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In grand unified models, there are a large number of scalar bosons with masses of the order of the
unification scale. Since the masses could be an order of magnitude or so above or below the vector-
boson masses, they will affect the beta functions and thus low-energy predictions; the lack of
knowledge of the masses translates into an uncertainty in these predictions. Although the effect is

very small for a single scalar field, SO(10) models have hundreds of such fields, leading to very large
uncertainties. We analyze this effect in SO(10) models with intermediate scales, and show that all

such models have an additional uncertainty which can be as large as 4 orders of magnitude in the

proton lifetime and as large as a factor of 0.02 in sin 0 . In models with 210-dimensional represen-

tations, the weak mixing angle is uncertain by as much as 0.06. As a result, we argue that precise
calculations in SO(10) models with intermediate scales may not be possible.

The realization that the simplest grand unified theories
predicted proton decay at an experimentally accessible
rate has led many authors to attempt to calculate the pro-
ton lifetime, as well as sin 0, as precisely as possible. '

Such calculations include threshold effects (at both the
electroweak and grand unification scales), two-loop
effects, etc. Coupled with the increasing lower bound to
the proton lifetime, these calculations sufficed to rule out
the minimal (nonsupersymmetric) SU(5) model. Since
SO(10) models have a much richer phenomenology, in-
cluding n -n oscillations, right-handed currents, neutrino
masses, %~pe, etc. , there have also been attempts to cal-
culate the various mass scales of these models to high
precision. In particular, Chang et aI. calculated two-
loop corrections to a large number of symmetry-breaking
chains, and Wang extended this work to models with
intermediate-scale axions. In these works, many interest-
ing chains were "ruled out" by the two-loop analysis.

In this paper, we point out that these calculations ig-
nored an effect which drastically increases the uncertain-
ty of the results, by an amount which may exceed the
two-loop effects considered. In the absence of a much
more fundamental theory, this uncertainty cannot be re-
duced. As a result, we argue that high-precision calcula-
tions in SO(10) models are impossible.

The source of this uncertainty is the effect of su-
perheavy scalars on the beta functions used to calculate
the weak mixing angle and unification scale. All grand
unified models contain many scalars whose masses are
O(Mz). If the masses were precisely Mz, then they
would have no effect on the calculations. However, the
masses could easily be an order of magnitude or two
lower or greater than Mz, thus, they would, for values of
the energy scale greater than their masses, affect the beta
functions. Since the masses are determined by unknown
(and unknowable) parameters of the scalar potential, our

The effects of superheavy scalars, vectors, fermions, etc. ,
are all included in the A, Hall shows that the A, ; can be
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lack of knowledge of the masses translates into an uncer-
tainty in the calculations. Of course, since the effect on
the beta functions exists only for a decade or two in ener-

gy scale (and the calculations usually cover 15 decades),
this uncertainty, for a single scalar, is very small. Howev-
er, SO(10) models typically have hundreds of such sca-
lars, and hundreds of small uncertainties may add up to a
very large uncertainty.

The effect of superh|.'avy scalars on calculations in
grand unified theories was first considered by Cook,
Mahanthappa, and Sher. They considered the effects of
the scalars in a 45-dimensional representation of SU(5),
by numerical integration of the renormalization-group
equations. A much more thorough analysis, using analyt-
ic expressions, was performed by Hall, who gives general
expressions for the effects of superheavy scalars [for mod-
els which break into SU(3) X SU(2) X U(1)]. More recent-
ly, Parida looked at the effects in various SU(5) models
and in the simplest SO(10) model, but did not consider
the most interesting SO(10) models (such as those with in-

termediate scales). None of these works considered su-
persymmetric models.

%'e will follow the procedure of Hall. The reader is
referred to Ref. 5 for details. Hall defines matching func-
tions k;, which relate the various gauge couplings g; to
the grand unified coupling g&
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where B; is a constant, b;6, b;z, and b,.F are the beta func-
tions for the superheavy vector boson, scalar boson, and
fermion, respectively (the sum over all such particles is
understood). In this work, only the b;z term will concern
us. From the three equations in Eq. (1), one can derive
expressions for the unification scale and for sin 0 in the
usual way. Ignoring two-loop beta functions, Hall finds
[for the case where the grand unified model breaks into
SU(3) X SU(2) XU(1)]

TABLE I. Effects of heavy scalars on the predictions of M~
and sin 8 for models which break into SU(3) X SU(2) X U(1).
The first column gives the quantum numbers of the representa-
tion under SU(3) XSU(2) XU(1). The second and third give the
changes in M& and sin 0 as a function of a =log, o(M~/Mz).
The value of a will be different for each representation, and is
expected to be in the range —1.5 to 1.5. For example, a model
with an (8,1,0) with a =1.5 and a (1,3,0) with a = —1.5 will
have total 6 sin 0~ =0.00225.
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Representation

(3,1,——,')
(3,3,—3)

(3,1,3)

(3,2, —,')
(6, 1,——')
(8,2,—')
(3,1,——,')
(3,2, —,')
(1,2, 2)

(8, 1,0)

(1,3,0)

M~/M~0

0.97'

1.02'

1.30'

1.53'

0.83'

1.02'

1 03'

1.02'

1.07'

0.87'

1.03'

csin 0

0.0003a
—0.0013a

0.0017a

0.0015a

0.0015a

0.0010a

0.0006a
—0.0018a
—0.0006a

0.0007a
—0.0008a

where p, =80 GeV. From these, we can find a simple ex-
pression for the effects of a superheavy scalar on the pre-
diction of M& and of sin 8 . For the case in which the
gauge group breaks directly into SU(3) X SU(2) X U(1), we
obtain, for the uncertainty in M~ and sin L9„,

M~
b (in' ) = —3.36( 5b, +3b z

—8b 3 )ln
S

(4)

6 sin 8 = (0 054b
&

——0..160b2+0. 106b3 )ln
S

where the subscript S on the b; has been dropped. The
procedure is simple. For a scalar with given
SU(3) X SU(2) X U(1) quantum numbers and a given mass
one substitutes the appropriate values of the b,. and Mz
into the above equations and thus calculates the effect on
the standard predictions.

In the most interesting SO(10) models, the SO(10)
gauge group breaks into SU(4) XSU(2)L XSU(2)z. From
the evolution equations one can easily see that the corre-
sponding formulas for this case can be obtained by substi-
tuting b] ~—', b4+ —,'b2& and b3 —+b4, with corresponding
changes for the A,; [see, for example, Eq. (9) of Ref. 8].

What is a reasonable range of superheavy scalar masses
to consider? In Ref. 4, it was assumed that the masses lie
in the range Q,M& to M&, in Ref. 5, it was assumed that
they lie in the range 0.001MJ to 1000MJ. We will be
guided by the expected range of scalar masses in the stan-
dard model, but will give results in terms of
a —= log, p(Ms /M~ ) ~ Since the range of Higgs-boson
masses in the standard model spans 3 orders of magni-
tude, we will consider the most reasonable range of a to
be 0+1.5.

Our results are given in Tables I and II. We consider

TABLE II. Same as Table I for models which break into

SU(4) X SU(2) X SU(2).

Representation

(15,1,1)

(15,1,3)

(i5,3, i)
(10,2,2)

(15,2,2)

(10,3,1)

(6, 1,13

(20, 1,1)

(6,2,2)

(1,3,3)

(1 1 3)

(1,3,1)

Mx/Mx'

0.76'
1.23'
1.23'
0.87'

0.94'
1.07'
0.94'
0.57'
1.15'
1 51'
1.23'
1.23'

csin 9

0.0025a

0.0120a
—0.0150a

0.0012a
0.0006a

—0.0100a
0.0006a
0.0005a

—0.0012a
—0.0037a

0.0010a
—0.0046a

the effects of the most common representations of
SU(3) X SU(2) X U(1) and of SU(4) X SU(2)I X SU(2)~, re-
spectively, and list results for nonsupersymmetric models.
Since the only effect of supersymmetry is to triple the
beta functions (the Higgs fermions are degenerate in mass
with the Higgs scalars), the results for supersymmetric
models are found simply by replacing a with 3a. We see
that the uncertainty in sin 0 in models which break to
SU(3) X SU(2) XU(1) is (remembering that a =+1.5 is the
preferred range) typically -0.002 for each scalar repre-
sentation. Even with ten representations [a 45 of SU(5)
has six], the uncertainty would not exceed 0.02. Howev-
er, in supersyrnmetric models, the uncertainty is three
times larger, and this effect can be quite significant. We
will discuss specific models shortly.
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The most interesting SO(10) models break into
SU(4) X SU(2)L X SU(2)~, and here we see potentially
large uncertainties. For example, note the effect on the
unification scale from a (20, 1,1) representation. For
a =0+1.5, we see an uncertainty in Mz of 2.3. For a
(1,3,3) representation, the uncertainty in Mx is 1.8. Thus,
any model with both representations has an uncertainty
in Mz which can be as large as a factor of 4, which would
translate into an uncertainty in the proton lifetime of
over 2 orders of magnitude. This representation occurs
in the decomposition of the 54 of SO(10); thus all SO(10)
models with a S4 breaking the gauge symmetry will have
an additional uncertainty in the proton lifetime which
can be as large as 2 orders of magnitude. Even worse are
the effects on sin 0 in models with (15,1,3) and (15,3, 1)
representations, which occur in the decomposition of the
210 of SO(10). Here, the uncertainty in sin 8„ from both
representations is enormous, and can be as large as 0.04.
Thus, all SO(10) models with a 210 breaking the gauge
symmetry may have an additional uncertainty in sin 8
of 0.04. Since most intermediate scale SO(10) models use
either a 54 or a 210 to break the gauge symmetry, one
can see that precise calculations in such models may not
be possible. In supersymmetric SO(10) models, the un-
certainties are ridiculously large; the proton lifetime
could be changed by over 6 orders of magnitude in mod-
els with a 54, and sin 0 could be changed by over 0.12
in models with a 210. This would seem to render even
the tree-1evel calculations in such models meaningless.
However, one should note that the Higgs potential in su-
persymmetric models is very highly restricted; thus, the
mass range allowed may be much smaller (the masses
may even be completely fixed by the gauge couplings); the
calculation of such efi'ects is clearly essential to make any
meaningful predictions in supersymmetric SO(10) models.

We now turn to specific models for a discussion of the
size of the uncertainties, again choosing the range of a,
for definitiveness, to be 0 1.5. It is crucial to determine
which scalar multiplets have masses of 0 (M~) and which
do not. In models without intermediate scales, this is
straightforward, but there is much ambiguity in models
with intermediate scales. We will adopt the extended sur-
vival hypothesis of Mohapatra and Senjanovic, in which
it is assumed that only the scalars necessary for breaking
a symmetry have masses of the order of that breaking,
and that the others have masses of O(Mx). All nonsu-
persymmetric grand unified models have to be fine-tuned;
this hypothesis minimizes the amount of fine-tuning
needed. In this work, we are only considering the uncer-
tainties caused by scalars of mass 0 (Mx), and ignoring
the uncertainties caused by scalars with lower masses.
Should the extended survival hypothesis be false, then
this would simply transfer the uncertainty from the
unification scale to the intermediate scale and would not
appreciably affect the overall uncertainty (in fact, it
would probably increase it significantly since these sca-
lars would affect the evolution over a larger range). This
hypothesis gives a well-defined algorithm for determining
which scalars have masses of O(Mx). See Ref. 9 for de-
tails.

In determining the uncertainty of a specific model, we

have taken the a's for the various representations to have

values which maximize the deviation of Mz and sin 0
One might argue that the uncertainties for each of the
scalars should be added in quadrature, resulting in a
sxnaller net uncertainty. It is dificult to be precise about
the word "uncertainty" when dealing with a range of pos-
sible parameters. Our philosophy is simply to find a
range of values of Mz and sin O„which can be accom-
modated by choosing reasonable values of the parameters
and to take the size of the range as a measure of the "un-
certainty. " The reader may prefer another definition, in
which case Tables I and II will provide the necessary in-
formation.

Let us restate this crucial point. One might argue that
we have overstated the size of the uncertainty by consid-
ering the extreme values of parameter space, and that a
Monte Carlo procedure would yield much smaller uncer-
tainties. Suppose, however, that some quantity in the
standard electroweak model depended in a complicated
manner on the Higgs-boson mass, which is between 1 and
1000 GeV. How would our lack of knowledge of the
Higgs-boson mass translate into an uncertainty in this
quantity? One could do a Monte Carlo calculation which
would give an idea of the most-likely range of the quanti-
ty, but no physicist would consider the standard model to
be ruled out until the entire range had been considered.
Similarly, if one wishes to rule out an SO(10) model by
doing a high-precision calculation, then the extreme
values should be considered, as we have done. On the
other hand, if one wished to find the most likely predic-
tion of a model (to determine the approximate value of
neutron oscillations in a model, for example), then a
Monte Carlo calculation would give a better idea of the
most likely range. Since most high-precision calculations
do attempt to rule out models, we have taken the uncer-
tainty to be defined by the extreme range of parameter
space.

The results for specific models are given in Table III.
First, the maximum uncertainties in models in which
SU(5) breaks to the standard model are given [models
(a) —(e)]. Model (a) is the minimal model; the uncertain-
ties are quite small. Model (b) is the minimal supersym-
metric model; the uncertainties are small, but perhaps
not negligible. Models (c) and (d) extend the Higgs sector
to include a 45-dimensional representation; the maximum
uncertainty in the nonsupersymmetric case is fairly large
(and in agreement with the calculations of Refs. 4 and 5),
and in the supersymmetric case is so large as to make any
serious calculation hopeless. Finally, model (e) is the
popular fiipped SU(5) model; since the Higgs sector of the
model is so economical, the uncertainties can be ignored.

In model (f), SO(10) breaks directly to the standard
model. Again, the uncertainties are large enough that
they should certainly be considered in any comparison
with experiment; likewise, the supersymmetric case has
extremely large uncertainties.

Finally, we consider models with intermediate scales.
Model (g) is a model analyzed by del Aguila and Ibanez,
which contains an intermediate SU(4) XSU(2)I XSU(2)z
group. The additional uncertainty in the proton lifetime
is 3 .orders of magnitude, and in sin 0 is 0.025. The
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TABLE III. Uncertainty in the proton lifetime and sin 8 for various models (described in the text).
The models, relevant Higgs representations, and the uncertainties are given. It is assumed that a, for
each representation, lies in the range from —1.5 to 1.5.

Model

(a) minimal SU(5)
(b) minimal SUSY

SU(S)
(c) extended SU(5)
(d) extended SUSY

SU(5)
(e) flipped SU(5}
(f) minimal SO(10)

(no intermediate
scale}

(g) minimal SO{10)
[with intermediate
SU(4) X SU(2) X SU(2) group]

(h) Mohapatra and
Senjanovic model

(i) many other
intermediate
scale models

Representations

(24,5)

(24,5,5)
(24 45)

(24,45,45)
(10,10)

(45,16,10)

{54,126,10)

(54,45, 126,10)

(210,126,10, . . .)

Uncertainty in
proton lifetime

2.8

40
300

10"
2.7

50

60000

10000

Uncertainty in
sin 8

0.0027

0.0096
0.011

0.065
0.003

0.013

0.024

0.019

0.064

model of Mohapatra and Senjanovic, model (h), has an
additional SU(3) XSU(2)L X SU(2)z XU(1) intermediate
group, and has very similar uncertainties. Chang et aI.
consider a huge number of possible chains of symmetry
breaking. We note that all of their "acceptable" models
contain a 210, 126, and a 10 of Higgs fields. We will thus
consider the allowed range due to the scalars in these rep-
resentations only; the actual range will be much wider
(there may be slight differences due to the extended sur-
vival hypothesis, but as discussed above, this should not
afFect the total uncertainty). These models all have an
uncertainty which can be as large as 4 orders of magni-
tude in the proton lifetime and as large as 0.06 in sin 0
This makes clear our assertion that precise calculations in
these models are not possible.

It has been claimed' that the conventional model in
which SO(10) breaks into a left-right-symmetric group
cannot accommodate a low-energy right-handed 8'
without too large a value of sin 0~. The uncertainty dis-
cussed here would seem to allow such models, although
one would have to stretch the uncertainties as far as pos-
sible (obviously, by introducing a large number of 210's,
for example, one could get any desired result for the low-
energy predictions). In calculating the uncertainties, we
have assumed that all Higgs scalars are at the extreme
end of the range (with those that, say, increase the proton
lifetime at one end and those that decrease the proton
lifetime at the other). It is doubtful that such conditions

actually occur, the efFects are probably thus somewhat
smaller, but without information about the Higgs poten-
tial, one cannot be certain.

Thus, we conclude that the lack of knowledge of the
precise values of the scalar masses at the unification scale
introduces very large uncertainties into SO(10) calcula-
tions. In models with intermediate scales, this additional
uncertainty can be as large as 3 orders of magnitude in
the proton lifetime calculation and can be as large as 0.02
(and in models with 210-dimensional representations, as
large as 0.06) in the weak mixing angle calculation. Since
the masses depend on unmeasureable parameters of the
Higgs potential, we conclude that precise predictions in
these models are impossible. In supersymrnetric models,
the uncertainties are even larger, although the restricted
nature of the Higgs potential might make determination
of the scalar masses possible.
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