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We apply the "3+1" formalism of Thorne and Macdonald to construct the linearized theory of a
general-relativistic electron-positron plasma in the early Universe. Close formal correspondence be-
tween the theory of such plasmas and that of their special-relativistic counterparts is demonstrated.
The time variation of the plasma modes due to the expansion of the background is determined for
the case of a radiation-dominated Universe; it is found that the frequencies of the basic modes red-
shift like the frequency of a free photon. A simple kinetic argument is used to justify the neglect of
creation and annihilation (collisional)' effects. The formulation is sufticiently straightforward to be
readily amenable to numerical implementation. Our results can be applied to the study of the origin
of primordial intergalactic magnetic fields, as well as to the problem of matter fluctuations in the
early Universe.

I. INTRODUCTION

Plasmas are the main constituent of the Universe.
They are found in stellar interiors, in the corona of the
Sun, in H II regions, and anywhere else that temperatures
are likely to be high and densities relatively low, such as
the inner regions of an accretion disk. In particular, the
conditions in the early Universe (from approximately
t = 10 s to the time of recombination) are such that the
"ordinary" matter content will be in the form of a plas-
ma. From approximately I; =10 to I, =1 s, the plasma
is dominated by electrons and positrons, while from I; = 1

to the time of recombination at roughly 10' s, the plas-
ma consists mostly of electrons and protons (hydrogen
ions), with an admixture of ions of other light elements.
These plasmas are believed to be in thermal equilibrium, '

or at least strongly coupled, with photons. Thus the
"classical" period prior to recombination is traditionally
called the "radiation epoch" of the Universe. However,
it could just as well be called the "plasma epoch, " as the
main dynamics are those of plasmas. Plasma phenomena
should thus be expected to play an important role in the
early history of the Universe.

Nevertheless, plasma physics has, in the past, generally
not intersected with cosmology. The dynamo effect has
been invoked to study the origin of the intergalactic mag-
netic fields. ' It has also been shown that even in

thermal equilibrium a cosmic plasma has thermal Quctua-
tions of density and current, which can give rise to mag-
netic fields; it can be speculated that effects of the earlier
epochs of the Universe cause additional (and much
larger) magnetic fields due to larger fluctuations ("tur-
bulence") of plasma density and current. Plasmas also
find application to cosmology through the quark-gluon
plasma that is expected to - exist in the very early
Universe; this medium can be studied by methods compa-
rable to ours, although in this case the pertinent field
theory is quantum chromodynamics rather than electro-
dynamics. However, such topics are only beginning to be
explored.

One possible inhibitor to the development of the theory
of plasma physics in cosmology is the role of gravity. In
the early Universe, when the rate of expansion is relative-
ly high, general relativity wi11 surely have a significant
effect on the physics. The most interesting plasma phe-
nomena involve collective effects and are strongly non-
linear even in the Newtonian or special-relativistic case;
the addition of gravity can be expected to cause even
more highly nonlinear and violent phenomena. Often a
numerical approach is the only one feasible. However,
existing plasma theories and computational codes are
based on Newtonian physics, perhaps accounting for spe-
cial relativity; how can we incorporate general-relativistic
effects into our analytic methods and our computational
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codes, without starting entirely from scratch? The solu-
tion to the problem of writing the general-relativistic
electromagnetic equations in a form similar to those fa-
miliar from Newtonian physics was provided by Thorne
and Macdonald. Although this approach does not solve
our problems for us, it gives us a firm basis for the under-
standing of general-relativistic plasmas, without requiring
that we discard the knowledge we have already gained
from the Newtonian world.

In this paper we formulate the dynamical approach of
genera1-relativistic plasmas relevant to the early
Universe, based on the "3+1" formalism of Thorne and
Macdonald, in a manner directly amenable to analysis
and simulation of nonlinear and collective plasma phe-
nomena. The plasma is assumed to exist in a spacetime
described by the standard solution for a radiation-
dominated, Friedmann-Robertson-Walker cosmology; we
do not account for the self-gravity of the matter. Section
II describes the formalism we employ. In Sec. III we
derive the basic properties of plasma waves in this sys-
tem, including the electromagnetic waves in an electron-
positron plasma, plasma oscillations, and phonons in the
plasma. Our conclusions are summarized in Sec. IV of
the paper.

II. FORMALISM

Our work is based on the "3+1"formulation of gen-
eral relativity. This approach was developed by Arno-
witt, Deser, and Misner (ADM) to study the quantiza-
tion of the gravitational field, but it has seen its most ex-
tensive application in numerical relativity. (A particu-
larly good introduction to the mathematics of the ADM
method is given by York; the reader interested in more
details than we shall present here is referred to this pa-
per. ) In the ADM formalism, spacetime is filled by a foli-
ation of three-dimensional spacelike hypersurfaces, which
form the level surfaces of a family, or congruence, of
timelike curves. The choice of these hypersurfaces con-
stitutes a particular time slicing of spacetime. The
tangent vectors to the timelike congruence specify the
universal time coordinate for this slicing', each hypersur-
face is thus a surface of constant universal time. It is ob-
vious that not every spacetime will admit such a foliation,
but we shall consider only those which do.

In this approach, the covariant formulation of general
relativity is "unrolled" to show its structure as a Cauchy
(initial-value) problem; the ten Einstein equations split
into four constraint equations, which must be satisfied on
each slice, and six dynamical equations, which describe
the change in the geometry of the hypersurface slices as
universal time passes. Thus we view spacetime as the
time history of a particular slice on which we specify our
initia1 data. This is entirely analogous to the Cauchy
problem for the Maxwell equations, in which the Poisson
equation for the electric field must be satisfied at all
times, but gives no information about time evolution,
while the time development of the field is specified by the
dynamical Maxwell equations. Just as it can be shown
that the constraints are preserved by the Maxwell equa-
tions, so can it be demonstrated that the Bianchi identi-

ties guarantee that the four constraint equations will be
preserved by the dynamical Einstein equations.

The inclusion of electromagnetism requires that the co-
variant equations of motion for the electromagnetic field
and the charged particles be decomposed into their
"3+1"forms. Ellis' performed such calculations for the
Maxwell equations, but the full program was carried out
by Thorne and Macdonald, who then applied it to the
particular case of the Kerr metric, in order to study elec-
tromagnetic effects near a rotating black hole. " We shall
present here only a brief summary of their results. Our
notation conforms to that usually employed by numerical
relativists; the notation of Thorne and Macdonald differs
slightly. Furthermore, we shaH use units in which 6 =1,
but c& l.

Consider a set of observers at rest with respect to "ab-
solute space, " that is, the space defined by the hypersur-
faces of constant universal time. Such observers are
called fiducial observers (FIDO's) by Thorne and Mac-
donald, although they are usually known as Eulerian ob-
servers to numerical relativists, in analogy with the Eu-
lerian viewpoint of Newtonian hydrodynamics. ' The
FIDO's measure their proper time ~ using clocks that
they carry with them, and they can make local measure-
ments of physical quantities such as electric and magnetic
fields; whenever we write a quantity such as E or B, it
will be understood, unless otherwise specified, to refer to
the value as measured by the FIDO's. It is important to
point out that FIDO's are not unaccelerated observers,
and their motion may become pathological, as seen by
observers keeping universal time, in the neighborhood of
a singularity; a set of observers, called freely falling ob-
servers (FFO's) by Thorne and Macdonald, can be con-
structed whose motion is always nonpathological with
respect to observers at a great distance from the singular-
ity.

The FIDO's have associated with them a four-velocity
vector field n. This vector field is, by construction, or-
thogonal to the spatial slices. In general, any vector or
vector field can be decomposed into components lying in
and normal to the slices; any vector whose orthogonal
component vanishes identically will be called a spatial
vector. This concept can be generalized to tensoes as
well; spatial vectors and tensors form the foundation of
the "3+1"split. In particular, a vector v is spatial if

while a tensor T is spatial if

T" n =0.
The most important spatial tensors are the three-

metric y„and the extrinsic curvature tensor K„; these
quantities are known in the language of differential
geometry as, respectively, the first and second fundamen-
tal forms of a surface. The three-metric describes the in-
trinsic curvature of the surface, while the extrinsic-
curvature tensor specifies the embedding of the surface
into the higher-dimensional spacetime. In the "3+1"
formalism, both y„and K„will change with universal
time as the geometry unfolds under the action of the
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dynamical Einstein equations.
It can be shown that

(—d, E' a—KE' $—&E') =e'~"VJ.(aBk ) — J', (13)

1

Q;P QP QP 3 V QP a P (3) 1—(B,B'—aKB' —ZpB') = e'—J"V (aE„), (14)

where

+af3 = 2 ( n a;p y p p' p y a )1 P — P

is the rotation of the fiducial world lines;

cr~p ,'(n~———„yp.+np „y~.) 38—y—~p

is the shear of the fiducial world lines;

aa na ~p
;p

is their acceleration, and

(4)
where V is the spatial covariant derivative operator; i.e.,
Vy;J. =0, and Sp is the Lie derivative along the vector field

P; the Lie derivative of a vector field is a generalized
directional derivative. The quantity e'J" is the antisyrn-
metric pseudotensor, through which generalized curl
operations are defined.

The equation of charge conservation can be derived
from the Maxwell equations, yielding the result .

B,p, +V;(aJ') =aKp+S&p, ,

is their expansion. The expansion has the property that

where E is the trace of the extrinsic curvature tensor,
K =K".„. We shall not consider spacetimes with rotation,
since such spacetimes do not admit a universal time coor-
dinate; thus always in our case co p=0.

The four degrees of freedom of general relativity are
accommodated by a function a and a spatial vector P.
The function o. describes the ratio of the rate of fiducial
proper time to that of universal time, i.e.,

=d~a=
dt

(9)

and so is called the lapse function. The vector P indicates
how we must "shift" our spatial coordinates as we march
from one hypersurface to the next; thus it is clear why
this vector is called the shift Uector The grav. itational ac-
celeration is determined by the lapse function; it can be
shown that

g:——a= —c Vina . (10)

V; E'=4', ,

Now that we have defined all the quantities we shall
need, we can proceed to write down our equations. %'e
shall not give their derivations here; the interested reader
is referred to Thorne and Macdonald. The equations will
closely resemble their Newtonian counterparts; this is the
great power of the "3+1"approach to general relativity,
as it allows us to make use of our intuition from Newtoni-
an physics. From a numerical point of view, this is espe-
cially advantageous; the ability to exploit well-established
techniques developed for Newtonian physics is important
for code development. For example, this formalism
greatly aided the application of relativistic hydrodynam-
ics to astrophysics. '

In this section, we shall write the fundamental equa-
tions of electrodynamics in the "3+1"formalism without
derivation', more details may be found in Thorne and
Macdonald. In our notation, the Maxwell equations be-
come�'

D". —p = —prg —2~-p+2KP+e-1S p+q E+v XBp c

(17)

where o is coordinate-free notation for the shear tensor,
and D p/D~ is the "convective derivative"

Dp 1=—(3,+v.V)p .
D~ a

(Unless otherwise specified, V in vector notation indicates
the ordinary flat-space gradient operator. )

As a special case of this formalism, we consider cosmo-
logical plasrnas. We shall assume that our spacetime is
described by a line element of the simple form

ds = cdt + A—(t)(dx +dy +dz ) . (19)

This corresponds to a homogeneous, isotropically ex-
panding Universe; the spatial coordinates are comoving
and Cartesian. Since we are interested in the early
Universe, which we assume to be dominated by radiation,
we sha11 take for the expansion factor A the standard
solution for a k =0, radiation-dominated, Friedmann-
Robertson-Walker (FRW) cosmology:

A (t) =R, (t /t, )'" . (20)

If we evaluate the constants of integration by demanding
that R, =1 at t;=1, then this reduces to A (t)=&t. It is
obvious that, for this line element,

(2la)

and

P=(0,0,0), (21b)

where p, is the charge density measured by the FIDO's.
Let v be the three-velocity vector of a particle, p its

three-momentum, and p its rest mass. Define the usual
special-relativistic boost factor I by

p=pI v .

The particle equation of motion is

V,B'=0, (12) y; = diag( A, A, A ) . (21c)
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where an overdot denotes the time derivative; in this par-
ticular case,

(23)

We can now evaluate the covariant derivatives appearing
in Eqs. (11)—(17) in order to write the Maxwell equations
and the particle equation of motion in terms of our coor-
dinates. For this metric, the calculations are short and
straightforward, and we shall present only the results.

The Maxwell equations become

and

V E=4np, ,

V.8=0
aE =RE+cd V XB—4mJ,

—1

at

aB =KB—cA VXE,—1

at

(24)

(25)

(26)

(27)
*

where V. and VX are the "ordinary" Hat-space diver-
gence and curl, in Cartesian coordinates. Equations (24)
and (25) are unchanged from their Newtonian form, be-
cause our three-metric depends only on time. The equa-
tion of charge conservation simplifies to

ape =I( p —V-J
at

The particle equation of motion reduces to

(28)

d =—', Kp+q E+ A —XBV

di 3 C
(29)

Since, in this metric, FIDO proper time and universal
time coincide, the new positions of the particles may be
computed simply from

dx =V
dt

(30)

(31)

It can be shown that for any FRW spacetime, the trace of
the extrinsic-curvature tensor is given by

E = —3(A/3),

cate the standard results of plasma theory for a "warm"
plasma in an expanding background. However, we can-
not make the usual assumption of harmonic timed depen-
dence for all quantities. It is clear that the ordinary plane
wave with time dependence of exp[i( cot)—] cannot be a
solution for the cosmological wave, because the ampli-
tude of such a wave must decay in time, and its frequency
must redshift. Thus we must seek more general solu-
tions.

A. Free photons

It is simple to derive the appropriate wave equation
from Eqs. (13) and (14); we obtain

[A B,E+(A —2AE)B,E+(E A —ARK —A K)E]
c 2

= —VXVXE— (8, —K)AJ .
4' 3

C
2

(32)

In order to proceed, we must substitute the appropriate
functions for A and K, given in our case by Eqs. (20) and
(23). (We remind the reader that we have chosen
R, =t, =1, so our time variable is normalized in that
sense. ) Let us write the electromagnetic wave equation
for a free wave in a cosmological background, by setting
J=O and requiring that V-E=O. The resulting equation
for this transverse (divergence-free) wave is

1 2, 3

c
ta, E+ —',a, E+—E =V' E . (33)

The words "transverse" and "longitudinal" will refer to
directions perpendicular and parallel to the direction of
wave propagation, respectively. This equation can be
solved by separation of variables. The spatial equation is
unchanged from the Newtonian case, yielding the usual
solution of exp(ik, r), where k; is the separation constant
(corresponding to the initial time t, ) The time .equation
is found to be Bessel's equation of order —,'. If we require
a propagating solution, then the appropriate functions
are the Hankel functions H'&'&'2 and H'& &'2,

' the one
represents a wave traveling to the right, the other a wave
traveling to the left, so we may choose either one for our
solution. Let us select H', &'2, which corresponds asymp-
totically to exp(

isn't),

and d—enote it simply by H, &2,'the
full solution is then

These are the basic equations needed for computational
work in plasma cosmology. For theoretical work, we will
often make use of the Quid approximation for the plasma;
these equations will be written as they are needed.

III. LINEAR THEORY OF COSMOLOGICAL
PLASMA WAVES

We will now derive the basic properties of general-
relativistic plasma waves in an expanding Universe. In
this paper we shall discuss only the hnear theory of
small-amplitude plasma waves. Investigation of non-
linear properties will be deferred to future papers.

We can use our general-relativistic equations to repli-

E=E et H, (2k ct' )e (34)

where e is the polarization vector of the wave, and Ep is
an arbitrary amplitude constant. We should point out
that the behavior of the Bessel.function at the origin is ir-
relevant in our case, since in the standard "hot big bang"
model, all physical properties become singular at the
time origin. Thus our choice of Bessel (or Hankel) func-
tion is somewhat arbitrary.

If we explicitly combine all the factors of time in this
solution, we find that

(35)

a dependence which is expected from the form of the
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Maxwell equations and the particular form of K in our
background model [Eq. (23)].

The asymptotic form of Eq. (34) is

d(prt) ) v=qt E~+ A ' —XB~
dt c

(44)

E-EO(x, t) exp[i (k; r 2k, e—t'~2)] .

The characteristic is described asymptotically by

(36) Linearizing and ignoring the term in v X B results in

d(prt)
dt

=qt(Er) . (45)

k,. -r —2k, ct' =0 .

However, the horizon, defined in our metric by

(37)

(38)

is found to be

L, =2ck, t'"
so we see that, asymptotically, the characteristic is just

«" &cm (40)

where x, is the comoving coordinate. This expression is
entirely analogous to that for the special-relativistic
characteristics, which are given by k (k x —ct), where ct
is the horizon length in Minkowski spacetime.

If we set ~; =k,.c in the usual way, where again the
subscript refers to the initial time, then the redshift of a
photon in our FRW background is'

(41)

(Once again, we are assuming t; = 1.) Thus we see that we
can write the time-dependent portion of the wave as

Hi g2 ( 2cot) (42)

where now co is the angular frequency of the photon at
time t. We can understand the argument of the Hankel
function in the following way. When we observe the fre-
quency of a. photon at the current epoch, the period of
time over which we carry out our measurement is very
much shorter than the cosmic time t. In particular, sup-
pose we begin our measurement at cosmic time t and
continue for an interval 6t. The argument of the asymp-
totic characteristic (37) can then be expanded around t
becoming

k;.x, —2k;c(t +5t)'~ = const —(k;clt' )5t, (43)

which justifies our assertion that, in Uacuo, the angular
frequency should be identified as the wave number times
the speed of light, just as in a Minkowski background.

B. Photons in the plasma

Electromagnetic disturbances in a plasma can be either
propagating or evanescent. Here we shall consider the
propagation of small-amplitude electromagnetic waves,
i.e., photons, in the plasma. To compute the frequencies
of these transverse waves, we start from the equation of
motion for a particle in a plasma in an expanding back-
ground:

This equation can be treated in a manner similar to its
Newtonian counterpart. Let us assume the time depen-
dence specified by Eq. (34) for the transverse part of the
electric field. Since the Hankel functions are analogous
in our background to the sinusoidal functions of Min-
kowski spacetime, and since the various Bessel functions,
when appropriately weighted, form an orthogonal set, in
terms of which we can expand an arbitrary function, this
procedure is appropriate. The spherical Bessel (or Hank-
el) functions are nothing more than combinations of tri-
gonometric functions divided by powers of their argu-
ments, so we can easily carry out the integration of Eq.
(45) to obtain

where co; is the assumed angular frequency of the wave at
the fixed initial time. This remarkable result is exactly
analogous to the relationship we obtain for the Newtoni-
an plane-wave solution, which supports our view that the
Hankel functions play the role in our background that
the circular functions play in the familiar Aat back-
grounds.

The FIDO's will define j in terms of the velocity they
measure, not the momentum. For a single particle under-
going transverse oscillations due to the inAuence of an
electromagnetic wave, we use Eq. (16) to write

d(pr) d(I v)

dt dt
(47)

The boost factor that appears here is obtained from the
usual formula

2 (48)

For a single particle which is one of an ensemble, this
boost factor is related to its particular velocity, and hence
ultimately to the temperature of the plasma. Equation
(46) then becomes

iqt '/2
v~= — Ez,PI pcs;

(49)

where p is the rest mass of the particle.
Equation (49) is applicable to transverse motions; we

have ignored the time derivative of the boost factor I
For longitudinal motions, on the other hand, the time
derivative of I is, in general, not negligible. However,
Eq. (44) does not apply for such motions, because it does
not include a term due to the pressure gradient. For a
particle, the longitudinal modes could be obtained by in-
cluding the pressure gradient in (44); this would result in
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the appearance of the "longitudinal mass" pI' familiar
from special-relativistic plasma theory. We shall, howev-
er, defer discussion of longitudinal modes until we de-
scribe the Quid approximation.

We may now compute the dielectric constant and the
dispersion relation for transverse waves. For this case,
we approximate

(50)

Inserting this into the Maxwell equation (26), and assum-
ing an e+-e plasma, gives

1/2 2/4 ne

p

(51)

It is straightforward to compute B,ET —KET for our as-
sumed time behavior; when this result and Eq. (46) are
substituted into (51), we obtain

iCO; 8~nOe t+ Er =(V XB)r,
C PI pCO;

(52)

l CO;
e(a) )Er =(V X B}r, (53)

where the dielectric constant is given by

2
COp Te=l—

CO

(54)

where no is the background number density of the parti-
cles; there is no perturbation of number density in the
transverse direction to linear order, so only the back-
ground contributes.

This reduces to

and assume that the current vector is p, v, then consisten-
cy of scale factors in all terms of (26) leads us to conclude
that

v-t ' and I -t
p

We conclude from this that

1/2
pT

(59)

(60)

Hence, E(co) does not depend explicitly on time. The
dispersion relation for the photons may be computed
from Eq. (53) in the usual manner; we use the Fourier
transform to write the curl as a cross product, and substi-
tute for curl B from Eq. (26). This result is

2I 2

e(co) Er =0, (61)
CO(.

from which we obtain

2 —CO2 +I 2C2
T pT (62)

exactly as in the Newtonian (special-relativistic) case, ex-
cept that now coT changes with time. We have shown
that the dielectric constant is independent of time; Eq.
(62} then leads us to the conclusion that co and k vary in
the same manner. Comparing this to Eq. (41), we see
that, at least for this metric, the redshift of a photon in a
plasma is the same as that for a free photon. Thus the
photon in the plasma is self-similar to the photon in a
vacuum; the three quantities copT, k, and coT "conspire"
to maintain the same redshift factor, whether the photon
is free or in a plasma. This result is nontrivial and coor-
dinate independent, and is a function of the background
model employed (but not of the equation of state of the
plasma).

8mnoe 2

pT p

We identify the electron plasma frequency as

(55)

2 =
COpe

= 4mnoe 2

(56)

which leads to
2

2COpe

pT
p

(57)

just as in the special-relativistic case, where the factor of
2 arises from the sum over electrons and positrons.

The die1ectric constant of the plasma has the same
form as in the Newtonian case, although here both the
plasma frequency co T and the photon frequency co vary
in time. Let us compute the time behavior of co T. We
note from Eq. (28) that the background number density
of the particles diminishes like the inverse volume of the
Universe, which goes like t in our case. Thus

2 t
—3/2

COpe

C. Longitudinal oscillations in an unmagnetized plasma

p po+p» (63)

where p& is a small correction to the background value.
The number density n obeys a similar equation, since
p=pn, and p, the rest mass of the particle, is an invari-
ant. Consider next the time evolution of the unperturbed
background; it is described by

Next we consider small longitudinal oscillations of a
warm plasma in an expanding background. In order to
describe the longitudinal properties of the plasma
correctly, we should start from the relativistic kinetic
(Boltzmann) equation and carry out a statistical analysis.
As we shall show later, however, it suKces for our
present purposes to employ the moment equations, treat-
ing collisional efFects through the macroscopic pressure.
Thus we shall need only the equations of matter conser-
vation and of conservation of momentum. We shall
neglect annihilation and creation of particles, an assump-
tion which will be justified below.

Represent the mass energy density by

Equations (35) and (46), as well as (44), tell us that
p- t '. lt we demand that Eq. (26) be true for all times,

3
~~Po+ Po2t

(64)
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from which we immediately conclude that

, -3/2

The conservation of momentum is given by '
D (t 'i' S) =t'"nqE —t'"VP, ,Dt

(65)

(66)

where D/Dt denotes a convective derivative, I'„ is the
pressure observed in the rest frame of the gas, and the
relativistic momentum density is

S=phr'v, (67)

where now I is the boost factor between the FIDO's and
the bulk motion of the plasma. The quantity h, the rela-
tivistic specific enthalpy, is defined as

e„P„h—:1+ +
PC PC

(68)

P„=op~,
then the pressure gradient is

(69)

with p„ the mass density as seen in the rest frame, and e„
the rest-frame internal energy. The specific enthalpy is
important for relativistic gases, since the quantity ph
plays the role of the "inertial mass" of the gas.

For a plasma which obeys an adiabatic equation of
state, that is, a plasma for which

specified by Eqs. (65) and (73) shows that the bulk boost
factor I has no particular scale dependence. Moreover,
in order for our linear analysis to be valid, we must have
I =1. Thus we will omit the factor of I from what fol-
lows; for motions at relativistic bulk velocities, it will
have an e8'ect and must be considered, of course, but
such situations are unlikely to arise in "classical" cosmol-
ogy. On the other hand, there are no restrictions on h
other than that the perturbations be small. Therefore,
our analysis is valid for highly relativistic internal
motions, i.e., temperatures, but only for nonrelativistic
bulk motions of the plasma.

Using the adiabatic relationships, we find that the mass
density is described by the equation

t'a', p, + ', ta,p, +-[ ', +(c, k-)t]p, =0. (75)

2 —2I 2
S S (76)

The electrostatic longitudinal model (i.e., plasma oscil-
lations) occurs when electrons and positrons move in the
opposite direction. To obtain the dispersion relation for
these modes, we recall that

(In deriving this equation, we have assumed that
Vp„=Vp„which should be valid in the linear regime. )

Equation (75) has exactly the same form as the wave
equation for a free photon, and thus the analogous solu-
tion. Hence, we find that the acoustic oscillations obey
the dispersion relation

VP„=hc, Vp, , (70) V E=4~qn, . (77)

where

yP„
S

pr
(71)

Using Eqs. (70) and (77) in Eq. (66), taking the diver-
gence, and dropping second-order terms in v yields, for
each particle species,

is the relativistic sound speed for such a gas.
Acoustic waves are those for which both the electrons

and positrons move in the same direction; thus the elec-
tric field vanishes, and only the pressure term in Eq. (66)
contributes. We can find the frequency of acoustic oscil-
lations by computing the divergence of Eq. (66), without
the electric-field term, and substituting into the time
derivative of the linearization of Eq. (28). For the case of
an ultrarelativistic plasma, for which we have

d 4~n, et c, t
V (t'iv )= — + k n,

dt ph; n;
(78)

n, = t "4a, i,(4', t),
where

(79)

Combining Eq. (78) with (28) produces an equation which
is again the familiar form of Bessel's equation. A
representative solution to this equation is

@=4 and P, )&pc

it follows that

2 2

(80)

4P„h=
2

t 1/2

pC

Furthermore,

(73)

c
S ~ t (74)

the sound speed is time independent for an ultrarelativis-
tic gas, even in an expanding background.

From Eq. (66), we see that the general behavior of the
momentum density is t . The velocity still obeys
v-t ', from the same reasoning as for the single-
particle case; combining this with the scale behaviors

and H, &2 is again H', &'2. Note the factor of h in the
denominator of the first term; it is the Auid analogue of
the factor of I ~ in the denominator of Eq. (57). The plas-
ma frequency that makes up the first term of (80) is never
greater than, and is typically less than, the plasma fre-.
quency of the transverse wave of Eq. (62), which deter-
mines the cutoft' frequency. From Eqs. (58) and (73), we'

see that the first term in Eq. (80) decays like t '. Equa-
tion (74) shows that the sound speed has no scale depen-
dence. We assume that it should be possible to absorb a
fixed scale factor into cuL, from which we conclude that
k -t '. Thus coL-t ', so the frequencies of the
longitudinal modes also decay in time like the redshift of
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a free photon, and like the transverse photon in the plas-
ma.

A careful treatment of the plasma from a kinetic
viewpoint would determine the Landau damping sufFered
by the longitudinal modes. Even in the special-
relativistic case, however, the momentum (velocity) in-
tegration over the distribution function involves a non-
trivial integral. For the purposes of the present paper,
the information gained from such an analysis would not
be particularly illuminating, so we shall not consider this
approach here.

D. Alfven waves

Lastly, we consider a magnetized plasma. We assume
an ambient magnetic field, which may vary in time, but is
taken to be uniform in space; we will compute the fre-
quencies of small-amplitude Alfven waves in this plasma.
For this we shall need the equations of relativistic mag-
netohydrodynamics (MHD). Special-relativistic MHD
equations are nothing new, ' ' but in our case, we must
start from the "3+1" general-relativistic MHD equa™
tions. ' ' The linearized fIuid equations for our metric
become (again omitting I )

e= I/13m dS = f t3/2a dS= —e .
dt dt

We see that if 6'=0, then the magnetic field must decay
in time as t with respect to the comoving coordi-
nates. Since the uniform ambient field should not pro-
duce an emf, this confirms our result. The orthonormal B
will be given by B,„=3B, -t, while the magnetic en-

ergy density is proportional to 8;8'-t, in accordance
with previous results. ' In our analysis, we shall neglect
the relativistic displacement current in Eq. (83). We
should point out, however, that in a fully relativistic cal-
culation, this term must be included, as it will prevent the
Alfven velocity from exceeding the speed of light.

These equations can be combined with the usual ma-
nipulations to obtain an equation for the velocity of the
Quid; the only special caution we must take is to consider
the time dependence of quantities such as the mass-
energy density and the relativistic enthalpy. The result is

a, (t'/2a, [t'/2v])+V „,XV XV Xv XV„c,'V—(V v)=0,
(91)

where

d, (t' phv)= JXB —t hc, V—p, ,

3/2
)
— t3/2 V v

The Maxwell equations we shall need are

(81)

(82)

and

v&; =v&t'~

Bo

(4~p,h)'"

(92a)

(92b)

tV XB=—B,(t'"E)+ t' 'J,1 4n.

C c

tVXE= —B,(t B) .1

c

We shall assume that

B=BO+Bi,
where B, is small compared to Bo, and similarly for E.

The condition of perfect conductivity is

E.= —e —Bk
i ijk

(83)

(85)

(86)

is the relativistic Alfven velocity. Note that V~; is time
inoariant.

The operator d, (t'/ d, [t'/ v]) can be expanded to
t B,v+ —3tB,v, and we may Fourier transform the spatial
components in the usual manner. The resulting equation
is quite complex, and has, in general, three branches, as
in the nonrelativistic case. It can be simplified, however,
depending on the relative orientations of the wave vector
k, the Quid velocity v, and the magnetic field Bo. We
consider three cases.

(i) klBO. In this case, v~~k. Equation (91) reduces for
the magnitude of v to

Converting to vector notation yields t B,u+ ,'td, v +[(c,+—V„,)k ]tv . (93)

t 1/2
vXB . (87)

This is again a form of Bessel's equation of order —,'. The
representative solution in this case takes the familiar
form

When Eqs. (84) and (87) are combined and orders
equated, we obtain v = t H i(/22' Mt)s (94)

a, (t'"B,) =0 . (88) where

f y' BdX'
dt

(89)

where dX' is the coordinate area element, and y is the
determinant of the three-metric. For our comoving coor-
dinates, dX' does not depend on time. Thus

This implies that 80-t with respect to comoving
coordinates. This result is fully consistent with Aux con-
servation. The general-relativistic Aux is'

~Ms=(c, + V (95)

2 2I 2
CO~c

—
Cg (96)

This mode corresponds to the magnetosonic, or fast
A/fuen, mode.

(ii) k~~80. This case divides into two subcases. First we
treat the case v~~80. The equation and its solution are the
same; the only difference is the frequency of the mode,
which is given here by
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This mode corresponds to a magnetized acoustic wave in
the plasma.

The second subcase is speci6ed by vt Bp. Here we ob-
tain

This is the "pure" or shear (torsional) Alfven wave.
For an arbitrary angle of propagation 8, one can de-

scribe the dispersion relation in a graphical manner by
means of the wave-normal diagram.

We see from these results that the Alfven waves in our
cosmological plasma are formally analogous to those of
their special-relativistic counterparts. All these modes,
the acoustic (both magnetized and unmagnetized), the
magnetosonic, and the Alfven waves, decay in time as
t ', so once again we find that these plasma wave fre-
quencies behave like the photon frequency. The phase Ue-

locities of the acoustic and Alfven waves are constant in
time for this model, however.

Equation (91) plays a significant role in cosmic dynamo
theory, when diffusive terms are neglected. When cosmic
fluctuations or other turbulence provides the so-called
passive (or high-P) velocity fields, we can describe the ve-
locity field v as an (almost) external function. A complete
treatment of this problem is very important, but is
beyond the scope of the present paper.

E. CoBisional efFects

We have so far neglected collisional e6'ects, which for
an electron-positron plasma include the creation and an-
nihilation of particles. This is generally valid if the plas-
ma frequency is much greater than the collision frequen-
cy. This condition should be satisfied in the early part of
the e+-e epoch, and all our above results are applicable
to this era. In the later part of the epoch, the opposite
will be true, and the plasma will establish local equilibri-
um. In this case, the plasma oscillations will disappear,
but our results which are derived from the MHD approx-
imation should continue to hold. The transition region
between the two regimes, where the plasma frequency is
comparable to the collision frequency, is likely to be quite
interesting, but will also be very complicated to treat
theoretically, and we shall neglect it here. Our purpose
in this section is to illustrate some new physics, rather
than to carry out a complete statistical analysis of the
plasma.

The general-relativistic Boltzmann equation for our
metric can be written in the form

of the "conformal" factor t ~ results in an equation for
& —= t3~ n, rather than for n alone; this is consistent with'

Eq. (28). Let us write the "conformalized" number densi-
ties of the electrons, positrons, and photons as, respec-
tively, R'„h+, and Rr. Then if we assume a form for the
collision terms analogous to their Newtonian forms, we
can write

R', =v, R'y —v8+ R', , (100a)

and

R'+ =v, & —vR, R'+, (100b)

Rr = —v, R'r+vR, R'+ . (100c)

and

R'=v & —vR'
C (101a)

= —v, R +vh (101b)

from which we see that the total conformalized number
density of quanta is conserved:

R'+ & =8'= const . (10lc)

These may be combined to yield

R'= v, (A —R') —vh

from which w obtain

(102)

& + R'—
(103)

The behavior is determined by the denominator of the in-
tegral. Since

vc 4v, A'
+ (104)&0,

we obtain two real roots, which we shall denote n, and
n2. Assuming R=R'p at tp=O, and carrying out an in-
tegration by partial fractions„gives

Here v, is the collision frequency for pair creation, v is
the speci6c frequency of annihilations, and v=t v.
We assume that v, & O, v) 0. In this model, both v, and
v vary in time.

Now set R', =0+ =R. Then Eqs. (100) simplify to

DG = collision terms,
Dt

(98)

np —n) -r
Cn) n2

np n2
(105)

where the convective derivative includes transport terms
in the phase space. The "conformalized" distribution
function is de6ned as where

np —
n&1—

6 t 3~2f (99) I",—= (v, +4kvv, )'~ (106)

where f is the particle distribution function. Except for
the presence of the "conformal" factor t, Eq. (98) has
exactly the Newtonian form.

Now take density moments of Eq. (98). The presence
R' =n2 (107)
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This demonstrates that the plasma equilibrates exponen-
tially from 6'=6'o to n =6'&, with characteristic time scale
I, '. The plasma oscillations are unaffected by the an-
nihilations and creations.

IV. CONCLUSIONS

We have developed the fundamental theory of an
electron-positron plasma in a radiation-dominated, FRW
background. We have derived an explicit solution for the
electromagnetic wave equation in such a Universe, and
have shown that it plays the role in our spacetime that is
filled by the sinusoidal functions in Minkowski spacetime.
We have written the electrodynamic and magnetohydro-
dynamic equations for such a plasma, and have studied
the linearizations of these equations. From this analysis,
we obtain several interesting conclusions. (l) The red-
shift of a photon is the same whether it is in free space or
in the plasma; thus the photon is self-similar. (2) The
propagator of the photon (as well as that of waves in plas-
mas) in this background is represented by spherical
Bessel (or Hankel) functions. (3) The frequencies of the
fundamental plasma oscillations all decay, due to the ex-
pansion of the background, in the same way in which the
photon redshifts. This conclusion depends on both the
background model and the plasma equation of state,
however, and may change later in the radiation era. (4)
Any primordial magnetic field must decay like t
with respect to comoving coordinates, during the plasma,
or radiation, epoch. This is a consequence only of the
background model and the general-relativistic elec-
tromagnetic field equations and so holds throughout the
radiation era. The energy density of the magnetic field is
proportional to t, however, in accordance with previ-
ous results. (5) Consistency of coordinate quantities is
important when general relativity is introduced into a
theory. Comoving coordinates are superior for cosmo-
logical plasmas, as for most other topics in cosmology,

because of the simplicity of the equations when expressed
in such coordinates; however, when they are used, all
physical quantities entering into the equations must be
measured with respect to them. (6) The phase velocities
of the free photon, the acoustic waves, and the Alfven
waves are constant for this particular plasma in this
background. (7) Plasma oscillations are unaffected by the
annihilation-creation collisions of electron-positron pairs.
We expect that the acoustic waves will be affected, but we
have not carried out the analysis, which requires a more
careful treatment of the relativistic kinetic theory.

This paper has barely begun the investigation of plas-
ma effects in the early Universe. Subsequent papers will
study the kinetic theory of cosmological plasmas in more
detail, and will apply the equations derived here to the
development of a computer code for the study of non-
linear effects, including the dynamo effect mentioned pre-
viously. Collisional effects (annihilation and/or creation)
can be inserted into this code by a phenomenological ap-
proach.

Applications can be made to the theory of the primor-
dial intergalactic magnetic fields, as well as to the study
of matter fluctuations in the early Universe. Different as-
sumptions about the equation of state of the plasma could
yield different results and will be considered later. In ad-
dition, the same general methods and coding techniques
can be applied to the quark-gluon plasma believed to play
a role in the very early Universe, provided appropriate
changes are made in the field equations. This area is
clearly a promising avenue for future research.
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