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We present a phase-space formulation of quantum cosmology in terms of the Wigner distribution
functions, which are useful for statistical descriptions of the quantum states of the Universe. Using
a conformal formulation of field theory in curved space we derive a set of Wheeler-DeWitt-Vlasov
equations and a generalized mass-shell condition satisfied by the Wigner functions up to the second
adiabatic order. For minisuperspaces with diagonal metric and potentials of one variable, we find

approximate solutions to these equations and exact solutions for the Bianchi type-II universe as an
example. They all possess the correct classical limits.

I. INTRODUCTION

Work on the superspace formulation' and the Hamil-
tonian quantization of general relativity in the 1960s
unshered in the first wave of activity in quantum cosmol-
ogy in the early 1970s, noted in particular by the work of
Misner and co-workers. ' Advances in the path-integral
formulation of quantum gravity in the 1970s and the sug-
gestion of Hawking on constructing the path integral
over compact positive-definite four-geometries provided
the backdrop to the seminal work of Hartle and Hawk-
ing on the wave function of the Universe. This, together
with Vilenkin's birth of the Universe scenario created
the current second wave of activity in quantum cosmolo-
gy. The Hartle-Hawking wave function g[g;, tb]—S[R „P]=N JDg, &DPe ' is obtained as a path integral
over compact Euclidean four-geometries M with metric

g,b, with compact boundary BM on which 'g, . is the
induced three-metric, and over regular Euclidean
matter-field configurations (b with values on BM. An
unanswered question in this regard concerns the criterion
one adopts in the choice of initial state for the wave func-
tion in superspace (or boundary conditions in Wheeler-
DeWitt equation). A more general framework is to think
in terms of the density matrix of the Universe

p[g,",P;g, '. , P']. Hawking and Page have separately
made such proposals. By virtue of its ability to convey
statistical information, it is, in our view, conceptually
more encompassing for the description of the quantum
states of the Universe. As such, the Hartle-Hawking
wave function P[g,",tb] is considered as a pure state
whose probability P = ~f~ enters only as the diagonal ele-
ment of p. The expectation value of any observable 0 is
then calculated as tr(pO). Since we can only measure
what happens in our specific Universe, the physically
meaningful results are phrased in terms of conditional
probabilities. '

Investigations into the statistical properties of the
quantum states of the Universe may provide some useful

clues to the questions of the origin and structure of our
Universe. Based on the condition of our present observ-
able Universe, there are only a handful of general guide-
lines one can follow in such an inquiry. ' '" We know the
present state of the Universe can be described by the
Friedmann-Robertson-Walker (FRW) universe (large-
scale homogeneity and isotropy, small-scale structures,
near-Aatness condition, vanishing of the cosmological
constant, etc). We know that an inflationary stage de-
scribed by the de Sitter model at some early time is desir-
able. We also know that whatever quantum states existed
earlier should evolve to these classical conditions, and
somewhat below the Planck scale there is a semiclassical
regime. ' (Above the Planck scale we may have to
change to a stringy and foamy picture of spacetime. ) For
these reasons we view the emergence of the FRW or de
Sitter solutions in any quantum cosmology calculation as
desirable discriminating factors. We also rely heavily on
the use of semiclassical approximations. It is against this
rather scanty backdrop that one attempts to deduce the
statistical properties of the quantum states of the
Universe. One can address a few issues of physical in-
terests. They are, for example, the following. (1) The
correlation in the coordinate and momentum variables in
the wave function, where the existence of a peak can be
viewed as registering a prediction in the Everett interpre-
tation of quantum mechanics. ' ' (2) The coherence of
the many-universe quantum state. In the Hartle-
Hawking-Page picture the degree of coherence is related
to the connectedness of four-geometries. ' Other non-
trivial topological properties of spacetime (e.g.,
wormholes, baby universes, spacetime foams' ) may also
register as mixed states in the superspace density matrix.
(3) Interaction between our Universe (system) with other
possible universes (bath) and coarse graining in these bath
variables can lead to dissipative efT'ects' observed in our
Universe. (4) The dynamics of the correlation functions,
loss of coherence, etc. , as the system evolves (depicted by
the von Neumann equation for the density matrix or the
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transport equations for the distribution functions). Prob-
lems of this nature have been studied for quantum fields
in curved space before in connection with issues such as
entropy generation in particle creation' ' and dissipa-
tion in quantum fields and semiclassical gravity. '

Though formally similar, the physical meanings of these
issues are different in quantum cosmology, where the
states in superspace refer to the configurations of the
Universe. The cause and effect of such notions and
operations as interaction (between our Universe and oth-
er universes) and averaging (over ensembles of universes)
need be further clarified. Although inquiries as such are
unlikely to yield any direct cosmological implication,
they will prove their usefulness if only we are led to ask-
ing a better set of questions, which in itself is an advance-
rnent in a field such as quantum cosmology.

A useful formalism with rather well-developed con-
cepts and techniques towards analyzing the statistical
properties of quantum systems is the use of phase-space
representations. Phase-space techniques for quantum
fields in curved space hpve been explored by a number of
authors. ' We have recently developed a covariant
theory for nonequilibrium quantum fields in Aat and
curved space ' via the Wigner function method. The
Wigner function representation used often in kinetic
theory is related to the density-matrix description in sta-
tistical mechanics and the coherent state representation
found in quantum optics problems. Unlike the density
matrix which contains full statistical information, the
Wigner function describes only the occupation number
but not the general correlation. However, if one is in-
terested only in one-particle observables, one can say that
it carries the same information as the relevant part (in the
sense of subdynamics) of the density matrix. ' The
Wigner function is suitable for problems in quantum
cosmology because it reduces to the probability distribu-
tion f(x,p) in the classical limit and contains the semi-
classical result as the first-order approximation, which
is the closest limit that observations in our classical
Universe can be extrapolated to. Halliwell has used the
Wigner function to describe the correlation in the wave
function of the Universe. Kodama attempted at a re-
formulation of the Wheeler-DeWitt equation in terms of
the Wigner functions using the ordinary Oat-space form.
But the straightforwardly extended operation of taking
the average and difference of the coordinate variables of
two points (in this case the ' 'g; ) does not generally make
sense in curved space. Minisuperspace is in general
curved and a globally defined Fourier transform is not al-
ways available. " One needs to introduce a way of
defining the covariant Wigner distribution, which in gen-
eral is a nontrivial process. This was carried out in detail
for curved spacetime in Ref. 21 by way of a Riemann
normal coordinate (RNC) expansion. Together with a
derivative expansion on the wave operators and poten-
tials we succeeded in transforming the wave equation
(Klein-Gordon for scalar fields) for quantum fields
defined at two nearby points to two equations —one a
transport equation of the Vlasov type and the other a
generalized "mass-shell" condition. These expansions are
carried out in successive adiabatic orders (in the deriva-

tives of the wave operator which contains both kinetic
and potential terms) arising from the variations of the
field and the metrics. The lowest order gives the semi-
classical WKB approximation, and with the second order
nontrivial quantum correction begins to appear.

In this paper we seek a phase-space formulation of
quantum cosmology by defining a covariant Wigner func-
tion on the phase space of the minisuperspace and deriv-
ing a set of kinetic equations associated with the
Wheeler-DeWitt equation, the Vlasov transport equation
and the generalized rriass-shell condition. From these one
can solve for the dynamics of the quantum distribution
function and discuss issues such as the quantum correc-
tions to the classical Einstein equations for the ensemble
of universes, the change of coherence and correlation in
the wave functions, the evolution of the density matrix
(via the Wheeler —DeWitt —von Neumann equation) and
other related issues on the statistical properties of quan-
tum cosmology. We shall present the basic structure of
the theory here and address these individual issues in
later communications. The paper is organized as follows:
In Sec. II we give the necessary background on quantum
cosmology in the minisuperspace formulation and the
Hartle-Hawking proposal. This is minimized to the ex-
tent that notations and definitions can be adequately un-
derstood. We will try to point out clearly at what steps
in the development arbitrary choices or approximations
are made and the motivation behind ours. In Sec. III we
introduce the Wigner function formalism in minisuper-
space models with diagonal three-metrics. Since in these
cases the minisuperspaces are conformally Aat, we do not
need to invoke the general formalism of Ref. 21 involv-
ing RNC and derivative expansions. We will instead de-
velop a conformally related formalism ' which is a
simpler generalization from Aat space. We shall derive
the Wheeler-DeWitt-Vlasov equation for this class of
metric and give approximate solutions to those cases
where the metric depends on only one parameter. For
the Bianchi type-II universe we can solve for the exact
form of the Wigner function. (The Kantowski-Sachs
universes are of the same structure and can be treated
similarly. ) In Sec. IV we construct the Wigner function
of the Universe for the general (nonconformally flat) class
of curved minisuperspaces and derive the set of Wheeler-
DeWitt-Vlasov equations. Section V contains a few re-
marks and suggestions for possible future research.

II. QUANTUM COSMOLOGY AND MINISUPERSPACE
FORMULATION

The classical action for pure gravity is

f d x+—g R+ f d x+gK'
16mG SmG aM

where M is a four-dimensional spacetirne with three-
rnetric boundary BM, and the three metric g on M in-
duces the metric g on BM. R is the scalar curvature, and
K,' is the trace of the extrinsic curvature on BM. If n' is
the normal to BM, then K;~ =

—,
' Z„(g,. ), where k stands for
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Lie derivative. (In this paper we use the sign convention
and notation of Ref. 3: except that a, b=0, 1,2, 3 for
spacetime indices; i,j=1,2, 3 for spatial indices and p, v
for minisuperspace tensor indices. )

In the standard 3+ 1 decomposition based on
constant-time spatial slicing the metric can be written in
the form

P,"=diag()(3++ &3P,/3+ —&3P, —2((1+ ) .

Then

(2.1 1)

The spatial slices are compact and homogeneous, with
0's as the invariant basis one-forms. We first consider
matrix P;. as diagonal and traceless:

ds = (N—N, N—')dt + 2N, d t dx '+ g, dx 'dx ~, (2.2) g;, =2g;„(/3 ",—06", ),

where N and N; are the lapse and shift functions. The ac-
tion (2.1) becomes

where

/3, =diag(/3++v'3/3, P+ —V3(tl, —2P+) .

Correspondingly we parametrize

f dt d xv'gN[R K, K—'~+("K,') ] (2.3)16~6 lj

(there is no boundary term), where R is the curvature of
the three-metric g; with the Levi-Civita connection.
Writing E," in the explicit form

(p'k+ —,)6'kH), H=(2')rr'(

6p 'k =diag(p+ +&3p,p ~ —V3p, —2p+ ),
to find

(2.12)

(2.13)

1 1
(2.4)

~'igj= —(p't, + ) 5'kH)(/3"; —06", )
7T

=—(p~P++p (r3 HQ) . —

= —&g (K'~ g'~K) . — (2.5)
&(g;, )

We can write (2.3) in the canonical form

15 dI; d x 7T gij +2Xi77 Ij

tJ 2 t
—[~"~, —'(vr,') —gR ]—

(2.6)

(where a vertical bar denotes covariant derivative with
respect to g,"), and introducing the canonical momenta

BL

(2.14)

H =p +p —24m gR (2.15)

One may recover to the explicit canonical form by intro-
ducing a "supertime" A. through

dQ, z= —p e (2.16)

So, writing d P+ instead of /3+ dt (similarly for
d/3 =/3 dt, d 0=0 dt ) and normalizing the space
volume to (4rr), we recover the action (2.7) as

S= J(p+dg++p d/3 HdQ) . —

Equation (2.8) is trivially satisfied, and Eq. (2.9) gives

In the classical theory, we may generate the field equa-
tions by extremizing (2.6) with respect to arbitrary varia-
tions of g;, m', X;, and N. Equivalently, we may extrem-
ize

where (2 is an arbitrary gauge [we will consider only the
case in which a=o.(Q,P+)]. The resulting equations of
motion giving (Q,P+) as functions of t) may be derived
from the Hamiltonian

(2.7)

(an overdot denotes d /dt) only with respect to those vari-
ations which respect the constraints

H=e ( —p„+p++p )
—12m e gR

plus the constraint

H=O (or pn=H ) .

(2.17)

(2.18)

=0,Ij (2.8)

(2.9)

2 N2( t)dt 2+ e
—2n(t)(e 2/3(t)

)
i j

lj (2.10)

with N and N acting as Lagrange multipliers in (2.6). On
quantization, one may treat (g;J. , vr't) as a constrained sys-
tem, or solve the constraints (2.8), (2.9) at the classical
level, thus identifying the "true" dynamical degrees of
freedom and then quantizing only those. We shall follow
the second route.

Moreover, rather than considering arbitrary g, 's (su-
perspace) we will consider only a restricted class (minisu-
perspace) of metrics of the form

(2.20)

We observe that H describes a point particle moving
on a conformally Aat space under the inAuence of an
external potential. Conformal flatness follows from /3;,
being diagonal which is not the case for the more general
models.

If we want to find the full four-dimensional geometry,
we must go back to Eqs. (2.6). From a variation with
respect to ~'j we find

dg(j 2N
(2.19)

dt g
Tracing over (2.19) we get

2N H 3 H N
v'g 2n 2 2rr 2~v'g
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And, from (2.16) and (2.18),

12' &g
iV

(2.21)

to project out the physical states. Equation (2.22) is the
Wheeler-DeWitt equation. It seems natural to quantize
by replacing pn and p+ by —i(a/aA), —i(a/aP+), re-
spectively. However, we face an operator-ordering prob-
lem because a depends on (0,f3+). As a represents only
a gauge choice, it seems natural to choose an ordering
which makes the theory conformally invariant. ' With
this choice, the operator H reads

—2a
4(d —1)

(2.23)

where is the minisuperspace covariant D'Alembertian,

a,(I,"~i~a„), (2.24)

is the minisuperspace metric [in our case
=e g„~ g„=diag( —,+, + ); for more complicated ex-
amples, see Ref. 4], d is the minisuperspace dimension
(d =3 here), E is the curvature derived from the Levi-
Civita connection of the minisuperspace metric, and
V=24m gR. Equation (2.22) is conformally invariant if
we scale 1(t as

e (1 —d /2)ay (2.25)

There are two preferred choices of e: namely, cz=O
and the one that makes V=const (Ref. 30). However, we
shall keep a arbitrary, with an eye on more complex ex-
amples which are not conformally Hat. To solve the
Wheeler-DeWitt equation for the "wave function of the
Universe" one needs to choose boundary conditions
which are closest to the physical condition. The Hartle-
Hawking prescription chooses, ' in the vacuum case,

g(Q„p+)= fDg, be (2.26)

where the path integral is taken over all four-
dimensional, Euclidean compact manifolds with metrics
g, b with boundary aM, and g, given by (0,/3+) on aM.
In the minisuperspace formulation, we restrict ourselves
to Euclidean metrics of the form (2.10), having a (remov-
able) singularity at some value of Euclidean time, when
0= + ~ (Ref. 31).

An immediate problem is to define the measure with
respect to which the integral (2.26) is taken. ' There
are no established mathematical methods to give a reli-
able evaluation of the integral (2.26) for general (A, P+),
but we may still aim to use (2.26) to find P on a particular
region of minisuperspace, which then could be used as a

Thus we may either fix N, solving (2.21) to find the fiow
of time with respect to "supertime, "or fix dt /d A, , solving
(2.21) for ¹

As for quantization, one can quantize (Q,P+) as an un-

constrained system described by the Hamiltonian H in
(2.17), and then impose the constraint (2.18),

(2.22)

boundary condition for (2.22). For example, one may
pick this region to be the limit of "small metrics"
Q~+ ~, which are assumed to reach the singularity
after short lapses.

This program is not completely free of difhculties. We
may compute (2.26) in the stationary phase approxima-
tion, that is, by first finding a classical solution satisfying
Hartle-Hawking boundary conditions, and then integrat-
ing over linearized Auctuations around it. As the volume
of the four-metric shrinks to zero, we expect the bulk in-
tegral in (2.3) to be negligible, and in the absence of sur-
face terms (2.26) would reduce to just the Gaussian in-
tegration over fluctuations. This integral, however, is
found to diverge as Q~ oo (Refs. 31 and 32). It is possi-
ble that the divergence is physical, but it is also possible
that it simply signals the breakdown of the stationary
phase method, in the same way that the WKB approxi-
rnation to the wave function diverges near a classical
turning point.

For our present concerns, the fact that one can in prin-
ciple obtain boundary conditions for g from the Hartle-
Hawking prescription is more important than the precise
formulation of those conditions. Therefore, following
Hartle and Hawking we shall adopt, as boundary condi-
tions, '

aq 0 asm + (2.27)

III. WIGNER FUNCTIONS IN CONFORMALLY
FLAT (MINISUPER) SPACES

We now rephrase the minisuperspace formulation of
quantum cosmology with the language of Wigner func-
tions. Instead of the wave function of the Universe
g(x) [x =(Q,P+)] it will prove convenient to work
directly with the density matrix p. For a pure state p fac-
torizes into

p(x, x') =g(x)g(x') (3.1)

but more general p's can also be considered. p is real,
symmetric, and satisfies the Wheeler-DeWitt equation

[,—gdR(x) —V (x)]p(x,x') =0,
where

(3.2)

2
and V (x)=e V(x)

4(d —1)

with boundary conditions

p~l, (anp, anp, annp)~0 as Q, Q ~+ M

(3.3)

(3.4)

In this section, we will consider only the conformally Aat
cases. Under a conformal transformation

2'
gp~~gp~ =e gt

the density matrix transforms as

(3.5)

(For Bianchi type-I universes g—:1 everywhere in the
a =0 gauge. )

Equations (2.22), (2.23), and (2.27) completely define
our problem. In the next section we shall reformulate it
in terms of Wigner functions in minisuperspace.
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p~p= exp
2

2
[a(x)+a(x')] p

and (3.11) and the boundary conditions suggests the an-
satz

=r(x,x )p . (3.6)

Observe that this transformation law is constructed using
the conformal properties of Eq. (3.2) and hence holds for
more general density matrices than what is assumed in
(3.1). If we define, in the gauge in which the metric of
minisuperspace is e

(3.14)

1 82 cj2
V(P) ——,——,

' V"(I3)
2 f(p, lr)=0, (3.15)

Fo(X, k ) =5(lri )f(P, a ),
where we use ~ instead of k to denote the momentum
conjugate to p, and l~l stands for the other momentum
components. Equations (3.10) and (3.11) reduce to a
one-dimensional problem

p=l (x,x')p, , (3.7)

then po is the density matrix corresponding to the a=0
gauge obeying

+ V(x) po(x, x')=0 .
ax~a~

(3.8)

The signer function formalism is most useful when Vis
a slowly varying function of x. We start from the an-
satz

po X+—,X——= e' "Fo(X,k) .IkX (3.9)

Fo is real and even in k, because of the symmetries of p.
Developing V(X+ —,'x) in powers of x, and retaining only
up to the second derivatives of V, we obtain, upon substi-
tuting back in (3.8) the Vlasov equation,

k" —
—,
' V„FD(X,k)=0~ Bk„

(3.10)

and the "mass-shell equation"

1
a2

k —V(X) ——,'H, —
—,
' V„

p v
Fo(X,k) =0 .

(3.11)

Equations (3.10) and (3.11) become specially simple in the
classical region. Since in this case the Wigner function is
strongly peaked around the classical "mass shell"
H =k 2 V= 0, we may ap—proximate Fo(X,k ) by '

Fo(X,k ) =f0(X,k )5(H) +
then Eq. (3.10) gives

(3.12)

5(H) k" + —,
' V„ax~ fo(X, k)=0 . (3.13)

Here fo may be understood as the classical distribution
function of an ensemble of universes, each obeying the
Hamiltonian constraint and the classical equations of
motion derived from H. Deviations from classical behav-
ior are related to the derivative terms in Eq. (3.11). In or-
der to analyze these terms further, we need more specific
information on the form of V. As an example, consider
the case where the potential V= V(P) depends on only
one spatial coordinate variable P in minisuperspace,
which corresponds to the anisotropy parameter I3 in
homogeneous cosmology. Consideration of Eqs. (3.10)

[g+y(p)] 2
—&(p)g f(g)=0 .

In the case in which V and V" & 0, there are two classi-
cally forbidden regions for f, when g ((—y ) & 0, and for
g) 0. If g has the form g=(v /V) —1, then for real v we
shall find g) ( —1), while we always have ( —y ) & —1. So
the region g(( —y) has no physical relevance. Thus
three diff'erent regions exist in Eq. (3.18): the classically
allowed region ( —1) (g & 0, the classically forbidden re-
gion g )0, and the transition region / =0.

In the first two cases we may use the WKB solutions to
Eq. (3.18). For g)0,

(3.18)

f(g)=&(I3)[(&g) '(g+y)]'
rX exp ( —2' ) g' (g'+ y )'

(g+ )
l/2 gl/2+—ln

)
l /2+ gl /2

(3.19)

+ —,
' V'(P) f(j3,a. ) =0 . (3.16)

Equation (3.16) implies that f depends upon a and I3 only
through the combination H=a. V(I3). I—n eff'ect (3.16)
implies that f(P, ~ ) =f (13', ir' ) whenever (/3, i~) and (P', K )

are joined by a classical trajectory. Thus Eq. (3.15)
reduces further to

tl d2
H — H ——'[(V') +2V"V] f(H)=0

2 dII " dH

(3.17)
which is consistent with (3.16), since up to the order of
our approximation V" and [( V') +2V"V) are constants.
However, in most problems the approximation that V"
and ( V') +2 V"V are constant over the whole of minisu-
perspace is too crude to yield realistic results. We may
still proceed by dividing the phase space (P,a.) in stripes
of bounded P. The stripes are chosen small enough such
that in each region we may approximate V" and
( V' +2VV") by their value at some representative point.
In this way one may solve Eq. (3.17),. as we will show
below. One may regain some global information on f by
patching the slices together in a smooth way. This corre-
sponds to assuming a quasiadiabatic evolution.

In terms of the new variables g=H/V, and coefficients
y(P)=[1+(V') /2VV"], A(P)=(2V /V"), Equation
(3.17) becomes
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For g(0,
f(k) = ~(}(}')[(~ill) '(y —ill)]'"

X sin (A, ) lg l (y lgl )

straint H =0 has been identified by Halliwell as signal-
ing a quantum to classical transition in quantum gravity.

We shall conclude this section by showing a concrete
example to which the above analysis applies. Our exam-
ple is a Bianchi type-II universe, in which [cf. Eqs. (2.10)
and (2.11)]—y arctan (3.20)

C
—4n 4~~+++3~-]V=Ce e (3.26)

In the transition region, (3.18) may be approximated by

d' —k f(k)=0
dg y

yielding
1/3 1/2

f(g) = & (P)
'Y

' 1/3 3/2 '2'
A,xla 1/3

(3.21)

(3.22)

(3.23)

So the interesting region is ~ -0, where, from Eq. (3.22),f—A (P) -const. To find the asymptotic value of A as
P~ ~, we recall that from our boundary conditions, we
must have

f de f(P, s)=p(P, P)~1 as f3~~ . (3.24)

The integral is dominated by the ~-0 region, where f is
given by (3.22), and we find

' 1/3

A(P)-2CV 'i (P) —P
y

as 13—+ oo, (3.25)

where C '= fde@,&3(g)
In the opposite limit P~ —ao, V~DO, A, =O( V), y is

bounded. For fixed a, we have g —+ —1 as P~ —~, and
from (3.20), f will oscillate with a frequency proportional
to A, '~, which increases to ao. On the other hand, f is al-
ways exponentially suppressed for high enough g. So
again f will be dominated by the values of l~ for which g
remains close to 0 as P~ —ao. The fact that the Wigner
function is appreciably different from zero only for values
of momentum satisfying the classical Hamiltonian con-

where K is the usual modified Bessel function. In Eqs.
(3.19), (3.20), and (3.22) we have introduced an arbitrary
constant A, which as the different stripes are matched
will become an arbitrary function of I3. Although f can-
not be determined further from the second-order adiabat-
ic approximation, we may still get some useful informa-
tion out of it: Recall that V=' 'g ' 'R, where ' 'g is the
determinant of the metric and ' 'R is the scalar curvature
of a three-dimensional slice of the physical spacetime. As
we approach the singularity, V will go to zero in most
(velocity dominated) models. We assume that this is
the case for P~ao, and that as V~D, A, =O(V) and y
remain bounded.

Let us consider first the approach to the singularity. If
i~ )0, as P~ ~, g=H/V-~ /V~~, and from Eq.
(3.19) we find that

where C is a constant. After a boost and an inversion in
minisuperspace, we get V= Ce '~, where a =4&3.
Clearly y =

—,
' and X(P) =2a V(P). Observe that V, A, go

to 0 or ~ as P~ oo and —oo, respectively, always with
A, =O(V). On the other hand, y, being a constant,
remains bounded. In this simple case, we may actually
solve the Klein-Gordon equation subject to the boundary
conditions (2.27). The wave function of the Universe is

g(P)=J (2C' a 'e '
) (3.27)

XJ 2C'~'a 'exp ——p+—

XJ 2C' a 'exp ——p —— . (3.28)

It is easy to show that as P~ —~, f -~~&(~' —V(P))
manifests classical behavior, which is in agreement with
our previous analysis.

IV. WHEELER-DEWITT-VLASOV EQUATION
IN MINISUPERSPACK

Our construction of Wigner functions in minisuper-
space in Sec. III made use in an essential way of confor-
mal flatness, and therefore cannot be extended to more
general models which are not conformally Aat (e.g. , those
with nondiagonal P;~) (Refs. 3 and 4). In this section we
shall show how Wigner functions can be constructed in
an arbitrary curved minisuperspace, by extending the re-
sults of Refs. 21 and 27. In these general models the con-
straints (2.8) and (2.9) are also more complex to deal with
than in the diagonal case, but we shall not consider that
side of the problem here.

As in Sec. III, the main object of interest is the density
matrix p [Eq. (3.1)] obeying the conformal Klein-Gordon
equation (3.2). We would like to give a representation of
p in the form (3.9) but we cannot do that because the
original minisuperspace does not allow for a globally
defined Fourier transform, nor is there a preferred con-
formally related manifold (e.g., Rat space) one can use as
reference. In particular, expressions such as X+x/2 in
Eq. (3.9) are undefined. We get around this difficulty by
employing particular coordinates in which we can actual-
ly add and subtract "points. " Concretely, we choose an
arbitrary point Q in minisuperspace and set up a
Riemann normal coordinate (RNC) system with origin at

where Jo is the usual Bessel function. The corresponding
Wigner function of the Universe is

f(13,ir)= f dEe
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p X+—,X—— =b, 'VM(P, P')

ikxd "k
X „ G'~'(X, k),(2')" &—g(X)

(4.1)

Q [which entails also choosing a d-bein e~~(Q),

y =0, . . .d —1]. Then we can make the ansatz '

5—"g ( Ba ) (p—~a ),
5R = —(d —2)a., —g Cla+(d —2)a a

—(d —2)g, (&a)',

5R = —2(d —1)Ua —(d —1)(d —2)(Ba)

(4.8)

(4.9)

(4.10)

where P and P' are the points whose RNC around Q are
X+x/2, b, vM is the van Vleck —Morett determinant, and
k x =k„x". The price we have to pay is that G'~' will in
general depend on the arbitrary point Q. This depen-
dence has been analyzed in Ref. 21. It turns out that the
dependence of G'~' on Q has the same order of magni-
tude as the fourth derivatives of the minisuperspace
metric. When the metric and external potential are slow-
ly varying, these high-order derivatives will be negligible.
In what follows we shall neglect terms higher than
second order in the derivatives of the metric (or poten-
tial). Defining G on non-RNC frames through the rela-
tion

C" =R" —(d —2) '(5 R —5 R"

—5"R, +5 R")

+(d —2) '(d —1) '(5"g —5"g )R

remains invariant. The d-bein e" transforms asr

e~ ~e"=e e" .y r y

(4.1 1)

(4.12)

In Eqs. (4.8)—(4.10) covariant derivatives are computed
with the original (untransformed) connection. Observe
that the Weyl tensor

ax~'
G'(X",k ~ )=G X", ky, 'ax~" (4.2)

p —+P(x,x') =exp d 2 [a(x)+a(x')]

The density matrix of the Universe p(x, x') transforms as

r~,-= r~, +6r~, (4.3)

whose variation is

we may consider G as a covariantly defined object. In
other words, both p (which is a biscalar) and G are
defined in arbitrary systems, but they are related to each
other in RNC through Eq. (4.1).

The ansatz (4.1) is, however, not particularly suitable
for the consideration of conformally related spacetimes,
since one must impose a highly nontrivial transformation
law on G in order to maintain the conformal invariance
of the theory, while one would expect a physical distribu-
tion function to have simple conformal properties. In-
stead, here we shall derive an alternative form of the con-
formal Wigner function which is particularly adapted to
conformally related spacetime. ' Let us perform a con-
formal transformation on a curved minisuperspace with
metric g„ to g„=e g„. Correspondingly we shall
have a new connection

Xp(x, x') .

On dimensional grounds, we expect the %"igner function
f to transform as

f f=e"f (4.14)

We shall assume that the function G(X, k) from Eq. (4.1)
is related to the Wigner function f in the functional form

G(X,k)=exp A X,k,
a a

' ax' ak
f'(X, k ) . (4.15)

A must be built out of elements containing no more than
two derivatives of the metric (or of f), and goes to zero in
the Rat-spacetime limit. The possibilities are

a2 83A=D" X 7 +F." X
Bk Bk " ~ Bk Bk Bk

(4.4) (4.16)

The new curvature tensors are where V„ is the covariant derivative in phase space:

R" =R" +6R" (4.5) v,G =a„G+r~.k, G . (4.17)

R =e (R+5R )

with variations

(4.6)

(4.7)

It will prove unnecessary to consider more general forms
for A. Under a conformal transformation [Eq. (4.1) un-
der Eqs. (4.13)—(4.15)], D goes to D =D+5D. Similarly,
E goes to E=E+6E and F goes to F=F+6F. The vari-
ations 6D, 6E, 6F are given by
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5DP( )
=

—,'5l" (4.18)

d 2
5~( —(d —2)(z+ — a

( )+ —,
' 5R( )

=0,

(4.20)

I5EI" )+D, 5I ", + —,
' [(5l ", ). ,+5I "( 5I )jJ =0,

(4.19)

Obviously, all metric and curvature tensors in Eqs.
(4.21)—(4.25) are those of the minisuperspace, not those
of the physical spacetime.

The last step is to And the Vlasov equation governing
the Wigner function f by applying (4.1), (4.15), (4.16), and
(4.22) —(4.24) to the Wheeler-DeWitt equation for the
wave function of the Universe. These equations can be
reduced to an explicitly conformally invariant form. The
Wheeler-DeWitt-Vlasov transport equation reads

where parentheses around indices denote symmetrization.
In order to find a realization of Eqs. (4.18)—(4.20) it is
convenient to introduce the vector

k~1 +-'V a
' ~ak„ f=0, (4.26)

U =(d —1) 'ere~. (4.21)
where V„=V „+2U„V . The potential

which under a conformal transformation goes into
U = U +a . Then a solution of Eqs. (4.18)—(4.20) is =24~2e (4.27)
DP =

—,'(5"U +5"UP
—

gP U"), (4.22)

EP )
= — (5Pi8' +5"W), —g i W" ), (4.23)

1
where ' 'g and ' 'R refer to a three-dimensional slice of
the physical spacetime [cf. Eqs. (2.16)—(2.23)] and

where

1
'4 P 24(d —1)

(4.24) V+=V+ SDP k — 2U„f .—a
(4.28)

1

2(d —1)

+3(d —2)U U —
—,'(d —2)g U (4.25)

Observe that if the d-bein e' becomes a coordinate basis,
then U would be zero and V„would reduce to a phase-
space covariant derivative Eq. (4.17).

For the generalized mass-shell condition we find

k' —V —-'a+-'V ——'C~k k
4 ' " dk (3k " P " 'Bk (3k ' "" '" r)kp v p 0 V

1 ()

4(d —2) "P ak, ak.
—Rk& a

ak
1

2(d —2)
(4.29)

where C is the Weyl tensor and

U=g"'(V„V +SDP V ),
V„=V V„+2U V„+SDl„' V

1
P~ P~ 2(d —1 )

P~

+(d —2)(U . +U U —
—,'gP U ),

R=R~ .
P

'

(4.30)

(4.31)

(4.32)

(4.33)

Even within the framework of the conformal approach,
sometimes a particular representative of a conformally
related class of metrics stands out. Such is the case, e.g. ,
for the class of conformally Oat metrics. In this situation,
a specially adapted formalism may well be simpler than
the fully conformally covariant approach. The formula-
tion presented here is devised for the general case with
emphasis on conformal and coordinate covariance,
without singling out a particular representative metric or
frame. It is in this context we believe that Eqs. (4.26) and
(4.29) should prove their usefulness.

R is identically zero in a conformally Hat minisuper-
space, if the d-bein is chosen to be e~z =e 5", and the
metric is g„ =e

The coupled Eqs. (4.26) and (4.29) describe the dynam-
ics of the Wigner function in the conformally invariant
formalism. It should be noted that the choice of confor-
mal coupling is arbitrary. Since we do not know of any
good reason to advocate for any particular type of cou-
pling (see Ref. 29), other options such as minimal cou-
pling deserve equal attention. For such more general
cases the covariant formulation of Ref. 21, rather than
the conformal formulation presented here, is useful.

V. REMARKS

In this paper we have given a phase-space formulation
of quantum cosmology in terms of the quantum distribu-
tion (Wigner) function of the Universe. The dynamics of
the Wigner function is given by a Wheeler-DeWitt-
Vlasov transport equation supplemented by a generalized
mass-shell condition. The boundary conditions can be
derived from Hartle and Hawking's proposal for the
wave function of the Universe.
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We have investigated the Wigner function dynamics up
to the second order in a derivative expansion of the min-
isuperspace metric. While a first-order expression repro-
duces the classical evolution, the second-order expansion
displays nontrivial quantum behavior. We have applied
these techniques to the class of conformaIly flat minisu-
perspaces with diagonal metrics and as an example found
specific solutions for the Bianchi type-II universe. We
also derived the transport equations for the more general
nonconformally flat models with nondiagonal metrics.

We believe the Wigner function approach has great po-
tential in the analysis of the statistical properties of quan-
tum states of the Universe. As for future work, in addi-
tion to the physical problems mentioned in the Introduc-
tion where our results can be usefully applied, a few
theoretical problems need also be tended to. They are (i)
a more accurate determination of the Hartle-Hawking or
alternative boundary conditions in the density matrix-
distribution function framework, (ii) a more thorough un-

derstanding of the meaning of statistical distributions in
superspace, (iii) a more extended discussion of the proper-
ties of the Wheeler-DeWitt-Vlasov equation derived here,
including its application to the simple but important
classes of cosmological models such as the Friedmann, de
Sitter, and mixmaster universes, and (iv) a formal
definition of Wigner functions and their physical meaning
in the full superspace. Since superspaces possesses both a
metric and a connection, this is possible in principle.
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