the time it takes to compute these iterations.

In order to test the algorithm we implemented the
noise-free case first. The reasons for this are as follows.

(a) The numerical precision that is necessary can only
be decided by actually implementing the method and by
running it for a few source locations and waveforms.
Since we did not know in advance the absolute value of
the difference of the least-squares function for the two
mirror image points determined by the same time delays,
the only way to test the method is to actually run it.

(b) There is a certain amount of numerical noise intro-
duced by various approximations (cubic splines, time
domain integration) made earlier. An estimate of the
magnitude of this noise is necessary in order not to con-
fuse it with the actual detector noise.

(c) The nature of the function I.(H, P) has to be exam-
ined in order to decide on a minimization strategy and to
see how accurately one can locate sources that are placed
in arbitrary directions in the sky.

The crude grid-search followed by Powell's algorithm
as described above was run on simulated noise-free detec-
tor outputs. The standard single precision arithmetic as
defined in FORTRAN 77 language (REAL"4) was used which
allocated 32 bits per Aoating point number on the work
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stations we used. The program was run for a number of
source directions and for a number of detector orienta-
tions. The noise introduced by the cubic spline interpola-
tion was found to be completely insignificant as well as
the noise introduced by the finite-step time-domain in-
tegration. The minimizer was able to locate the source
direction within 10 degrees in each of the two angles
which define the source location without an excessive
number of iterations.

K. Determination of the wave's parameters

The full test of the method is conducted by running it
on simulated noisy detector responses for source loca-
tions, uniformly distributed over the sphere, defined by
the angles 9,$. The locations of the detectors are chosen
to coincide with detector sites for large scale laser inter-
ferometric gravitational wave receivers considered in
various proposals. ' We assume that there are two
detectors in the United States of America located on the
east coast and the west coast. As a detector location in
Europe, we choose a site in southern Germany which
represents an average location for the future large scale
interferometers planned by the British, the Italian-French
and the German groups. To evaluate the effects of a
longer baseline we also include a receiver located in
Western Australia. The precise locations and the orienta-
tions of these detectors are given in Table I.

The orientations of the detectors are chosen according
to the criteria given by Tinto and Schutz. ' ' We pick
the detector on the east coast of the United States of
America as the reference detector to explain the optimal
orientations. The west-coast detector is then oriented
with the east-coast detector in such a way to optimize the
mean coincidence probabilities for sources located in the
Virgo cluster of galaxies. This alignment is near the op-
timal alignment for sources randomly distributed in the
sky. The European detector is separately aligned with
the east-coast detector according to the same criteria.
After this procedure, the orientations of the European
and the west-coast detector are near optimal when they
are considered as a pair. ' The Australian detector is
aligned with the American pair in a similar manner. In
order to see the dependence of the method on other possi-
ble orientations of the detectors, we also consider a case
in which the west coast detector is rotated by 45 from
the optimal orientation.

The sources are chosen to lie on a grid defined by the
angles 8,$; 0~ 8 ~7r, 0~ $ ~2m and the grid steps are
~/10 in the angle 8, ~/20 in the angle P resulting in 400
grid points on the sphere. The number of points on the
grid is limited to 400 because of the computational time
limits imposed by the speed of the computing machinery
we used. The amplitudes A of the waves emitted by the
sources are assumed to be a constant independent of the
source location while the frequencies co/2m of the pulses
are allowed to vary randomly in the range [770 Hz, 2000
Hz]. The realization of the noise is computed to be ran-
domly different for different source locations.

In certain directions in the sky, the signal-to-noise ra-
tio for a given receiver falls below the threshold value of

2.1 [(S/N), &„„„„,„,=10] due to the variations in the an-
tenna pattern. Such points are removed from the simula. -

tion since our method does not always converge to the
correct source location in these cases. The number of
such directions is less than 10% of the total number of
source locations considered.

As a test of the adequacy of the source location grid,
we run the method with a 10 times finer grid restricted to
one quarter of the whole sphere. The answers are in
agreement with the main results. We also run the
method for three different values of the optimally orient-
ed signal-to-noise ratio: 10, 30, 50 [or (S/X),, „„„„;„,=45,
135, 225]. For larger values of the signal-to-noise ratio
the number of source locations which gave poor ampli-
tudes is considerably reduced since the large signal-to-
noise ratio compensates for the unfavorable antenna
response. The program failed to find the 1ocation of the
source in about 2% of all the source locations which pro-
duced larger than threshold amplitudes in all three detec-
tor responses. An analysis of such points will be given in
the next subsection. We note that the initial thresholds
in the program were set before the program started and
the program automatically selected to alter them for the
source locations under consideration in a given simula-
tion without human intervention or a prior knowledge of
the source locations and amplitudes. The filters in the
program usually start with a threshold value which is cer-
tain to be too high and lower it in a smooth fashion in
such a way that the maximum amplitude of the filtered
pulse is not less than 75% of the maximum amplitude of
the unfiltered pulse.

The reconstruction of the two independent wave ampli-
tudes of the gravitational-wave h+(t) and h x(t) is per-
formed after the source location is computed, according
to the algorithm described at the end of Sec. IV and in
Appendix C.

F. Analysis of failed points

As mentioned above, the program failed to find the
correct source location in about 2%%uo of the trial source lo-
cations which resulted in above-threshold amplitudes in
all three detectors. The failure was marked by the fact
that the actual error in the source location was of the or-
der of 20' in either of the angles 0,$. The reason for this
is determined to be the following: Although the Powell
minimizer is restricted to try time delays that are within
the initial delay range mentioned above, it can still try
time delays which will lead it out of the range of the ini-
tial crude grid search. If the minimizer is not able to get
back into this range because of the nature of the particu-
lar instance of noise, it falls into the next local minimum
which does not correspond to the correct source location.
A further restriction of the minimizer to the range of the
prior grid search caused the minimizer to converge to the
correct source location.

G. Computing resources, precision, and timing

The program was run on several different brands of
computers with various speeds and precision. The com-
puters used were Cray X-MP/48, Masscomp MC-SSOO,
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FIR. 20. The estimated error AQ„, [Eq. (8.la)] and the actual error AQ„, [Eq. (8.2)] in the source location as functions of (8,$).
The detector configuration is described in Fig. 3. The waveforms are single cycles of sinusoids. The amplitude of the waves emitted
by the source is assumed to be a constant independent of the source location while the frequency of the pulses are allowed to vary
randomly in the range [770 Hz, 2000 Hz]. The realization of the noise is computed to be randomly different for diFerent source loca-
tions. The sources are uniformly distributed over the sky and the signal-to-noise ratio is 10 as defined in Sec. VII. The symbols 0
mark the simulated source locations. A line is drawn through them to emphasize the sequential order of the simulated points. The
source locations which produced maximum detector responses below a threshold of 2.1 times the root-mean-squared noise level are
not displayed.
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FIG. 20. (Continued).

Ridge 3200, Sun 3/50, Sun 3/160, Sun 4/160, and Sun
4/260 in alphabetical order. The noise-free program was
developed on the Ridge. The noisy algorithm was
developed on the Masscomp and the Suns. All of the
simulations were run on the Suns in single precision. The
program was then ported to the Cray and vectorized.
The resulting code was run on the Cray in Cray single
precision which had twice as many digits as the Suns for
two full simulations: one optimally filtered and one
unfiltered. The same program which ran on the Cray was
then run on the Suns to check the e6'ects of the precision
di6'erence between the two computers. No significant
di6'erence in the accuracy of the source location deter-
mination was observed.

On the Sun 4/260, the average time to determine one
source location was 15 min for the unfiltered algorithm
and 30 min for the filtered algorithm. The Cray was
found to be 70 to 100 times faster than this work station.

(A, +A, )
(8.1a)

Here k+ and A, are the eigenvalues of the Hessian of the
least-squares function L ~ ( 8, P ) evaluated at the
minimum point (0,$ ) [Eqs. (6.7) and (D6)]. En the
near-optimally-filtered case, Eq. (S.la) becomes

tions mentioned above. The estimated errors are com-
puted using the formulas given in Sec. VI. The actual er-
rors are computed by comparing the simulated source lo-
cation to the computed one. Note that the errors in the
source location in these figures are expressed in terms of
the solid angle b, O.

The estimated error AQ„, is taken to be the area of the
ellipse defined by Eq. (6.6) in the unfiltered case and by
Eq. (6.8) in the near-optimally-filtered case. The expres-
sion for the area of this ellipse in the unfiltered case is

VIII. RESULTS (S.lb)

The sets of Figs. 20—23 summarize the estimated and
the actual errors in the source location for the simula- where k'+ and k' are the eigenvalues of the Hessian of
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FICx. 20. (Continued).
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FIG. 20. (Conti. nued).

the least-squares function L A(8, $) evaluated at the
minimum point (8,$ ).

The actual error AA„, is computed using the formula

AQ„,=~[(8„p—8„,} +sin (8„,}(g„p—P„,) ],
(8.2)

where 8„~,P„~ are the computed source coordinates;
8„„$„,are the actual source coordinates. Equation (8.2)
gives the area of the circle on the unit sphere centered on
the actual source location with radius equal to the length
of the difference vector between the computed and the ac-
tual source locations. We assume that the computed
source location is likely to fall anywhere in this circle
with different realizations of the simulated noise for a
given signal-to-noise ratio.

The plots in each set of figures show the error in the
source location AQ —estiiTiated or actual —as a function
of the coordinate angle P and for a particular coordinate
angle 0. The symbol 0 marks the points we have in the
simulation. Lines are drawn through them to aid in dis-
tinguishing the ordering.

We see that for a signal-to-noise ratio of at least 2.1

[(S/X)„„,„„;„,=10] in each detector, the average actual
error given by the unfiltered method is about 1 X 10 sr,
while the filtered case gives a location error of 1X10
sr. The estimated errors are 5 to 10 times larger than the
actual ones in the unfiltered case and the filtered method
produces tighter error estimates. The errors decrease as
the signal-to-noise ratio increases. The rotated detector
and the change in the waveform do not alter these results
significantly. [This insensitivity to detector rotation is
what one should expect in our case of circularly polarized
waves [Figs. 16(a), 16(b)] or the arbitrary wave [Figs.
16(c), 16(d)]. For linearly polarized waves there would
probably be a sensitivity to rotation. However, we have
not explored this case.] There is a slight decrease in the
errors when a longer baseline is used.

The errors quoted above are in good agreement with
the approximate geometric formula for the error in the
source location in terms of the uncertainities in the time
delays 4'T]2 A1"i3 and the area A of the triangle defined
by the detector locations:
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FICi. 21. The estimated error bQ„, [Eq. (8.1a)] and the actual error bQ„, [Eq. (8.2)] in the source location as functions of (g, g).
The detector configuration is described in Fig. 4. The waveforms are single cycles of sinusoids. The amplitude of the waves emitted
by the source is assumed to be a constant independent of the source location while the frequency of the pulses are allowed vary ran-
domly in the range [770 Hz, 2000 Hz]. The realization of the noise is computed to be randomly different for different source loca-
tions. The sources are uniformly distributed over the sky and the signal-to-noise ratio is 10 as defined in Sec. VII. The symbols 0
mark the simulated source locations. A line is drawn through them to emphasize the sequential order of the simulated points. The
source locations which produced maximum detector responses below a threshold of 2.1 times the root-mean-squared noise level are
not displayed.
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FIG. 21. (Continued).

2C 6~126~,3EQ=
A cosO

(8.3)
22c

~ Acos8f o(S/N)„„,„„;„,
(8.5)

Here 0 is the angle between the source direction and the
normal to the plane of the three detectors. The uncer-
tainities in the time delays are related to the signal-to™
noise ratio (S/N)„„,„„;„,and the dominant frequency fo
in the signal in the following manner:

1
~+12, 13 ~fo(S/N)alternative

(8.4)

where we assume that the bandwidth of the signal is
equal to the dominant frequency in the signal as in a su-
pernova burst.

In our simulations the dominant frequency fo is about
1 kHz, the alternative signal-to-noise ratio in each detec-
tor is about 20, the typical value cos0=0.5 and the band-
width of the signal is about 1 kHz. The area of the trian-
gle spanned by the detectors is about 0.2 of the square of
the radius of the Earth. Substituting these numbers in
Eqs. (8.3), (8.4) we obtain b,Q = 1 X 10 sr.

By combining Eqs. (8.3) and (8.4), we get

If a burst has a lower dominant frequency fo, then its
bandwidth will also be lower. In our method, all integra-
tions are performed in the bandwidth of the signal in or-
der to maximize the signal-to-noise ratio. Since the alter-
native signal-to-noise ratio (S/N)„„,„,„;„„for white noise
and fixed wave amplitude A, is inversely proportional to
the square root of the bandwidth of the bandpass filter
used, we deduce that the error EQ in the source location
is inversely proportional to the dominant frequency of
the signal.

It is possible that the strongest signals that will be seen
by the future generation of gravitational wave detectors
will have a dominant frequency and bandwidth of about
100 Hz. This implies that the error EQ in the source lo-
cation will be 10 times worse than those quoted above if
the noise is white and the amplitude is fixed. For the
weakest detectable signals, (S/N), «,„„„,„,-6.6 at any fre-
quency, b,Q will be 100 times worse for fo=100 Hz than
for fo=1000 Hz.
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FIG. 21. (Continued).
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FIG. 21. (Continued).

If the waveform of the burst is known, as in the case of
coalescing compact binaries, the frequency dependence
derived above for the error EQ no longer holds as point-
ed out by Schutz. An improvement in the error AQ can
be obtained by using a specially tailored interferometer
for lower frequencies, and the error decreases as the fre-
quency decreases. We will evaluate the performance of
our method for signals from coalescing compact binaries
in a forthcoming paper.

We show a particular case of optimal waveform recon-
struction in Figs. 24(a) and 24(b). The incoming
waveforms are shown in Figs. 16(a) and 16(b).

IX.CONCLUSIONS

We have developed a method for solving the inverse
problem for gravitational-wave bursts. The method is
capable of computing the source direction and the wave's
two amplitudes and it is insensitive to the actual

waveforms. We show that for networks of three detec-
tors widely separated on the Earth (whose locations and
orientations are given in Table I), for signals with a dom-
inant frequency and bandwidth of 1 kHz and for a
signal-to-noise ratio of at least 2.1 [(S/N)„„,„„;„,= 10] in
each detector, it can locate the source direction within
1 X 10 sr. Signal-to-noise ratios significantly lower than
2.1 result in the loss of discrimination between the
mirror-image directions determined by the correct rela-
tive time delays. For signal-to-noise ratios lower than 1

the method completely loses its resolution.
In this paper we considered only short bursts of gravi-

tational radiation. In a forthcoming paper we will analyze
signals with characteristic signatures and longer dura-
tions. Examples of such sources include coalescing com-
pact binaries, quasi-normal-mode radiation from pulsat-
ing black holes and brehmsstrahlung from colliding black
holes. These signals contain information about their
sources which can be extracted from the waveforms;
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FICs. 22. The estimated error EQ„, [Eq. (8.la)] and the actual error AQ„, [Eq. (8.2)] in the source location as functions of (8,$).
The detector configuration is described in Fig. 3. The waveforms are shown in Figs. 16{c)and 16(d}. The root-mean-squared ampli-
tude of the waves emitted by the source is assumed to be a constant independent of the source location. The realization of the noise is
computed to be randomly different for different source locations. The sources are uniformly distributed over the sky and the signal-
to-noise ratio is 15 as defined in Sec. VII. The symbols 0 mark the simulated source locations. A line is drawn through them to em-
phasize the sequential order of the simulated points. The source locations which produced maximum detector responses below a
threshold of 2.1 times the root-mean-squared noise level are not displayed.
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FIG. 22. (Continued).

however the limited bandwidth of the instrument alters
the shape of the waveform. As the bandwidth of the in-
struments gets larger, this e8'ect will be diminished. We
will also consider the case of four or more wideband
gravitational wave detectors running in coincidence.
With four or more detectors we will be able to compute
the source direction with possibly improved accuracy due
to the availability of three or more independent relative
time delays.

We plan to extend the method described in this paper
to the case of continuous and stochastic signals. Con-
tinuous signals originate from pulsars or spinning neu-
tron stars and they are expected to be emitted at well-
de6ned frequencies. The frequency of these signals must
be searched for as well as their directions. Since these
signals last much longer than a typical data run, the
response of a detector is Doppler shifted by the rotation
of the earth. This fact raises the computational cost of
the search considerably.
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FIG. 22. (Continued).
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FICx. 23. The estimated error EQ„, [Eq. (8.1b)] and the actual error AQ„, [Eq. (8.2)] in the source location as functions of (8,$) for
the near-optimally-Altered simulation. The detector conAguration is described in Fig. 3. The waveforms are single cycles of
sinusoids. The amplitude of the waves emitted by the source is assumed to be a constant independent of the source location while the
frequency of the pulses are allowed to vary randomly in the range [770 Hz, 2000 Hz]. The realization of the noise is computed to be
randomly different for diferent source locations. The sources are uniformly distributed over the sky and the signal-to-noise ratio is
10 as defined in Sec. VII. The symbols 0 mark the simulated source locations. A line is drawn through them to emphasize the
sequential order of the simulated points. The source locations which produced maximum detector responses below a threshold of 3.6
times the root-mean-squared noise level are not displayed.
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FICz. 23. (Continued).

1e= —[(—sinyz —isinprcosyI )e-
2

i+I+ (cosyI —isinprsinyI )e "+(icospI )e, ]e„
We will now construct the transformation from the Earth
axes (x",y",z") to the common detector axes (x,y, z).
Let f and I be defined by

(A2)

For an interferometer oriented in such a way that the x'
axis bisects the angle between the arms, the detector ten-
sor D can be written as

Ci] d2f=

d) —d3

(A6)

(A7)

D =sin2$ll(e„e .+e e ) (A3) Define the unit vector o by

Here 201 is the value of the angle between the arms (usu-
ally close to 90 ).

In terms of e the detector tensor D can be written as

DI= 20 ee e*e
(A4)I

l

Let dr be the unit vectors pointing from the center of the
Earth to detector I. They can be written as

dI =(cosPIcosyI )e, +(cosPIsinyI )e +(sinPI )e,- .
(A5)

o= fx
lrxgl ' (AS)

p=oXf. (A9)

We construct the orthogonal transformation matrix Q;,

where we assume in the vector product X that the order
of the vectors f and g is chosen in such a way as to make
the triad ( f, g, o ) a right-handed one. We can get the
orthonormal right-handed triad ( f, p, o ) by computing
the following vector p:
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FIG. 23. I'Continued).
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in the following way:

gg p pf 0 ll
X

QJ = fy Py Oy (A 10)

APPENDIX 8
In this Appendix, we give the explicit forms of the

Hessian matrices for the filtered and the unfiltered
methods.

FI+(8 0 a» y)=D~'jQ;kQ)~Re(mkmi»

FIX(e,g, a, P, y)=D; QkQ Ilm(mkm(),

(A 1 la)

(A 1 lb)

where we have assumed the Einstein summation conven-
tion over all repeated indices, and the vector I is defined

Then the functions Fl+(e, p, a, p, y) and FI&&(e,p, a, p, y)
are given by

aL,'(e, y)
a6 0

aL~(8, $)
ay 0

=0.

The matrix representation of the Hessian is as follows:

A. The Hessian for the unfiltered method

The Hessian H' for the unfiltered method is given in
terms of the second partial derivatives of the least-
squares function L A(8, $) given in Eq. (4;14) evaluated at
the minimum point (8,$ ) where

1
m = —f (cosP —icosesing)ev'2

+ (sing+ icosecosg )ey+ (isine)e, ] .

(A12)

ae'
H'

a L' (8,$)

algae

0

0

a L( 8$)

aeay

a L'A(8, $)
ay'

0m &in

0

(B1)

By combining the Eqs. (A2) and (A4) —(A12) we obtain
the explicit form of FI+(e,p, a, p, y) and Fl~(e, p, a, p, y ).

The second partial derivatives of L z ( 8,$ ) at the
minirnurn point are given below:
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FIG. 24. (a) The optimally reconstructed waveform h, ~, +(t); compare with Fig. 16(a). (b) The optimally reconstructed waveform

h„~,~(t); compare with Fig. 16(b). The detector configuration, the coordinate system, and the amplitudes of the incoming gravita-
tional wave are as described in Fig. 3. The source is placed at (27, 85 ). The overall signal-to-noise ratio is 10.

2
~2 2+~2 2+~2 2

—L'
A

2aI
ae

2
M,
BO

0 I~+ I~ dt
BO

0Ki+E( g)+ao'

2 2BK2 ax,+K
BO

a LA(e, p)
aeay

2 2BK3 0 K3
ao

+%3 ae'
02

3 (B2)

2
~2 2+~2 2+~2 211 2~2 3 3

—L'
A

BI BI 0 I
+ I~ dt

ae ay
' aeay

az, M, a'z,
ae ay

+ ' aeay

Bx, M, a'x,
ae ay

+ ' aeay

Bz, ax, a'rc,
ae ay

+ ' aery

(B3)

a L'A(e, p)
a/2

2 11

~2 g2+ ~2 (72+ ~ O2 gt to

—L'
A

2
BI

ay
2

ap
T

BK3

ay

BK)
+K) o)+

a/2

BK
+ K3 O3ay'

2
BK2 0 K2+ K2 O2

ay2

(B4)

where I~ is given by Eq. (4.2); K„K2, and K3 are given in Eqs. (3.8a), (3.8b), and (3.8c); o „cr2, and cr3 as in Eq. (4.14).
The times tp, t, are the limits of the integration corresponding to the minimUm point and At = t

~
tp.

The derivatives of I~ are given below:
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BK] BK2 E3 B7 }3
R]z(t) + R2A(t + r]2) + R3+(t + r]3) + K2 R2A(t + r]2) + K3R3+(t + r]3), (85)

BE, BE2 BE3 BT]2 Bvi3
R]z(t) + R2A(t + r]2) + R 3&(t + 7']3) + K2R2A(t + r]2) + K3R3A(t +1]3), (86)

B I~
BH

BEi 8 K2 BE
ae' R]z(t) +

2 R2&(t + r]2)+ R3+(t + r]3)Be' BO

2
]37 ]3

K3 R3+(t + 7 ]3)

clK2 87 ]2 ]3 1 ]2 BK3 B1 ]3 ]3 7 ]3+ 2 +K2 2 R2~(t + r]2) + 2 + K3 R3A(t + r]3)

B7+ K2 R2A(t + r]2) + (87)

a2s,
BBBP

B'E, BE B E3
R]~(t) + R2~(t + v]2) + R3~ ]3)aB a{t

+ aK, ar„aK, ar„a'r„
38 B])] BP BB BBBP

+

87 i3 13
2

+ K3 R3„(t + 2.]3)

B7 ]3 ]3r]3+ r]2) + K3 R3+(t + 7]3),

B K3 BE, B~„
ay'

R3A(t + r]3) + 2
ay

M'3 Br]3 M3
aB ay

+
a

B1 ]2 Br]2

gB gy
2 2A (88)

B %12
2

+K2 R2A(t + r]2)
Qp2

2

a'K,
a4' R2„(t + r]2) +BE)

$/2
R]~(t) +

'2
])7]2

BP
K3 R3+(t + 1 ]3), (89)

BK3 ]3'T]3 8 'T]32
~ BT]3+ 2 + K3 R3A(t + r]3) +

8 8{t]
K2 R2A(t + r]2) +

a{t

where R,A(t), R2„(t), and R3A(t) are the noisy detector responses; R2A(t), and R3A(t) are the first time derivatives of
these responses; R2~(t) and R3A(t) are the second time derivatives of them. The derivatives of the time delays are given
by Eqs. (4.15) and (4.16). The functions K„K2, and K3 are given in Eqs. (3.8a), (3.8b), and (3.8c).

8.The Hessian for the Altered method

The Hessian H" for the filtered method is given in terms of the second partial derivatives of the least-squares func-

tion L~(8,$) given in Eq. (5.20) evaluated at the minimum point (8,$ ) where

BL~(8,$)
(38

aL", (B,y)
BP

We will give the expressions corresponding to the cases (i) and (ii) in Sec. V for which the integrand in Eq. (5.20) is given

by Eq. (5.19). The form of the Hessian in terms of the least-squares integral L~(8,$) [Eq. (5.20)j is the same as the one

in Eq. (81).
We define A(B, P, t ) in terms of the integrand C'(B,g, t) [Eq. (5.19)] and the function G(8, $) defined in Sec. V in the

following way:

A(B, P, t) = G(8,$) C'(B,g, t),

2 1

G At toBH

Then the second derivatives of the least-squares integral L ~ (8,{t])are
2

BA BA
B8 BO Bg Bg2

(810)

(811)

a'L,"(8,{{))

888$
2

G2
dt —I.~

BG BG B G
aB a{t

+
aBay

(812)

d L' (8A, $)
Qp2

2
G2

dt —
LA

2
B G
Qp2

(813)
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where the times to, t
1

are the limits of the integration corresponding to the minimum point and ht = t, —to.
The derivatives of the function A (0,P, t ) are given below:

BK BK2 BK3= 2K, R,A(t) + 2K2 R2A(t) + 2K3 R3A(t)

+ K, + K2 [R2A)(t + r]2) + R(]A)(t —r]2}]+ E, K2 [R2A(t + r]2) —R ]A(t —r]2)]
BO

+ K, + K3 [R3A(t + r]3) + R', A(t —r]3)] + K, K3 [R3A(t + r]3) —R', A(t —r]3)]

BK3 BK, (3)+ K2 + E3 [R3A(t + %]3 v]2) + R2A(t s]3+ %]2)]

a(r„—r„) ' (3)+ K2 K3 [R 3A (t + r]3 r]2) R 2A(t r]3 + r]2)]l (B14)

+ K, + K2 [R2A(t + r]2) + R']A'(t —1]2)] K, K2 [R2A(t + r]2) —R', „'(t —1]2)]

BK3 BK] (3) Br 13 . (1) (3)+ Kl + E3 [R3A(t + 7]3) + R,A(t —r]3)] + K, K3 [R3A(t + r]3) —R,A(t —r]3)]

BK3 BK2 (3)+ K2 + K3 [R 3A (t + r]3 ] r)2+ R 2A (t —r]3 + v]2)]

~(r]3 —r]2) (3)+ K2 K3 [R 3A (t + r]3 —r]2) —R 2A (t —r]3 + r]2)], (815}

2
BO2 BO
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BO
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BO

2
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BO
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' BO'
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r
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2a (.„—.„} ( 3 )

2 3 [ 3A 13 12 2A 13 + +]2)]
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ax, QK3 BVI3 ~ (3)+ 2 K3 + K] [R3+(t + 7]3) R ]P(t v]3)]

2

+K]K3[R3A(t +r]3) —R]z(t —r]3)]+K, K3
+13 ' (3)

r 2

[R3&(t + r]3) + R'iA(t —r»)]

a'K, aK, aK, a'K, (3)+ K3 +2 + K& [R 3A(t + r]3 r]3) 2p( ]3 ]2)]

a@2+2 K3+
BP

~(r]3 r]2) (3)

B]t]
[R3A(t +1]37]2)R3A(]3]Q)]

2(r]3 r]2) (3)+ K, K, [R3A(t + r]3 —&») R2~(t r»+ r»)]
8 2

+ K2Ã3

2
B(r]3 —r]2)

[R '3~(t + r]3 —r]3) + R 2A(t —r]3+ r]2)],
"(2) "(3) (818)

where R„],~'(t), m, n = 1,2, 3, are the filtered noisy detec-
tor responses as defined in Sec. V, cases (i) and {ii);
R„'~'(t), m, n = 1,2, 3, are the first time derivatives of
these responses and R„'A'(t), m, n = 1,2, 3, are the second
time derivatives of them. The derivatives of the time de-
lays are given by Eqs. (4.15) and (4.16). The functions
K], K2, and K3 are given in Eqs. (3.8a), (3.8b), and (3.8c).

APPENDIX C

In this Appendix we give the explicit forms of the
coeKcients of the optimal hnear combination for recon-
structing the waveforms h, ,+(t) and h, ~, &&(t) of the
incoming gravitational wave [Eq. (4.20)]. We also give
the explicit forms of the functions p, ;+(0,$, 50, bg),
p,;x(0,$, i30, i] P), e;+(0,g, b0, bg), and E;x(0,g, bB, AQ)
where i = 1,2, 3 as given in Eqs. (6.9) and (6.10).

Let the optimal linear combination h „,+ ( t ) which
gives the least amount of noise in the reconstructed
waveform be

h, , +(t) = a+(0, $) h, +(t)

+ b (+9,$) hz+{t) + c+(0,$) h3+(t). (Cl)
When the noise amplitudes are reduced to zero, h, ~,+ (t)
should reduce to the noise-free waveform h+(t). This
implies

l

(4.17)—(4.19), we get

6h „,„+ = f [(a+ + b+ + c+ —1) h+ (t)"' +

+ A ]+ A, (t) + 23+ A3(t + r]3)

+ 33+ A3(t + r]3)] dt

(C7)

—A. [a+ + b+ + c+ —1], (C5)
where A;(t) is the random process representing the noise
in detector i; h+(t) is the noise-free waveform of the
gravitational wave; 3,+, i = 1,2, 3, are given by

c+ F2x 6+ F3x
(C6)

3 2

+ F3x c+ F1x
K KI 3

b+ F1 x a+ F2x
3+ (C8)

2 I

where the functions F;+, F; ~ are given in Appendix A
and the functions K; are given in Eqs. (3.8). Note that
h, ~, +(t) as defined by Eq. (Cl) can also be expressed in
terms of the noisy detector responses R;z(t) i = 1,2, 3,
using the coeScients 3;+, i = 1,2, 3, in the following
way:

(C2)

I /2

a+(0, $) + b+(0, it]) + c+(0,$) = 1.
We define the root-mean-squared error 5h+ in the re-
constructed waveform as

3

h.„„+(t) = g 2, +R,,(t+g, ),
i =I

where the time delays g, are given by

(C9)

f [ h„,+(t) —h+(t) ]' dt
At &0

(C3)

where [to, t, ] is the optimal interval of integration and
At = t1 —to. We minimize 5h + with respect to
a+(0, $), b+(0, $), and c+(0,$) subject to the constraint
given by Eq. (C2) using the method of Lagrange multi-
pliers. We define a new mean-squared error 6h „,„+ with
an arbitrary parameter X:

5h „, + = 5h+ —
A, [a+ + b+ + c+ —1] . (C4)

k=r]3 k=r]3 (C10)

86h „,„+
Ba+

3X 2 2X= ~2+ ~ 2 —~3+
1 1

We difterentiate 6h „, + with respect to the parameters
a+, b+, c+, and k and set the resulting expressions to
zero. We then get

86h„, + = a++b++c+ —1 = 0, (Cl 1)

For brevity, we refer to a+(0, $), b (0+, $), and
c+(0,$) as a+, b+, and c+, respectively. Using Eqs.

——+r =0,
2

(C12)
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to obtain

——+I =0
2

(C13)

»)a+ +(» —7'1)b+ = —r1

(~2 Y2) a+ + (p2 r2) b+ r 2

(C26)

(C27)

~~'. . + F2x, F1x
1+ ~ 1 ~2+ ~2

C+ 3 E3

——+r =o,
2

(t)[A, A(t)+ A, A(t+r„)
At to

+ A 3+ A3(t + r13)] dt

(C14)

(C15)

Equations (C26) and (C27) are linearly dependent. Equa-
tion (C27) can be obtained by multiplying Eq. (C26) by
(F,„K1)/(F3„K3). This implies that we have only
two equations for the three unknowns a+, b+, and c+.
%'e leave c+ as an arbitrary parameter without loss of
generality and we solve for a+ and b+ in terms of c+,
the angular functions F;x, K; and the variances 0.;,
i = 1,2, 3, using Eqs. (C16) and (C26). We then get

where o.; is the variance of the random process A;(t). In
deriving the equations above we have used the fact that
the random process A;(t) is uncorrelated with the ran-
dom process AJ(t) unless i = j and

X, X3 F1x, X, F1x
a+ = —K10.1— 03 + C+ )

P 3x 3 3x

(C28)

0 2 f A', (t) dt .
2 3 2x 2 2 2x

b+ +2 02 F 03 + c+
P 3x 3 3x

a++b++c+ =1,
a, a+ +P, b+ + y, c+ =0,
a2a+ + P2b+ + y2c+ 0,

(C16)

(C17)

(C18)

We also used Eq. (Cl1} to reduce Eq. (C15) to its present
form. Note that the function I is not known since the
noise-free waveform h+ (t) is unavailable in the presence
of the noise. We eliminate the unknown combination
I —

A, /2 by subtracting Eq. (C13) from Eq. (C12), and
Eq. (C14) from Eq. (C13).We then get three equations in-
volving only a+, b+, and c+ ..

(C29)

=1A1+ K3 2x ~3 K2 F3x ~2) &

P
1

A2+ (KI F3x ~1 K3 Flx ~3) &

2 2

P
1

A3+ (K2 F1x ~2 K1 F2x ~1) '2 2

P

(C30)

(C31)

(C32)

where p E21 ~21+ E2 u2+ K3 ~3.
Substituting Eqs. (C28) and (C29) into Eqs. (C6)—(C8)

we obtain

where

2Fax
cz

K
0

1

+3 F2x F3x
K K

F1x2

p =
X

0
2

E1 F1x F3x
E K

1x 2 K1 F1x F2x 2
2

02 + 01.
K K K

2F3x 2 K3F1x F3x
K K K

0 + 0
2 2 1

F2x F3x 2 F1x F3x
'V1

2 3 1 3

lx 3x 2 Flx F2x 2
2 ~ ~ 2 ~ ~ 3 )

1 3 1 2

(C19)

(C20)

(C21)

(C22)

(C23)

(C24)

We point out that the arbitrary parameter c+ does not
appear in the expressions for A, +, A2+, and 23+ Us-
ing Eq. (C9) we see that the optimally reconstructed
waveform h, „,+(t) is unique. The total integrated noise
5h+ in the optimally reconstructed waveform h, ,+(t) is
given by

3

5h+ = gA cr

' 1/2

(C33)

This formula gives the minimum root-mean-squared er-
ror in the reconstructed waveform h, ,+(t) due to the
noise in the detectors. In general, the error in the
reconstructed waveform will be larger due to the errors
in the determination of the source location [see Eqs.
(6.9)—(6.11)].

Similarly, let the optimal linear combination h, ,„(t)
which gives the least amount of noise in the reconstruct-
ed waveform be

In deriving the equations above, we have made use of the
identity

ho&, x(t) = ax(8, $}h1X(t)+ bx(9, $) h2X(t)

+ cx(8,$) h3X(t). (C34)
F1x K, + F2x K2 + F3x K3 0. (C25)

We solve for the parameter c+ using Eq. (C16), and we
substitute the resulting expression in Eqs. (C17) and (C18)

When the noise amplitudes are reduced to zero, h, ,x(t)
should reduce to the noise-free waveform hx(t). This
implies
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a (0,$) + b (0,$) + c (0,$) = 1. (C35)

3

h, , )&(t) = g 3;)& R;A(t + g, ). (C36)

The time delays g; are given in Eq. (C10);
i = 1,2, 3, are giveriby

Using Eqs. (4.1a), (4.1b), and (4.1c) we can express
h, ~, &&(t) in terms of the noisy detector responses R;A(t),
i = 1,2, 3, in the following way:

p, +(0,$, b0, bg) =

p, x(0, g, b0, bg) =

aa,
00

b0+ bP,
BP

B~„aw,
b,0+

(C46)

(C47)

The functions p;+(0, $,b0, bg), p;&&(0,$, b0, bg),
e;+(0,g, b0, bg), and E, x(0, $, b0, bg), i = 1,2, 3, which
are introduced in Eqs. (6.9) and (6.10) are then given by

bx F3+
~lx =

2

Cx Fl+
~2x =

3

&x F2+
K 1

Cx F2+
K3

&x F3+
Kl

bx Fl+
E2

(C37)

(C38)

(C39)

(C48)

(C49)

The derivatives of the time delays &12 and ~13 are given in
Eqs. (4.15) and (4.16).

[ h, ,~(t) —h x(t) ] dt (C40)

For brevity, we refer to a x(0,$), b
&& (0,$), and c &&(0,$)

as a x, bx, and cx, respectively. We define the root-
mean-squared error 6h x in the reconstructed waveform
as

1/2

APPENDIX D

In this Appendix we outline a method for computing
the probability distributions for the errors (b,0, b.P) in the
computed source location (0,$ ). For simplicity, we
will analyze the unfiltered version of our method; the
filtered case can be analyzed in a similar fashion.

Consider the unfiltered least-squares function L A (0,$):

F1+a +F, X, +F3 X, =O, (C41)

we obtain the coefficients for the optimal reconstruction
of the waveform h, ,x (t) as introduced in Eq. (C36):

Proceeding as we have done for the + polarization of the
wave and using the identity

L'A(0 0) =

3 2

g K;R~(t+ g, )
tl 1 = 1

0 +K o. +K o.
dt,

2O2

(D 1)

1~
1 X (K2 F3+ ~2 K3 F2+ ~3)2 2

p

=1~2X (K3 +1+ ~3 Ki +3+ o 1)2 2

p
21= —(K, F2+ o, —K2I', ~ cr2).2

p

(C42)

(C43)

(C44)

3

5hx = g A, „cr, (C45)

The total integrated noise 6h x in the optimally recon-
structed waveform h, , ~ (t) is given by

' 1/2

R,A(r + g, ) = R. , (r + g, )+. A,'(t), (D2)

where R, ( t +g; ) are the noise-free detector responses;
A;'(t) is a random process equal to the random process
A;(t + g;). By the ergodic hypothesis, the probability
distribution of the random process A,'(t) is equal to the
probability distribution of the unshifted random process
A, (r).

Substituting Eq. (D2) into Eq. (Dl), we obtain

where g'; are the time delays as defined in Appendix C.
One can formally expand the noisy detector responses
R,A(t + g;) as

1 tl 3 3 3

L~(0,$) = I g K,'K'R, (r+ g', )R (r +g )+2 g K,'K,'R, (r +g, )A'(t)+ g K 2A' 2(r) dr, .

ij =1 i j =1 i=1
(D3)

where K =K; /(Ki o.
i + K2 o.

z + Kz o~ )' and the cross terms involving two different random processes in-

tegrate out to zero since these processes are assumed to be uncorrelated.
As shown in Sec. VI and Appendix B, the errors (b0, bg) are computed using the Hessian matrix of L ~(0,$) evalu-

ated at the minimum of L ~(0,$). The elements of the Hessian matrix are second derivatives of the least-squares func-
tion with respect to the angles 0 and P as given in Eq. (Bl) of Appendix B. Using Eq. (D3), we note that the angular
dependence of L A ( 0,$ ) is due to the angular functions K and the implicit dependence of the noise-free detector
responses R, ( t + g,. ) on the angles 0 and P.

The analytic expressions for the errors b, 0 and b, P in terms of the elements of the Hessian described above are
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—H'
g~ [2 —2L'~(8, $ )]' —H'

g~ [2 —2L'~(8, $ )]'

[(H' gg
—

A, +) + H' g~]' A, +«[(H' gg
—A, ) + H' g~]'«A, '~

(H' gg
—A+) [2 —2L ~(8,$ )]'~ (H' gg

—A, ) [2 —2L A(8, $ )]'«~

[(H' gg
—A, +) + H' g~]' A, +~ [(H' gg

—
A, ) + H' g~]' A,

'

(D4)

(D5)

where

tr(H' )+ [tr(H' ) —4det(H' )]'
2

(D6)

and

tr (H '
) = H'

gg + H' ~~,

det(H' ) = H'
gg

H'
~~

—H'
g~ .

H'
gg,

H'
g4, and H'

4,4, are the elements of the Hessian
matrix of LA(8, $) evaluated at its minimum as given by
Eq. (Bl) of Appendix B.

For the moment, let us assume that the noise-free
detector responses R;(t + g, ) are known functions of
time. From Eq. (D3), we see that the element H'

g& of
the Hessian matrix evaluated at the minimum of the
least-squares function L' (~8,$) will contain two noise
terms:

f g [E,'lC' R,.(t + g, ).] AJ(t) dt,
, „,a8ay

(D7)

(DS)

The other elements H'
gg and H'

&&
will contain identical

terms with the appropriate derivatives. We will compute
the probability distributions of the random variables vg&

and 5g~.
Let p;(A;) be the probability distribution of the ran-

dom process A; ( t). As mentioned above, p,. is also the
probability distribution of A,'(t). The characteristic func-
tion y(k ) of a probability distribution p(x) is defined by

y(k) = f e '""p(x) dx. (D9)

y, (k) = (1 —2i k oz) (D12)

Using this result and expressing the time integral as a
discrete sum, the probability distribution for the random
variable 6g& can be computed by multiplying the charac-
teristic functions and by performing an inverse Fourier
transform on the product.

Let the analytic expressions for b, 8 and b P in terms of
the random processes vgg, vg&, v&&, 5gg, 5g&, 6&& be given
by

b8 = G(vgg, vg~, v~~, 5gg, 5g~, 5~~),

b P = H(vgg, vg~, v~~, 5gg, 5g~, 5~~) .

(D13)

(D14)

The precise form of the functions 6 and H can be ob-
tained by combining Eqs. (Bl) and (D3)—(D6).

The characteristic functions g&g and y&& of the proba-
bility distributions of the errors b, 8 and b,P are then given
by

If the noise in the detector responses is Gaussian, then
the random variable vg& is a linear combination of ran-
dom variables distributed with Gaussian distributions.
This is because the integral over time can be performed
as a discrete sum and at each discrete time coordinate the
value of the random process can be regarded as a random
variable if the integration step is larger than the relaxa-
tion time for the random process. The probability distri-
bution of the random process vg& can then be obtained
using Eqs. (D9)—(Dl1) with p;(A;) substituted for p(x)
and q (y).

The random variable 5g& is a linear combination of
squares of normally distributed random processes. Let
z = x where x is a normally distributed random variable
with zero mean and variance a . The characteristic func-
tion of the probability distribution of z is given by

y, (k ) = f f e '" ' 'p(x) q (y) dx dy . (D10)

If z = a x + by where a, b are constants, then the
characteristic function y, (k) is proportional to the prod-
uct of the characteristic functions g„(k) and y«(k):

Let z = f(x,y ) be a function of two random variables x
and y with probability distributions p(x) and q(y), re-
spectively. The characteristic function for the probabili-
ty distribution of the random variable z is given by

X~g(k) = f e '" pi(vgg)S'2(vga)p3(vga)

X P4(5gg)P5(5gp)P6(5~~)

'X d vgg d vs d vga d 5gg d 5gy d 5yy,

X.~(k) = f e '""S i(vgg) J 2(vga) p3(vga)

X p4(5gg) J,(5„)I
X dvgg dvg~ dv~~ d6gg d5g~ d5~~,

(D15)

(D16)

y, (k) = f f e ' '"+ «'p(x)q(y) dx dy

f e '""p(x) dx f e '" «q(y) dy

= y (ka ) y (kb) . (D 1 1)

where the functions p;, i = 1,2, 3,4, 5, 6 are the probabili-
ty distributions for their arguments. The probability dis-
tributions for 58 and b, P are obtained by inverse Fourier
transforming the expressions given in Eqs. (D15) and
(D16).



3938 YEKTA GURSEL AND MASSIMO TINTO

In the discussion above, we assumed that we knew the
noise-free detector responses R, (t + g; ). In reality, these
functions are not known. Consider a sequence of experi-
ments in which the source location and its waveforms are
held fixed. In each experiment, the realizations of the
detector noise will be different leading to slightly different
computed source locations and waveforms. After the ex-
periments are concluded, one obtains a "mean source lo-
cation" and two "mean waveforms" by averaging the
source locations and waveforms obtained in each experi-
ment. These will be the closest approximations to the
real source location and the real waveforms. In such a

case, we compute the best guesses for noise-free detector
responses using the "megn source location" and the
"mean waveforms" and we substitute these in place of the
"unknown" detector responses in the equations above.

If we have only one set of three responses, we compute
the probability distributions of the angular errors 60 and
b, (b in the following way: After the source location is
determined using our method, we fit smooth curves to the
noisy detector responses and we use these smooth curves
in place of the unknown noise-free responses in the equa-
tions above to compute the desired probability distribu-
tions.
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