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We examine in detail a superstring-inspired SO(10) grand-unified-theory model in which the mix-
ing of Weinberg-Salam Higgs fields and large Majorana masses for right-handed neutrinos are gen-
erated by the higher-dimensional terms in the superpotential at the intermediate-scale symmetry
breaking. Fixing the Higgs-field mixing strength p as 1 TeV and assuming the usual soft terms of
broken N = 1 supergravity, we study the radiative symmetry breakings at the intermediate scale Ml
and the scale M~. Conditions and constraints for the symmetry breakings severely restrict the al-
lowed range of the supergravity parameters and give bounds on the top-quark mass m, . We have
obtained rn, 141 GeV if the identity 8 = A —1 is assumed. The low-energy particle spectra are
analyzed. All squarks and sleptons are predicted to have masses in the TeV region. Some of the
gaugino-related supersymmetric particles can be light, and lower bounds for these sparticle masses
are given. One neutral Higgs boson is light and the other Higgs bosons are all very massive () a
few TeV).

I. INTRODUCTION

Along with the boom in superstring theories, consider-
able effort has been made in recent years to construct
phenomenologically promising low-energy effective
theories based on the ten-dimensional E8 X E8 heterotic
superstring theory. ' In order to make contact with low-
energy physics in four dimensions, the six surplus dimen-
sions of the superstring must be compactified. Up to the
present, several compactification schemes have been pro-
posed. The most popular scheme is Calabi- Yau
compactification with identification of the gauge and spin
connections, which leads to four-dimensional X= 1

supersymmetric grand-unified-theory (GUT) models with
gauge group E6 X E8.. Such models have been studied ex-
tensively by many authors.

Meanwhile, Wit ten and Hull have proposed a
different compactification scheme which is based on man-
ifolds with alternative embeddings of the spin connection
in the gauge group. This scheme is called (2,0)
compactification since the resulting two-dimensional o
model on the string world sheet has (2,0) supersymmetry,
and it gives rise to SO(10) or SU(5) supersymmetric GUT
models. Such models have been investigated in Refs.
10—15. The questions are then posed whether or not the
latter compactification scheme is theoretically consistent
and brings about phenomenologically acceptable mod-
els "

A major theoretical problem is that the (2,0)
compactification may be unstable by the presence of
world-sheet instantons. ' However, it was pointed out re-
cently' that under certain conditions the destabilization
of (2,0) compactifications by instantons does not occur.
Under the present circumstances in which we do not

have sufficient knowledge of the (2,0) compactification, it
would seem premature to abandon superstring-inspired
(SI) SO(10) and SU(5) GUT models.

Phenomenological difficulties of SI SO(10) and SI SU(5)
models lie in the Higgs sector. The mixing between the
Weinberg-Salam supersymmetric Higgs doublets Hd and
H„ is essential to any supergravity model with realistic
electroweak breaking. ' ' A term pHdH„ in the efFective
superpotential generates a nontrivial minimum for the
Higgs-scalar potential at nonzero vacuum expectation
values (VEV's) of (Hd ) and (H„), and the spontaneous
symmetry breaking of SU(2)ii XU(1)r is brought about.
Also, HdH„mixing is necessary to avoid the appearance
of an unacceptable axion. Because phenomenological
superstring models do not contain bilinear terms in the
superpotential, p is thought to be provided by an
SU(3)c XSU(2)ii, XU(1)r-singlet field N which has a re-
quired Yukawa coupling NHdH„and acquires the VEV
(N):

WHANHdH„, @=A,(N) .

In the ordinary SI E6 models, chiral superfields of the 27
representation contain an SU(3 )c X SU(2) u, X U(1 ) r-
singlet field N which plays the role in Eq. (1.1). On the
other hand, in the SI SO(10) and SI SU(5) models, the
chiral fields which couple to Hd and H„should be SO(10)
and SU(5) singlets, respectively. Then we are forced to
include the singlet fields N in the SO(10) and SU(5) mod-
els. Indeed the SI SO(10) and SI SU(5) models of Refs.
12—15 accommodate these singlets. The introduction of
the X fields, however, raises a problem. Generically, the
singlet fields X have a Yukawa coupling A,X as well,
which gives unacceptable domain walls. ' In addition,
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more additional terms including the N fields are allowed
in the superpotential and we need fine-tuning of these
coupling parameters to make the models phenomenologi-
cally viable.

Recently one of the authors proposed ' an alternative
possibility of the HdH„mixing in the SI SO(10) GUT
models without introducing any singlet field X. It was re-
ported there that when a SI SO(10) GUT model has a
symmetry breaking at the intermediate scale, the mixing
of two Higgs doublets Hd and H„could arouse through
the nonrenormalizable terms in the superpotential which
may be also responsible for the solution of the light-
neutrino mass problem.

In fact, a possibility that the HdH„mixing could be
generated by the nonrenormalizable terms has already
been discussed by Kim and Nilles. With a specific mod-
el they presented an example that solves the strong CP
problem and the HdH„-mixing problem simultaneously.
They showed that p is comparable to a gravitino mass
m 3/2 On the other hand, in Ref. 2 1, p 'was linked with a
large Majorana mass m for the right-handed neutrino

and it was expected that p- m —1 TeV.
In this paper, we will elaborate the model presented in

Ref. 21 a little further and with this new version of the SI
SO(10) GUT model we will explore a scenario in which a
symmetry breaking occurs at the intermediate scale M~,
and the HdH„mixing and large Majorana masses for
right-handed neutrinos turn up from the nonrenormaliz-
able terms. We assume the usual general soft terms of
broken %=1 supergravity models and that symmetry
breakings are generated by the radiative corrections.
Then, writing down the evolution equations for the
relevant couplings and parameters in the model in one-
loop approximations, we will study in detail the con-
straints on the parameters, the allowed range for the top-
quark mass, and the low-energy particle spectra.

The plan of this paper is as follows. In Sec. II we re-
view SI SO(10) GUT models. In the analysis we make
full use of the Cartan-Weyl weight method. ' ' Our
scenario for the HdH„mixing and a specific SI SO(10)
GUT model to work with in this paper are presented in
Sec. III. Since our specific model has two U(1) gauge
symmetries, we also discuss U(1) mixings. In Sec. IV we
deal with the evolution of the coupling constants and pa-
rameters which appear in the model and study the condi-
tions imposed by the symmetry breakings both at the in-
termediate scale Mz and at the Weinberg-Salam scale
M~. In Sec. V we first discuss about the allowed regions
for the supergravity parameters which are consistent with
the conditions and constraints for the intermediate-scale
symmetry breaking (ISSB) at Mz. Then examining the
conditions for the SU(2)~XU(1)r breaking at Mii, , we
give the low-energy particle mass spectra predicted by
this model. In particular, the upper bound for the top-
quark mass and the lower bounds for gluino and two
lightest neutralino masses are given. Also the model pre-
dicts one light neutral Higgs boson whose mass is ex-
pressed by a simple formula. Section VI is devoted to
conclusions and discussions.

II. SI SO(10) GUT MODELS

In this section we review SI SO(10) GUT models by
means of the Cartan-Weyl weight method and clarify the
notations for the following analyses. The gauge fields in
the SI SO(10) models are the vector superfields which be-
long to the 45-dimensional representation of SO(10). The
matter fields, on the other hand, are expected to be the
chiral superfields in the following representations of
SO(10):

Nf 16+5(16+16*)+@10+@1 (2.1)

where Nf, 6, e, and y are non-negative integers related to
topological invariants. Xf flavors of the usual quarks
and leptons lie in the 1Vf 16.

There are two possibilities expected for the symmetry-
breaking patterns, which are

Es~G~G'~SU(3)c XU(1),
Mc Mr- Mw

Es~G~SU(3)c XU(1),

(2.2a)

(2.2b)

U=exp i gz;H;+ gx E
I J

(2.3)

where the H; and EJ. are generators of SO(10) corre-
sponding to zero roots and nonzero roots, respectively,
and the real parameters Z = (z, J and N = tx J show the
symmetry-breaking directions. The SO(10) subgroup G
in Eqs. (2.2a) and (2.2b) must contain in itself the stan-
dard gauge group G„, which is

G„=SU(3)cX SU(2) ii, X U(1)y . (2.4)

The first symmetry-breaking occurs in both (2.2a) and
(2.2b) at the compactification scale Mc through the
Hosotani mechanism, ' and G is a subgroup of SO(10).
The symmetry group G further breaks down into G' at an
intermediate scale M~ (intermediate scale scenario) in
(2.2a) or remains as an exact symmetry up to the
Weinberg-Salam scale Mii (grand desert scenario) in
(2.2b). The final symmetry breaking takes place at Mii. in
both cases.

The first stage of the symmetry breaking at Mz is due
to the compactification of the ten-dimensional E8 X E8
superstring theory to M4 XK, where K is the Calabi- Yau
manifold. We assume the existence of the new super-
string compactification which gives rise to SO(10) GUT
models. When K is multiply connected and is of the form
Eo/Gd where Ko is a simply connected Calabi-Yau mani-
fold and Gd is a discrete group, then the Hosotani mecha-
nism acts in the nontrivial direction of the Wilson loop U
and the E~XE8 gauge symmetry breaks down to G XE8.
The nontrivial U gives rise to the discrete subgroup Gd of
SO(10), which is homomorphic to Gd. If U is given, the
subgroup G and the massless superfields after the first
stage breaking are determined.

It is very convenient in the following analysis to use
the Cartan-Weyl weight method. ' ' The Wilson loop U
can be expressed as
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TABLE I. The gauge field decomposition of the 45-
dimensional representation of SO(10) under 6„=SU(3)c X
SU{2) XU(1)

Then we find from Table I the conditions

—PAO, 4a —PAO (modGd ) . (2.6)

Roots g

(01000)
(0—1011)

(00000)
(0—12—1 —1)

( —10100)

(1—1100)

(1001—1)

(8, 1,0)
{1,3,0)
(1,1,0)
(1,1,2)

{3Q 2 5
)

(3,2, —,
'

)

(3*,1,—3 )

Number of fields

8

3

2

2

12

12

6

4a —2P

4a —p
4a

(i) G =SU(4)c X SU(2) ii, XSU(2)~,

(ii) G =SU(4)c XSU(2)ii XU(1),

(2.7a)

(2.7b)

(iii) G =SU(3)c XSU(2)ii, XSU(2)z XU(1), (2.7c)

(iv) G=G;„

There are only four possible groups for G which satisfy
the conditions (2.5) and (2.6). By counting the number of
the massless gauge bosons from Table I, they are easily
found as

=SU(3)c X SU(2) ii XU(1)XU(1) . (2.7d)

The symmetry-breaking direction at the first stage, there-
fore, should preserve G„. But Table I shows that any
nonzero root direction breaks at least one of those
SU(3)c, SU(2)ii, and U(1)r symmetries. Hence we con-
clude that only the zero-root breaking, i.e., Z = Iz,. j&0
and N = Ixj. }=0, can occur at the first stage and, there-
fore, the rank of the subgroup G remains five, the same as
the rank of SO(10). Also, Gd is necessarily an Abelian
discrete group.

The breaking direction Z can be determined in the fol-
lowing way: A SO(10) gauge boson with root vector g
gains a mass which is proportional to (Z, g). Since the
gauge group G includes G„ in itself, Z must satisfy
(Z, g)=0 for the root vector g in G„. Thus we find, in
the dual basis,

Now let us consider matter fields which remain mass-
less after the action of the Hosotani mechanism. The
Nf 16 chiral superfields remain massless, because they are
protected by the index theorem. On the other hand,
among the superfields of the @10 and 5(16+16') multi-
plets, only those components which are i~variant under
the action of Gd+ Gd remain massless. Under the action
Gd all components of an irreducible representation of
SO(10) are multiplied by the same phase factor q(Ref. 11},
and the state which belongs to the weight p in SO(10) ac-
quires the phase (Z,p) under the action Gd (see Tables II
and III}.

III. A SPECIFIC MODEL WITH INTERMEDIATE
SCALE SYMMETRY BREAKING

Z = [2a,0,2a —P, a, —a jd, (2.5)
A. Scenario

where the two parameters a,p are treated up to the
modulus of the discrete group Gd.

Phenomenological constraints will further restrict the
breaking direction Z. To forbid the fast proton decay,
those gauge bosons with the representations (3',2, —', ) and
(3,2, —,') under G„should be inassive at the first stage.

%"e will pursue a possibility of HdH„mixing in the SI
SO(10) models without introducing any singlet field X.
The Higgs doublets Hd and H„must belong to @10, be-
cause the 10X 16X 16 couplings are allowed in the super-
potential but the (16) couplings are not. Hence, for the
mixing between Hd and H„, the superpotential should
comprise a term that has two 10's. But, as long as we

TABLE II. The decomposition of the 10 chiral superfields under G„=SU(3)cXSU{2)~ XU(1)~ and
field assignments. Both U{1)z and U{1)&charges and U(1) & and U(1)& charges are presented for each
field. The weights are given in terms of the Dynkin label.

Field

assignments

U{1)z and U(1)&

charges

U{1)„and U(1),
charges Weight p (z,p)

(3 1 ——)

(3* 1 ~)

(1,2, 1)

(1,2, —1)

&10
6

&10
6

6

v iS
6

&6
3' 6

3' 6

1 &6
2' 6

2' 6

(10000)

( —11000)

(0—1100)

(00—111) —2a+P
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TABLE III. The decomposition of the 16 chiral superfields in 16+16* under

G„=SU(3)cXSU(2)~XU(1}z and field assignments. Both U(1)R and U(1)z charges and U(1)~ and

U(1)& charges are presented for each field. The weights are given in terms of the Dynkin label.

Field

assignments

U(1)R and U(1)&

charges

U(1) and U(1)

charges Weight p (z,p)

(3,2, —'}

(3* 1 ——)

v'10'
l2

&1S
6

&10
12

v'6
6' 12

3' 4

(00001)

(01—110)

DR (3* 1 2) &10
6 ' 12

(0010—1) 3a —p

(1,2, —1)
+10

4

v'6
2' 4

(1 —1010) 3A

(1,1,2)

(1,1,0)

&1s &&0
6 ' 4

+1S &10
6 ' 4

s&e
12

,
v'6

12

( —101—10)

(
—11—101) —5a+P

(N„)=(N, ) . (3.1)

consider trilinear couplings in the superpotential and do
not introduce any SO(10)-singlet field, there is no possibil-
ity for the existence of such a term. Then let us consider
the higher-dimensional terms in the superpotential.
These terms have already been introduced into model
buildings to solve the neutrino mass problem: ' A large
Majorana mass is given to a right-handed neutrino vz at
the ISSB through a nonrenormalizable term of the form
16X 16X 16*X 16* in the superpotential. Similarly, if we
allow the existence of nonrenormalizable terms, we can
find a solution to the HdH„-mixing problem in the SI
SO(10) models. The mixing of the two Higgs superfields
could arouse at the ISSB through a nonrenormalizable
term of the form 10X 10X 16X 16*.

Now our scenario for the HdH„mixing is explained. '

(1) The symmetry group G is broken spontaneously at
an intermediate scale MI [thus we adopt the intermediate
scale scenario of Eq. (2.2a)]. The residual gauge group G'
is just the one for the standard model, i.e., O'=G„. In-
cidentally, the mass of the extra neutral vector boson Z'
which exists in the usual SO(10) GUT models is expected
to be very massive due to the ISSB, and the well-known
Z-Z' mixing problem is avoided.

(2) The ISSB is caused by Nz and its conjugate N~ in
5(16+16*)having the equal vacuum expectation values
(VEV's)

0 ( 1/Mc ) 10X 10X 16X 16*

yields Hd H„mixing of the form

((N~ ) (N~ ) /Mc)HdH„,

(3.3)

(3.4)

which can be written as pHd H„with
p= (Nz ) (Nz ) /Mc. The coupling strength p is expect-
ed to be of the same order as m, say, 10 GeV, which is

considerably large compared to the value expected in the
usual X= 1 softly broken supergravity models.

dimensional terms appear in the superpotential somehow
by the yet-unexplained mechanism.

(4) At the ISSB a right-handed neutrino vz gains a
large Majorana mass through a term of the form

O(1/Mc)16X16X16*X16*—&((N„) /Mc)v~ Xv~ .

(3.2)

Thus v„obtains a mass I —(Nz ) /Mc. If the
R

Dirac-neutrino mass is of the same order as the up-quark
mass, say, 5 MeV (Ref. 27), then through the "seesaw"
mechanism a large Majorana mass I —10 GeV gives

a neutrino mass m —10 eV which is within the present
experimental limit.

(4) When Nz and Nz get VEV's at the ISSB, a non-
renormalizable term of the form

Here X~ denotes a state in the 16 part of 16+16* with
the same quantum numbers of the right-handed sneutrino
v~. The two VEV's should be equal, since otherwise they
would give nonvanishing contributions to the D terms in
the scalar potential and would break supersymmetry ear-
lier than desired.

(3) We will assume that the nonrenormalizable higher-

B. A specific SI SO(10) GUT model

We will now pick up a specific SI SO(10) model and
demonstrate how plausibly the above scenario comes
about. Among the four possible groups for G in Eqs.
(2.7a) —(2.7d), the first two [(i) and (ii)] are discarded by
the following reasons: In both cases the
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SU(3)c X SU(2) ii X U(l ) r singlet Nz from 5(16+16 ),
which is responsible for the ISSB and, therefore, should
remain massless below Mc, lies in the same 4 of SU(4)c
as a colored triplet. If N~ is massless, this extra colored
triplet is also massless and could bring about the fast pro-
ton decay. Besides, the models built with the gauge
group (i) or (ii) give rather large one-loop predictions for
sin 6+. Studying next the remaining two groups for 6
closely, we finally choose the last one, i.e., case (iv), which
gives a more preferable prediction for sin 0~ than case
(iii). The breaking direction Z which yields G =G;„ is
in the form of Eq. (2.5) with the conditions

which are easily derived from Table I and the fact that
the gauge bosons outside of 6;„must be massive. The
appropriate discrete subgroup Gd is thus given by

Gd=Z XZ„(m@4, 4a%2/3, 4a@P) . (3.5b)

Once the specific group 6;„has been chosen, our next
task is to find the matter fields which remain massless
modes after the Hosotani breaking at Mz. As stated in
Sec. II, the N& chiral superfields remain massless. Fur-
thermore, we need at least a pair of Higgs doublets Hd
and H„ from e10 and a pair of superfields Nz and Nz
from 5( 16+16' ) to be massless mode below Mc.

Under the action Gd+Gd, a component with weight p
in a 10 multiplet obtains the phase bio+(Z, p), where bio
is the phase acquired by the 10 under Gd. From the
values of (Z,p) in Table II and the conditions in Eq.
(3.5a) for G;„,we find that, once one component in a 10
multiplet is set to be a massless mode, all other com-
ponents in the same 10 become massive modes. Hence
the required Higgs doublets Hd and H„cannot belong to
the same 10 multiplet and they come from different 10's
(Ref. 13). Also the color-triplet fields g and g from the 10
to which the light Higgs bosons belong turn out to be
massive modes and, therefore, the fast proton decays
through these g-quark exchange are automatically avoid-
ed.

In order to determine the other massless matter fields,
we must consider the symmetry-breaking mechanism. It
is an interesting and popular idea in the low-energy
supergravity models that the symmetry breakings are
triggered by the radiative corrections. We follow the
same lines and assume that one has the usual general soft
terms of N=1 supergravity models, i.e., the universal
mass m for all scalars and M for all gauginos and trilinear
scalar couplings (parametrized by the parameter A) at
the compactification scale Mc. Below M&, these scalar
masses, gaugino masses, and various coupling parameters
evolve in accordance with the renormalization-group
(RG) equations.

At the intermediate scale Ml, the symmetry breaking
will be generated by N& and N& having large VEV's.
The relevant parts of the tree-level scalar potential are of
the form

4aAO, —PRO, 4a —2PAO, 4a —P&0 (modGd ),
(3.5a)

V=m~ N~+m~ N—li +c(NIi N—
R )

+( lfl /Mc )(Ng Ng +Ng Nz (3.6)

where the third term is the D -term contribution, and the
constant c is positive and depends on the two U(1)
charges of Nii and Nz which will be given later [see Eq.
(3.22)]. The last term results from a nonrenormalizable
term of the form (f/Mc)NIiNIi in the superpotential,
and this term becomes relevant when Nz and Nz have
large VEV's. The higher-dimensional terms are also pos-
sible, but they are expected to give much smaller contri-
bution to the potential than the last term and are neglect-
ed.

Differentiating V by Nz and Nz, we find the condi-
tion for V having an extremum at nonzero VEV's of
( NIi ) = (Nii ) [see Eq. (3.1)] as follows:

m~ =m —= —3(
~f ~ /Mc)(N„) (3.7a)

In order for this extremum to be a minimum, we further
need

(lfl'/Mc)(N &'&2c . (3.7b)

In our scenario
~ f ~ (NIi ) /Mc is presumed to be of the

same order as the Majorana-neutrino mass m —10

GeV. Hence, if the constants f and c are of the order
one, the condition Eq. (3.7b) is well satisfied, and the
right-hand side (RHS) of Eq. (3.7a) is negative and ex-
pected to be around —10 GeV . Thus, in order to gen-
erate the ISSB, the both scalar masses m~ and m —,

R

which are assumed to be positive and equal to the other
scalar masses at the compactification scale M~, must be
driven to negative values at the intermediate energies.
Accordingly, we need to provide appropriate superfields
which have Yukawa couplings to Nz and Nz, and those
fields should be massless modes at the first stage.

As for the massless superfields in 5(16+16*),we re-
peat the same analysis as we did for the @10. Keeping in
mind this time that the states in 16 acquire an equal
phase under Gd, we find from Table III the massless
modes in 16 (which should include N„) and the condi-
tions. There are three possible cases:

8a=2P (mod Gd)+conditions in Eq. (3.5a);

N~, EL,N

8a=P (modGd)+conditions in Eq. (3.5a),

(3.8b)

(3.8c)

where we use the notation (NL, EL ) and Dz to denote the
SU(2)ii-doublet and color-triplet states in the 16 part of
16+16* with quantum numbers of (vr, eI ) and dpi, re-
spectively. We will then examine the ISSB for the above
three cases in Eqs. (3.8a) —(3.8c).

In the cases (a) and (b), the only possible G-invariant

8a&P, 8a%2P (modGd )+conditions in Eq. (3.5a);
(3.8a)
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superpotential which contains Nz are of the form

W' "b'= ~XI.N Hi i R u (3.9)

W =h, H„,Qt~ +xL 'N~ H„2+PL'N~ Hd2

+possible nonrenormalizable terms,

(3.14)
where L; represents the SU(2)~ lepton doublet (vL, eL )

t t

from the ith family, and A,; is the Yukawa coupling. If
(Nz ) develops, lepton doublets will in general acquire
intermediate scale masses. So we need A,; =0. In other
words, Nz should not couple to usual leptons. Then, the
running mass mN cannot be driven to negative values.

R

Besides, there exists no 6-invariant superpotential for
N„, and, thus, mz—remains positive. The cases (a) and

R

(b), therefore, do not work.
On the other hand, in the case (c), the superpotential

can have the following terms containing Nz and Nz.

where Q denotes the superfield for the left-handed quark
doublet (tL, bt ). We only take into account the Yukawa
coupling for the top quark with the coupling constant h„
and the Yukawa coupling for other quarks and leptons
are neglected. Also we omit the index 2 for the Yukawa
coupling constants K2 and K2.

The spontaneous symmetry breaking takes place at the
intermediate scale Mz. Scalar components of N~ and N~
superfields acquire large VEV's and superfields I.', I.',
H„2, and Hd2 become very massive. Hence the model
has, below MI, the gauge group

W'"= g ~~L'N~H„J+ g ILL'N~Hdj. ,
J J

(3.10)
G'=SU(3)c XSU(2)~XU(1)r

and the massless matter modes

(3.15)

where L' and L' are the SU(2)~ lepton doublets from
16+16 Kj and K. are the Yukawa coupling constants,
and we have introduced more Higgs doublets H„and
Hd (j = 1,2, . . . ). Indeed the Yukawa couplings in Eq.
(3.10) can drive the running masses of m~ and m —to

R NR

negative values and bring about the ISSB. The case (c)
works for our scenario. However, a plausible model
should have at least one pair of light Higgs doublets H„
and Hd which break the electroweak symmetry at the
scale Mz. Those Higgs doublets cannot couple to N~
and N~, because they would gain intermediate scale
masses once (Nz ) and (N~ ) develop. We will intro-
duce only one such pair into our specific model. We as-
sign j=1 for them and assume

K =K =0 for j = 1 .J J (3.11)

In addition the model should have other Higgs doublets
H„and Hd (j ~2) wh. ich do co. uple to Nz and Nz. So
we need a~4.

Now we present a specific SI SO(10) model with which
the possibility of the scenario discussed in Sec. III A will
be pursued in the following. %'e introduce one pair of
mirror multiplets 16+16* (5=1), and four 10 (@=4).
This is due to the fact that we will obtain the more
preferable value for sin 0~ when the model has fewer
matter fields aside from Nf 16. The first symmetry break-
ing occurs at Mc by the Hosotani mechanism and the
breaking direction Z satisfies the conditions in Eq. (3.8c).
Below Mc the model has the gauge group

Nf 16, H„l,Hd, . (3.16)

C. U(l) mixings

all i E16

i 2 i 2 Ip

all i E16
(3.17a)

and

all i E10
(Qg )'= g (Qc)'= —', .

all i E10
(3.17b)

We list in Tables II and III the U(1)~ and U(1)c charges
of the fields in 10- and 16-dimensional representations.
Next we define the quantities

u = & (Qz' )' e = X (Qc')' r = X Qz' Qc (3.18)

It is well known that in SI GUT models with two or
more U(1) gauge groups, mixing between U(1)'s may
occur under renormalization. Since our specific model
has two U(1)'s, we must choose the appropriate U(1) gen-
erators so that no mixing arises among them. These gen-
erators are uniquely determined by the contents of mass-
less chiral superfields. The analysis of evolution equa-
tions for U(1) gauge couplings should be done for those
which correspond to properly chosen U(1) generators.

Let us first take U(1)z and U(1)c for our two U(1)'s,
where U(1)~ is the U(1) subgroup of SU(2)z and U(l)c is
the one which appears in the maximal decomposition of
SU(4)c, i.e., SU(4)cDSU(3)c XU(1)c. The U(1)z and
U(1)c charges Q~ and Qc of massless chiral superfields
are normalized as follows:

G =G;„=SU(3)cXSU(2)~XU(l)

the massless matter modes

Nf 16,
N~, L', N~, and I-' from 16+16*,

H„1,Hd 1,H„2, and Hd2 from four 10's,

and the superpotential

(3.12)

(3.13)

with i running through all massless chiral superfields.
When rAO, two U(1)'s mix under renormalization.
Indeed if aII chiral superfields in a complete representation
take part in the summation for r, their contributions to r
sum up to zero. But in the model concerned here only a
few components in four 10's and 16+16 remain mass-
less below M& and these "survivors" will give nonvanish-
ing r = —5V6/12.

The appropriate U(1)'s, which we denote as U(1)„and
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U(1)z, are obtained by rotating the old ones:

U(1)~ =U(1)icos/ —U(1)csin/,

U(1)~ =U(1)zsing+U(1)ccosg .
(3.19)

K —K (4.1e)

as discussed in Sec. III, NR and Nz should have equal
VEV's of (Nz ) = (Nz ) at the intermediate scale MI. So
we assume, at the scale Mc,

The angle P is determined by the condition that the prod-
ucts of two new U(l) charges Q„' and Qz of massless
chiral superfields add up to zero, i.e., g; Q„'Q~ =0. This
condition can be written as

tan2$=— 2T
(3.20)

and we obtain tan2$ =2&6. If P is chosen to be
0~ P ~ a./2, we find

cosP =&3/5, sing =&2/5 . (3.21)

Now it is an easy task to calculate the new U(1)z and
U(1)z charges for the components in 10 and 16 represen-
tations and they are listed also in Tables II and III.

Referring to the U(1)„and U(1)~ charges of the fields

N~ and N~ in Table III, we find that the positive con-
stant c in the third term of Eq. (3.6) is given by

c =-,'(g i~+ —,',g'„), (3.22)

where g, z and g&z are the gauge coupling constants for
U(1)„and U(1)~, respectively.

IV. KVOI.UTION OF COUPI. INGS AND PARAMETERS

Various coupling constants and parameters which ap-
pear in the model change with energy according to the
RG equations. ' ' ' ' For completeness the relevant one-
loop RG equations for these parameters from the scale
M~ to Mr and from Mr to Mw are shown in Appendixes
A and 8, respectively. Solving these coupled differential
equations, we also give in the Appendixes the expressions
for all the relevant renormalized couplings and parame-
ters.

At the compactification scale M& we take the usual
boundary conditions, i.e., the unification of all gauge
coupling constants, the universal mass M for all gauginos
and m for all scalars, and the universal A for all soft-
breaking trilinear couplings:

g2 —g2 5g2 5 (4.1a)

m; =m (i =all scalars),

(4. lb)

(4.1c)

A, = A, =A (4. ld)

g3 g2 g $ g and g &z are gauge coupling constants,
M3 M2 M] g and M]g are gaugino masses for

SU(3 )c, SU(2 ) ii, U(1 ) z, and U( 1 )z, respectively. The
appearance of the factor —', in Eq. (4.1a) is due to our nor-
malization convention of two U(1) charges in Eqs. (3.17a)
and (3.17b). The parameters A„A, and A „are the tri-
linear scalar couplings which correspond to the Yukawa
couplings for the t quark, Nz, and Nz, respectively. The
Yukawa coupling constants h„K, and K at the scale M&
cannot be fixed and remain as free parameters. However,

With this assumption the scalar masses mN and m—
R NR

remain equal during the evolution from the scale Mc to
MI, and the equal VEV's of (N„)= (N„) are developed
at Mr.

A. The steinberg angle sin 8~

The values of Mc, Mr and the Weinberg angle sin Ow
are closely interconnected. At the intermediate scale Mr,
the gauge symmetry U(1)„XU(l )~ is spontaneously bro-
ken down to U(1)r. In the model concerned, the weak
hypercharge Y is related to the U(1) ~ and U(1)~ charges
X~ and X~ as

(4.2)

and, hence, the U(1)r gauge coupling constant gi at the
scale Mr is given by

gz =
—,', g&„+—",,g&z at=E =Mr . (4 3)

Now using Eq. (4.3) and the evolution equations for the
gauge coupling constants above and below Mr which are
listed in Eqs. (A40) and (827) together with the f3-
function coefficients b; (i =2, 1 A, and 18) and b,' (j=2
and F) listed in Eqs. (A4) and (82), we find that the Wein-
berg angle sin Ow at the scale Mw is expressed as

a, (Mw) Mc MI
sin 8' (M~)= —— 61n +ln

4m w w

(4.4)

where a, ( = e /4m ) is the electromagnetic coupling and
it is estimated that cz, = », at E =Mw=80 GeV. Also
the SU(3 )c gauge coupling constant a 3

=g 3 /4m at the
scale Mw is expressed as

a3(Mii, )
'= —,'a, (Mii, )

4m

c Mr
18 ln —3 ln

w

(4.5)

It is interesting to note here that the predictions of both
sin 8ii, (Mii ) and a3(Mii, ) in one-loop approximations do
not depend on the number of families Nf. This is one of
the features of SO(10) GUT models.

In Table IV we show the predicted values of
sin 8',(Mii ) and a3(Mii )

' for several choices of Mc
and Mi when Mii is fixed at 80 GeV and a, (Mii ) =+,,',
is used. The numerical values of sin 8ii, (Mii ) tend to in-

crease as Mr takes smaller values while the values of
a3(M~) ' show the opposite tendency. The recent
analysis of existing data on the weak neutral-current
events and the 8' and Z masses gives
sin 8~(Mii ) =0.230+0.0048. For the color interaction,
it has been estimated that a3(Micr)=0. 12 o'op corre-
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Mc (GeV) M, (GeV) sin Ow(Mw) CT3(Mw )

TABLE IV. Predicted values of sin 6jw and n3 ' at Mw (=80
CseV) for several choices of M& and MI.

Restrictions (4.7a) and (4.7b) should be observed from the
scale Mc to MI, while (4.7c) must be assured from Mc all
the way down to M~. Especially, at the compactification
scale Mc the above restrictions reduce to

10"
10'

15

1p14

0.2252
0.2266
0.2280

5.96
5.41
4.86

(4.8)

1p16
1015
10'4
1p13

0.2352
0.2366
0.2380

8.70
8.16
7.61

lp15
10'4
10"
1p12

0.2452
0.2466
0.2481

11.45
10.90
10.35

M~ = 1.5 X 10' GeV,

MI =1.0X 10' GeV,

M~=80 GeV,

(4.6)

for the numerical analysis in the next section. These in-
puts give sin 9~(M~) =0.235 and a3(M~) '=7.6

sponding to the QCD scale AQcD 150+ Ioo MeV.
Taking into account the fact that the evolution equa-

tions for the gauge coupling constants used here are those
which have been obtained by one-loop approximations to
the P functions and by replacing all threshold e6'ects of
heavy particles with 0 functions, it may be reasonable to
regard the model as phenornenologically acceptable if its
predicted values of sin 0~(M~) and a3(M~) ' fall into
the following regions: 0.222(sin 8~(M~)(0.238 and
7.5(a3(M~) '(10. These criteria restrict the allowed
domain for the scale Mc and MI quite severely, which is
seen from Table IV. The compactification scale Mc must
be around 10' GeV. With M& fixed at 10' GeV, the
preferable value of sin 8~(M~) is obtained if MI takes
the value closer to M&. However, we must keep in mind
that we are here considering the model with an ISSB
which is generated by radiative corrections. If two scales
M& and MI are too close, then we need large Yukawa
couplings v and ~ in order to drive the scalar masses M&

R
and m —quickly to negative values. And they mayXR

exceed the limits for the justification of perturbative
(one-loop) approximations. After these considerations,
we choose

C. Symmetry breaking at the scale MI

The ISSB is generated by radiative corrections. Scalar
masses n& and m —are driven to negative values and

the scalar potential will have a nontrivial minimum with
nonzero VEV's (Nz &

= (N~ &, which breaks U(1)„
X U(l )~ symmetry down to U(1)„.

The expression of the running mass I& is given in
R

Appendix A. Its behavior with energy depends on the in-
put parameters M, m, 3, and Y, ( Mc)=~( Mc) /(4')
The conditions which must be satisfied for the symmetry
breaking at MI have been presented in Eqs. (3.7a) and
(3.7b). The condition (3.7b) is believed to be well
satisfied, and the RHS of (3.7a) is expected to be around—10 GeV . For definiteness we take, in the following
numerical analysis,

m~ (MI ) =m~—(MI ) = —10 GeV (4.9)

for the condition of the ISSB. Equation (4.9) then enables
us to solve Y,(Mc) as a function of the parameters M, m,
and A. In fact, in the next section we will assign some
sets of numerical values to M, m, and 3 and calculate the
necessary Y (Mc) for the symmetry breaking at MI.
However, we should keep in mind that the acquired
Y,(Mc ) must be an appropriate one in the sense that it
satisfies the constraint (4.7a) and at the same time is small
enough to be justified for perturbative approximations.

The gauge symmetry U(l)z XU(1)z breaks into U(1)r
at the intermediate scale MI. The U(1)r gauge coupling
constant gr at MI is expressed in terms of U(l)~ and
U(1)~ couplings g, „and g&~ as given in Eq. (4.3). Now
let us consider the mass Mz which the gaugino A, z, a
superpartner of the U(1)r gauge boson, acquires at M~.

At the scale MI the scalar fields X~ and N~ get the
equal VEV's (N~ &

= (N~ &, and U(1)„and U(1)~ vector
superfields Vz and Vz obtain masses. First we study the
situation in which the supersymmetry is an exact symme-
try. Then the 2X2 mass matrix for Vz and Vz fields is
expressed as

B. Constraints
2 6

ging 1B

There are some restrictions which should be obeyed by
the parameters in the model. To ensure that the scalar
potential does not have unwanted minima which break
the SU(3)c XU(1), symmetry, we impose

v'6

gled

g18 2
24g 18

(4.10)

A„m ~3(mjv +mL +mH ),
R ll 2

3(m~ +p?~, +m—H )

m (3(m~+rn „+mH

(4.7a)

(4.7b)

(4.7c)

where we have used the fact that U(1)~ and U(i)~
charges of Nz and Nz fields are ( —1,V'6/12) and
(1,—&6/12), respectively. Two eigenvalues of 19'2 are
My =0 and M~ =((Ng & +(Ng & )(g)~+ —,

' g)~), and
corresponding eigenstates V~ and V& are given by



PHENOMENOLOGY OF SUPERSTRING-INSPIRED SO(10). . . 3751

Vr =cosg V~ +sing VB,

V~ = —sing V„+cosg VB,

with

(4.1 1)

tang=2&6g, ~ /g, B . (4.12)

Mr(MI ) =M1w (Mr )cos g+M, B (Mr )sin g

M1A(MI)g 1B(MI ™1B(MI)g1+(Mr )

g'1~(Mr)+g 1B(MI )

Thus we find the gaugino A, z is massless and the fermion
component A,z of the superfield Vz has a mass 1&+ pro-
vided that the supersymmetry is an exact symmetry.

Now recall that at the compactification scale Mc the
supersymmetry has been softly broken and all gauginos
have been given an equal mass M. These gaugino masses
evolve similarly as the gauge coupling constants [see Eq.
(A6)]. The fermion components of superfields V„and
VB, therefore, keep the nonzero masses M1„(MI) and
M, B(MI), respectively, at the intermediate scale Mr.
Taking these remnant masses into consideration, the gau-
ginos kz and A,z are no longer eigenstates of the gaugino
mass matrix. However, in the limit of M1„(MI ),
M»(MI) «M~, in other words, M1w(MI) M1B(M
«(NR ) which is the situation we are considering now,

A. z and A,z can be regarded in good approximation as
eigenstates of the gaugino mass matrix, and A. ~ has a
mass

However, these fields van still be safely treated in the RG
equations as massless modes for most of the energy range
from MI to M~.

Because of the HdH„mixing, the Higgs scalar masses
acquire the additional contribution p below the scale
MI. Then the squared masses p„and pd of Higgs scalars
H„and Hd, respectively, are given by

2= 2 2
Pd mad+9

(4.16a)

(4.16b)

The RG equations followed by these mass parameters p„
and pd and their solutions are presented in Appendix B.
The initial conditions for p„and pd at the scale MI are

p„(MI)=mH„(MI)+p (Mr),

Ir, d (Mr ) = mrrd( Mr) +1M(MI ) .

(4.17a)

(4.17b)

II,3(HdH—„+H.c. ), (4.18)

where the last term is again due to the HdH„mixing in

Eq. (4.14). The potential VH is of the usual form in X= 1

supergravity models with a mixed Higgs-boson mass
term. ' ' The evolution equation for p3 and its solu-
tion are also presented in Appendix B. The initial condi-
tion for p3 at the scale MI is

The relevant Higgs-scalar potential along the neutral
direction is now given by

V = ,'(g'+g'-)(IH. I' l~d I')'—+p'. IH. I'+pd IHd I'

(4.13)

at the scale Mr. Equation (4.13) will then serve as the ini-
tial condition for the RG equation of the gaugino mass
Mz from the scale MI to M~.

Superfields L', L', H„2, and Hd2, which have the Yu-
kawa couplings to ¹zand ¹z,obtain large masses of the
same order as (XR ) at the ISSB. Hence, massless modes
below the scale MI are ¹f16,H„,, and 0». Since the
relevant Higgs fields below MI are only those of the
Weinberg-Salam Higgs doublets H„, and Hd&, we omit
writing the index 1 from now on.

At the ISSB, the right-handed neutrinos v~ gain large
Majorana masses I and there appears a mixing be-

R

tween the Weinberg-Salam Higgs doublets Hd and H„.
Thus, the SU(3)c XSU(2)1I, XU(1)r-symmetric superpo-
tential below MI has the form

p3(MI ) = Bm p—(MI ), (4.19)

IV=h, H„QtR+(other usual Yukawa coupling terms)

+ ply ~ vg vg +pHdH~
R

(4.14)

where family indices for the v~ term are omitted. The
coupling strength p for the HdH„mixing is expected to
be of the same order as m at the scale MI. For

R

definiteness in the following numerical analysis we fix

p(MI ) = 10 GeV . (4.15)

The superfields vz, H„, and Hd now become massive
modes because of the new bilinear terms in Eq. (4.14).

where B is the bilinear scalar coupling parameter. It is
well known that in the case of the "minimal" ¹=1super-
gravity model, there exists a relation

B=A —1 . (4.20)

The SU(2) 11, X U(1)r symmetry breaks down spontane-
ously to U(1), at the scale MII, . The breaking is induced
by the same mechanism as the one used in softly broken
¹ 1 supergravity models. The Higgs potential V~ in
Eq. (4.18) is minimized for'

2@3

Pu+Pd

pd p„(pd+p„)cos20
U =U„+Ud =2

(g 2 +gz )cos29

(4.21)

(4.22)

where u„=(H„), and ud=(Hd), and the angle 9 is
defined as cotO= 0„ /ud. Since the 8'-gauge-boson mass is
given by M11,= —,'gzu, the condition (4.22) is converted to

But in the case of a general Kahler manifold, Eq. (4.20)
will not hold in general. We will carry out numerical
analyses for both the "minimal" and "nonminimal" cases
in the next section. Finally, the value I„ is hardly al-

tered upon renormalization and remains as large as that
given at MI, which is expected to be around 10 GeV.

D. Symmetry breaking at the scale M~
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pd pu
cos2O =

2 2 2
pd +p +Mz

(4.23)

with Mz being the Z-boson mass. It is noted that the al-
lowed range of cos2O is 0 & cos2O ( 1, since RG equations
for pd and p„claim that [pd(M~) —p„(M~)] is always
positive.

Further we must impose two more conditions

(P3)")P'.Pd

21p3I'(p'. +pd .

(4.24)

(4.25)

K. The low-energy particle spectra

The former assures nonexistence of a lower symmetric
minimum at the scale Mw, and the latter is required in
order that the potential VH in Eq. (4.18) may be bounded
below. The condition (4.25) must be satisfied all over the
energy range from MI to Mw. Meanwhile all the param-
eters and couplings in Eqs. (4.21)—(4.24) should be evalu-
ated at the scale Mw.

where E, (MI ), F, (MI), E,(M~), and F,(M~) are defined
in Appendixes A and B. It is noted that the RHS of
(4.27) is independent of the initial value h, (Mc ), M, and
m. The model considered here gives the upper bound 209
CreV for I,. Meanwhile, we cannot tell much about the
masses of the other quarks and leptons, since we have
neglected their Yukawa couplings. Neutrinos obtain tiny
masses through the well-known "seesaw" mechanism.

All gluinos (g ) have the same Majorana mass M3. On
the other hand, the 8-inos and the B-inos will mix with
Higgsinos. The charged 8'-inos and Higgsinos combine
to form a couple of Dirac fermions (charginos y —, and

j z ) with masses

m + + =
—,'IMz+p +2Mw

1 ' 2

+[(Mz —p, ) +4M~cos 20

+4M~(Mz+p +2Mzpsin28)]' j .

(4.28)

We write down some formulas for the particle masses
which appear in the model. Most of them have already
been given in the literature, but they are presented here
for the sake of discussions in the next section. It is un-
derstood that the following mass and coupling parame-
ters are the ones evaluated at the scale Mw, unless they
are specified.

Let us start with fermion masses in the model. Fer-
mions consists of quarks, leptons, gauginos, and Higgsi-
nos. The top-quark mass is given by

Mw
sin2O,

p
(4.29a)

m + pX 2
(4.29b)

In the limit of M2, p))Mw, we have m + +-—M2 and
1 ' 2

p. When M2, Mw&(p, the chargino masses are given
approximately by

m] =A]U„ (4.26)

(4.27)

There exist an upper bound for m, (Refs. 19, 29, and 31):

E,(MI )E,(M~)I, ~h, U ~4~
12[F,(MI )+E,(MI )F,(M~)]

2 2 1/22sin OwMw
X

e (M~)

where we have denoted a lighter chargino as x ] and a
heavier one as x 2 . Thus we may have one light chargino.
Concerning the neutral gaugino-Higgsino sector, the neu-
tral 8'-ino 8'3, the B-ino B, and two Higgsinos Hd and
H„will combine to form four neutralinos (x „xz, x 3,
and x „). The relevant 4X4 mass matrix is given as fol-
lows:

MwsinO MwcosO

Hd MwsinO —MwtanOwsinO

H„—MwcosO MwtanOwcosO

MwianOwsinO MwianOwcosO
(4.30)

In the case of M2, Mz, P))Mw, four eigenvalues of the
above mass matrix are given approximately by M2, M~,
and +p. Then all the neutralinos get large masses.
Meanwhile, when M2, M&, Mw ((P, we obtain the eigen-
values

Mw Mw
M2 — sin2O, M~ — sin2O tan Ow, +p,

p p
(4.31) mII, pd+pu ~

2 — 2 2 (4.32a)

I

and hence we may have two light and two heavy neutrali-
nos.

Let us turn to the spectra of scalar particles. There
have been four neutral Higgs bosons in the model. One is
swallowed up by the Z gauge boson. The masses of the
other three neutral Higgs bosons are given by the well-
known formula'



PHENOMENOLOGY OF SUPERSTRING-INSPIRED SO(10). . . 3753

mls H
——[m~ +Mz2 —] 2 2

+Q(mH +Mz2)~ —4mH Mzcos228] .(4.32b)

Since we expect that mH is very heavy, we will have one
C

very light neutral Higgs boson (Hb ). In fact, in the limit
of mH »Mz, we obtain

C

mH =Mzcos20 .
b

(4.33)

Concerning the four real fields contained in the charged
Higgs bosons H„+ and Hd, two are swallowed by the 8' +—

gauge bosons, and the other two form a complex charged
scalar with a mass'

m + =M~+pd +pg (4.34)

m- =m,
A1

+ —,'((mg+m, —
—,'cos28Mz)

For the masses of all squarks and sleptons except for t
squarks and sneutrinos we obtain much the same formu-
las as those given in Appendix C of Ref. 31. The only
di6'erence exists in the terms of the gaugino contributions
to the scalar masses, since our model has the ISSB. If the
initial value of m or M (or both) is too large compared to
Mz, these squark and slepton masses are of the same or-
der of m or M, and are very massive. In the case of the t
squarks, tl and tz form a 2X2 mass matrix since the
tL-t~ mixing terms cannot be neglected. ' The eigen-
values of this matrix are

the conditions for the ISSB. The condition (4.9) provides
us with a relation among the parameters M, m, A, and
Y„(MC). This enables us to calculate the necessary
Y„(Mc ) for the symmetry breaking at MI when a set of
numerical values are assigned to M, m, and A. The ac-
quired Y„(Mc) must be real and positive, and also be
small enough to be justified for the perturbative approxi-
mations. Furthermore, it must be compatible with the
constraint (4.7a) along with a given set of M, m, and A.
In the following numerical analysis we have put a cri-
terion

Y,(MC ) & 0.02, (5 1)

for the justification of the perturbative calculations.
These constraints and condition for the ISSB severely

restrict the allowed domain of parameters M, m, and A.
Figures 1(a)—1(c) show the possible range of the parame-
ters 3 and m for several fixed values of R =M/m
(R =0,2,5). As

I
A

I gets smaller, larger values of Y (Mc )

are necessary to satisfy the condition (4.9) and they may
conflict with the criterion (5.1). Hence the allowed values
for A fall into two separate regions. We have found that
one should have at least

(5.2)

for the consistent ISSB. The plots also show that the pos-
sible values for m are bounded from below. This is be-
cause with smaller values of m, the condition (4.9) re-
quires larger values of Y„(MC) and the constraint (4.7a)
or the bound (5.1) or both are violated. The close numer-
ical analysis demonstrates that one should have

+I[m& —m, +cos28Mz( —
—,'+ —', sin 8w)] m &1.1X10 GeV . (5.3)

+4m, (A, m+ptan8) I' ), (4.35)

+m8m„ (4.36)

where the expressions for f,„(MI ) and fUi(MI ) are
given in Appendix A. Because of the large Majorana
mass m, we expect that m should be no lighter than

R

where the expressions for m& and m, are given in Ap-

pendix B.
Finally we discuss about the masses of sneutrinos.

Since we expect the relevant Yukawa coupling for neutri-
nos to be extremely small, the vL -vz mixings are negligi-
ble. Then vt and vz are considered to be the physical
eigenstates. The vL mass has the similar expression as
the other sleptons. As for the vz mass, new contribu-
tions come from the term m v~ vz in the superpotential

R
W' in Eq. (4.14) and we obtain

m =m M[2f ia (MI )+ fi—a(MI )]+4—

In Figs. 1(a)—1(c) we have represented the plots only
for several non-negative values of R. The plots for nega-
tive R are easily obtained from those with positive IR I by
exchanging values of A for —A. This is due to the fact
that the condition (4.9) and, thus, the value of Y„(MC)
solved from (4.9) are invariant under the simultaneous re-
placement A ~—A and R ~—R. This symmetry may
be manifestly exhibited when we plot the allowed domain
for the ISSB in the A-R plane with fixed values of m.
Figures 2(a) —2(c) show the range of possible values for A
and R with several fixed values of m (m =1.5X10,
2X103, and 10 GeV). It is apparent from these plots
that the allowed domain for A and R are symmetric un-
der 180-degree rotation around the origin.

When m is close to the bound value 1.1 X 10 GeV, the
constraint (4.7a) may not be satisfied if R is small. For
example, with m = 1.5 X 10 GeV, the range of—1.5 & R & 1.5 is excluded [see Fig. 2(a)]. On the other
hand, when IR I gets too large, the criterion (5.1) may not
be satisfied. In fact, we have found

1 TeV.
V. NUMERICAL ANALYSIS

IRI &8.8, (5.4)

in order to have the satisfactory symmetry breaking at
the intermediate scale. Thus, the model considered in
this paper puts strong restrictions, i.e., Eqs. (5.2)—(5.4),
on the allowed values for the parameters 3, m, and R.
This is one of the features of this model.

A. Parameters A, m, and R

First, we have investigated numerically the range of
the parameters M, m, and A which are consistent with
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FIG. 1. Values of 3 and m consistent with the radiative symmetry breaking at the intermediate scale for fixed R: {a) 8=0, {b)
8=2, and (c) A=5. The hatched areas are forbidden and (4.7a) in the plots indicates regions where the constraint (4.7a) is not
satisfied.

B. Top-quark mass

We have next investigated numerically the
SU(2) ~ X U(1)r breaking at the scale M~. Since we have
found above that rn should be larger than 1 TeV, it is ex-
pected that the scalar partners of the relevant superfields
may possess masses around or more than 1 TeV at low
energies. Also gauginos could be very massive. Then we
must stop the evolution of these mass parameters before
they reach the scale M~. Moreover, we should turn off
the contribution of these particles to the RG equations
for the gauge coupling constants and the parameters Y,
and A, when energy scale has lowered to their masses.
In the actual calculation, however, we have evaluated all
the relevant parameters (including masses and gauge cou-

plings) down at the M~ scale. This procedure simplifies
computations considerably and does not have in general
much inAuence on the numerical results except for gluino
and squark masses. For example, if we stop the evolution
of gluino mass M3 at 1 TeV, we obtain a smaller value
than the one evaluated at the scale Mz, by 15%. Also
when the parameter M is comparable to m, the evalua-
tion of squark masses at 1 TeV gives smaller values than
those at M~ by as far as 30%. However, in a case in
which ~R

~

&& 1, the underestimation of squark masses
reduces to less than 10%. As for the masses of other par-
ticles, such as, sleptons, Higgs scalars, charginos, and
neutralinos, the di6'erences between the values evaluated
at 1 TeV and at M~ come within 10%%uo. We may already
have this order of uncertainties anyway by neglecting
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two-loop corrections and replacing all threshold effects of
heavy particles with 8 functions in the RG equations.

As we stated in Sec. IV C, unless we assume B = A —1,
the constant 8 in Eq. (4.19) is a free parameter. In this
case Eq. (4.21), which is one of the conditions for the
SU(2) ii X U(1) i breaking at the scale Mii„does not serve
as a restriction upon the parameters F, ( Mc), A, R, and
m. Indeed Eq. (4.21) can always be satisfied by adjusting
the value of the 8 parameter. On the other hand, another
condition for the SU(2) ii XU(1) i breaking, i.e., Eq.
(4.23), will provide us with a relation among parameters.
When we combine this condition with the restrictions

3 ~ ~

2-

that the parameters A and m should fall into the allowed
region for the ISSB [i.e., Eqs. (5.2) and (5.3)], we can find
an extent of possible values of top-quark mass m, ( M ii, )

for given parameters R and cos20.
We represent in Figs. 3(a)—3(c) typical plots showing

the allowed range of m, (Mii ) vs cos20 for several fixed
values of R (R = —1,0,1). The plots show that the
SU(2) ~ X U(1)z breaking requires lighter top-quark mass
for smaller values of cos20. Actually, the symmetry can
be broken with an arbitrary small m, (Mii, ) by having a
smaller and smaller cos20. As ~R~ decreases with cos20
fixed, larger top-quark mass is required. These are well-
known features of the usual %=1 supergravity GUT
models in which the SU(2) ii X U(l ) i symmetry is broken
radiatively. '

The upper bound for m, (M~) is obtained when
cos20= 1 and R =0. We have found

m=1.5X10 GeV
m, (Mii ) &148 GeV, (5.5)

YK(Mcj & 0.02

-2

-3
-10 10

3 I I I ~ ~

-(b)

~=2x10 GeY

A 0-
Y~Mcj ~ 0-02

3
-10 10

3 I I I I

- (c)
2-

m =10 GeV

A
YK(Mc~ ~ 0-02

-3
-10 10

FICx. 2. Values of A and R consistent with the radiative sym-
metry breaking at the intermediate scale for fixed m: (a)
m =1.5X10 GeV, (b) m =2X10 GeV, and (c) m =10 GeV.
The hatched areas are forbidden and (4.7a) in the plots indicates
regions where the constraint (4.7a) is not satisfied. (5.6)

which is the result of the "nonminimal" case (i.e.,
without the assumption of 8 = A —1). It should be
remarked, however, that when cos28~1 (i.e., ud /u„—+0),
we cannot neglect anymore the Yukawa coupling con-
stant hb for the bottom quark since in this limit the finite-
ness of the bottom-quark mass requires hb~~. In-
clusion of a non-negligible hb facilitates the
SU(2)ii XU(1)z breaking and we would have obtained a
smaller upper bound for m, (Mii ) than that of Eq. (5.5).

There are some other points of interest in Figs.
3(a)—3(c). The allowed domain for I,(M ii, ) is made up
of two regions, one corresponding to A )0 and the other
A &0. When R is positive, the SU(2)ii, XU(1)z breaking
claims a heavier top-quark mass in the case A (0 than in
the case A &0. The situation changes conversely, when
R is negative. With large ~R~, two allowed regions for
m, (Mii, ) are separated. But they get closer as ~R~ de-
creases, and finally they coincide when R=0. These re-
sults relate to the fact that Eq. (4.23), i.e., one of the con-
ditions for the SU(2) ii X U(1) i breaking, is invariant un-
der the simultaneous replacement A —+ —A and
R~ —R.

Now we examine the case in which the same relation-
ship B = A —1 holds as in the case of the "minimal"
N= 1 supergravity model. This time, Eq. (4.21) serves as
another relation among the parameters. Hence, when a
set of suitable numerical values are assigned to R, A, and
cos28, one can obtain from Eqs. (4.21) and (4.23) the ap-
propriate m, (Mii, ) and m for the SU(2)ii, XU(1)z break-
ing. We represent in Figs. 3(a)—3(c) typical plots for the
"minimal" case (shaded areas) showing the allowed range
of m, (M~) vs cos28 for several fixed values of R
(R = —1,0, 1).

It is noteworthy from these plots that the allowed re-
gions for m, (Mii ) and cos28 in the case of positive A are
quite different from those for negative A. When A &0
(actually, 1.5 & A & 3), sin28 takes a negative value and
its absolute value should stay small for the
SU(2)ii, XU(1)z breaking. Thus the possible values of
cos20 are restricted to the range

cos20&0.6 for B = A —1 and 1.5& A ~3 .
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FIG. 3. Allowed values of m, (M~) vs cos20 with and without the assumption B = 3 —1. Results are shown for (a) R = —1, (b)

R =0, and (c) R = 1. The hatched areas {oblique lines) are forbidden. The shaded areas (vertical and horizontal lines) are allowed re-

gions in the case of B = A —1.

In consequence, the allowed values of m, (Mii ) are
bounded from both below and above. Examining other
cases of R, we have found, for the "minimal" case with
positive A,

trarily small m, (Miv). The allowed region for m, (Mii, ) is

given by

m, (Mii ) & 141 GeV

47 GeV & m, (M~) & 141 GeV for B =A —1 and —3& 3 & —1.5, (5.8)

for 8=A —1 and 1.5&A 3 . (57)

The top-quark mass m, (M~) takes the largest value at
E.=0 and the lowest around R =2.

On the other hand, for negative A (
—3 & A & —1.5),

cos2(9 takes any positive value and thus the
SU(2)ii, XU(l)i, symmetry can be broken with an arbi-

and the upper bound is obtained when R=O. In Figs.
4(a) —4(c) we plot the allowed range of m, (M@,) vs m with
several fixed values of R (R = —1,0, 1) for the "minimal"
case. These plots show how large the parameter m
should be. Note that the bound in Eq. (5.3) is respected.
Again the allowed domain in the m, -m plane for positive
A are quite distinct from those for negative A.
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FIG. 4. Allowed values of m, (M~) vs m in the assumption of B = A —1. Results are shown for (a) R = —1, (b) R=0, and (c)
R= 1. The hatched areas are forbidden.

C. Low-energy particle spectra
We now proceed to discuss in some detail the low-

energy spectra predicted by this model. We also refer to
the existing experimental results on new particle searches
and study whether further constraints could be placed
upon the parameters in the model. As already explained
in Sec. V A, the parameters m, R, and A are severely re-
stricted by the conditions and constraints for the ISSB.
Especially, m should be no lighter than 1.1 TeV. Thus all
the squarks and sleptons are expected to be as massive as
or heavier than 1 TeV.

Let us first examine the "minimal" case in which the
assumption 8 = A —1 enables us to make more specific
predictions on the low-energy particle spectra than in
general situations. There are three free parameters and
we have chosen R, A, and cos20. Having assigned

several sets of numerical values to these parameters, we
obtained for each set the low-energy mass spectra as well
as appropriate m and m, (Mii, ) for the SU(2)~XU(1)r
breaking. The results are shown in Table V.

Spectra (a) and (b) represent cases when R (&1. In
particular, (a) typifies a situation where the parameter M
( =Rm) is small ( ~ 50 GeV). R is set to be one in the rest
of the examples which feature situations where M is the
same order of magnitude with m, i.e., in the TeV region.
Spectra (d) —(f) represent cases in which A is negative,
and each has a different cos20.

The mass spectra for gaugino-related SUSY particles
such as charginos (g —, and y 2 ), neutralinos (g „gz, g 3,
and y~), and gluinos (g) depend heavily on the parame-

. ter M. The gaugino masses evaluated at the scale M~ are
related to M through the following numerical formulas:
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TABLE V. Six examples of low-energy spectra
8=A —1.

for the "minimal" case with the assumption of

R

cos26I

0.008
2.1

0.9

0.05
2.1

0.9

1

2.1

0.9

1
—2.3

0.9

1
—2.3

0.5

1
—2.3

0.15

m (TeV)
m, (GeV)
g (TeV)

(TeV)
q; (TeV)
pl (TeV)

y,' (TeV)
y', (TeV)

y4 (Tev)
H. (TeV)
Hb (GeV)
0, (TV)
H —(TeV)

tz (TeV)
ti (TeV)

3.42
122

8.40X 10
2.35X10

1.18
1.17X 10-'
2.33 X10-'

1.18
1.18
3.71

83.3
3.71
3.71
2.77
1.84

3.61
117

5.55 X 10-'
1.41 X 10-'

1.20
7.25 X 10
1.41X 10-'

1.19
1.19
3.91

83.3
3.91
3.91
2.97
2.02

4.78
63.6
14.7

1.28
3.70
1.28
1.28
1.89
3.70
6.09

83.3
6.09
6.09

13.9
13.2

10.4
99.5
31.9

1.23
8.05
1.23
1.23
4.12
8.05

13.0
83.3
13.0
13.0
30.3
28.7

3.98
76.3
12.2

1.25
3.08
1.24
1.25
1.58
3.08
5.75

46.3
5.75
5.75

11.6
11.1

2.46
44.0
7.56
1.27
1.91

9.66 X 10-'
1.29
1.29
1.91
4.29

13.9
4.29
4.29
7.30
7.08

M3(M~) =3.07M,

M2(M~) =0.773M,

Mr(M~) =0.396M .

(5.9a)

(5.9b)

(5.9c)

2M~ 2m —p —AM@ i sln28 tan 8@
X J p

M~
m- 0

——~M2 ~

— sin28,
+2 '

P

(5.11a)

(5.11b)

In the case ~M2~, M~ &&p [spectra (a) and (b)], one
chargino (g —, ) is light and its mass is approximately
given by the formula Eq. (4.29a). For the heavier one
(g2~) we have m —+ ——p (=1 TeV). Experimentally a

X2
lower bound m-+ & 22.5 GeV for the chargino mass has

been reported. When one combines this experimental
result with Eq. (4.29a), one gets a new constraint on the
parameter M. Remembering that —0.8 (sin28&0 for
A &0 [see Eq. (5.6)] and sin28&0 for A &0, as well as

p = 1 TeV, we obtain a lower bound ~M2 ~

& 17 GeV. Us-
ing Eq. (5.9b), we find a limit

(5.10)

Spectra (a) serves as an example in which y, has a mass
very close to the experimental limit value. In the situa-
tions when ~Mz ~, p, &&M~ [spectra (c)—(P], chargino
masses are given by m-+ ——p and m-+ ——~M2 ~, and hence

X2

both lie in TeV region. It is interesting to note that we
always have one chargino with a mass around 1 TeV.

As for the neutralinos, we have two light and two
heavy ones when ~M2~, ~Mr ~, M~ &&p [spectra (a) and
(b)]. In this case we find from Eq. (4.31) that the masses
for two light neutralinos (which we denote as j' &, and g zo

with y &
& j' z) are approximately given by

and two heavy ones both have mass around p. Then us-
ing Eqs. (5.9b) (5.9c), and (5.10) we obtain lower bounds

m-o) 6.8 GeV,
X J

m-0) 11 GeV,
X2

(5.12a)

(5.12b)

for the two light neutralinos. When y, is light, it is
mostly made up of the photino (y) state. There is a re-
port on the photino mass limit from the single-photon
production experiment at SLAC (Ref. 40), where the
lower bound for m was obtained under the assumption
of pure y eigenstate and equal mass for the right- and
left-handed selectron (e). But it has been concluded
there that there is no limit on m if selectron mass is
larger than 58 GeV. The model studied in this paper
indeed predicts very massive ( & 1 TeV) selectrons.

In the case ~Mz ~, ~Mr ~, p, &&M~, four neutralino
masses are approximately given by ~M2~, ~Mr~, p and p,
and they are all massive [spectra (c)—(Q]. As is easily
seen from Table V, y, is not only the lightest neutralino
but also the lightest SUSY particle in this model.

The gluino mass M = ~M3~ is given by Eq. (5.9a) and
g

the following lower bound is obtained from Eq. (5.10):

M )68QeV. (5.13)

Experimentally, UA1 group"' ruled out the range 4—53
CxeV for the gluino mass (at 90% C.L. under the assump-
tion that all squarks are heavier than gluinos) from the
SUSY particle searches in the pp collider at CERN.

There are five Higgs particles in the low-energy spec-
tra: three neutral (H„Hb, H, ) and two charged (H ). —

Table V shows that four of them (H„H„and H )have—
almost the same mass and are very massive ( & a few
TeV). Qn the other hand, Hb has a lighter mass than the



40 PHENOMENOLOGY OF SUPERSTRING-INSPIRED SO(10). . . 3759

TABLE VI. Summary of the SI SO(10) GUT model studied in this paper: the allowed range of the
supergravity parameters and the model predictions on the low-energy particle spectra.

"Minimal" case
with B =A —1 General case

m

R
cos20

m & 1.1 TeV

JRI «.8
0.6 & cos20 & 1 (for A & 0)

cos20&1 (for A &0)

m & 1.1 TeV

cos20 & 1

t quark

X2

Hb
All m and m-,

0 073~74
H„H„H—

47 GeV&m, &141 GeV (for A&0)
m, &141 GeV (for A &0)

m &68 GeV'
m o &6.8 GeV'

m o& 11 GeV'
X2

Mzcos20
&1 TeV

&a few TeV

m, &148 GeV

m &63 GeV'
m o &6.1 GeV'

X ]
m o &9.3 GeV'

X2

Mzcos20
&1 TeV

&a few TeV

'In deriving the lower bounds, the experimental result y l & 22.5 GeV is used.

m& &9.1 GeV,
b

(5.14)

for the lightest neutral Higgs boson Hb, which is still
above the experimentally acquired lower bounds.

We cannot say much about the squark and slepton
masses in this model. They are all very massive (&1
TeV). We have listed in Table V some examples of pre-
dicted mass spectra for the top-squarks t& and t&. When
~R~ &1 all squark masses including m-, and m-, are

h I

roughly given by a single formula m =m (1+7.5R )'~e.
[see spectra (c)—(f)], and they are heavier than sleptons.
In the case ~R~ =0, tz and t& have smaller masses than
other squarks and sleptons due to a non-negligible Yu-
kawa coupling.

We now discuss the low-energy particle spectra in the
general situation, i.e., when the assumption B = A —1 is
not made. Since B is a free parameter in this case, even
when one fixes the parameters R, A, and cos20 one can-
not solve m (and hence M) uniquely from the
SU(2)~XU(1)r-breaking conditions. But m should ob-
serve the bound (5.3) and be very massive. We, therefore,
expect to have spectra which are similar to those in the
case B = A —1. Squarks and sleptons are all very mas-
sive (heavier than 1 TeV}.

As for the gaugino-related SUSY particles, it could

Z boson. It is true that the usual supersymmetric GUT
models predict a neutral Higgs boson whose mass is less
than Mz. But in this model we have a very massive H,
and, hence, the Hb mass is effectively given by Eq. (4.33),
which is easily ascertained in Table V. If we respect the
UA1 experimental result on the top-quark mass bound
m, &44 GeV, then referring to Fig. 3 for the allowed
domains of m, and the parameter cos20 we obtain
cos20&0.1. Combining this constraint with Eq. (4.33),
we get a bound

happen again that y —, ,g „y2 and g are light. The lower
bounds for the masses of the last three SUSY particles are
obtained in the similar way as before. Since there is no
constraint on sin20 in the general case, we get from Eq.
(4.29a} and the experimental result m-+ & 22.5 GeV, a

+1
bound ~M2~ & 15.9 GeV. This gives through Eqs. (5.11a),
(5.11b), and (5.9a) —(5.9c) the following lower bounds for

g'- m- o & 6.1 GeV, m- o & 9.3 GeV, and
X2

m & 63 GeV. Other gaugino-related SUSY particles are
very heavy with masses in TeV region.

In the general case, we have again one light neutral
Higgs boson H& whose mass is given by Eq. (4.33) and
four heavy Higgs bosons H —,H„and H, whose masses
are almost the same and lie in the TeV region. Before
finishing up this section, we surnrnarize in Table VI the
results on the numerical analysis of the SI SO(10) GUT
model studied in this paper.

VI. CONCLUSIONS AND DISCUSSION

We have presented in this paper a superstring-inspired
SO(10) GUT model in which the mixing of the
Weinberg-Salam supersymmetric Higgs doublets Hd and
H„and large Majorana masses for right-handed neutri-
nos are generated by the higher-dimensional terms in the
superpotential at the intermediate scale symmetry break-
ing. We fix the mixing strength parameter p for Hd and
H„as p = 10 GeV, expecting that it would be of the
same order as Majorana-neutrino masses. Introducing
into the model the usual general soft terms of' N=1
supergravity, we have examined a scenario that symme-
try breakings are induced by radiative corrections both at
the intermediate scale Mz and at the Weinberg-Salam
scale M~.

Although the model turns out to have five parameters
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m, M, A, B, and h, [or m, (M@,)], the conditions and con-
stra'ints for the symmetry breakings severely restrict al-
lowed regions of these parameters. We find that in order
to generate the symmetry breaking satisfactorily at the
intermediate scale one should have at least 1.5 (

~
A

~
(3,

m) 1.1 TeV, and ~M/m~ (8.8. Together with these re-
strictions for the parameter A, m, and R (=M/m), the
SU(2)u XU(1)r-breaking conditions give bounds on the
top-quark mass. We have obtained m, & 148 GeV. If we
further assume the relation B = 3 —1 as in the case of
the "minimal" N=1 supergravity, we get m, (141 GeV.
Actually, m, is bounded a1so from below when A takes a
positive value (i.e., 1.5 ( A ~ 3), and we find 47
GeV(m, (141 GeV.

We also examined the low-energy particle spectra con-
sistent with the above restrictions. We studied two cases:
the "minimal" case with B = A —1 and the "non-
minirnal" case with B as a free parameter. In both cases
we get similar spectra. All squarks and sleptons gain
quite heavy masses which lie in TeV region. We may
have some light gaugino-related SUSY particles, depend-
ing on the initial value M for gaugino masses. If M is
small enough, then gluinos, two charginos, and two neu-
tralinos turn out to be light. When we use the experi-
mental result on the chargino mass m-+ )22.5 GeV, we

X $

obtain the lower bounds for the masses of two neutralinos
and gluinos which are listed in Table VI. All the Higgs
scalars are quite heavy with masses in TeV region except
for the neutral Higgs boson Hb whose mass is given by
the formula mII =Mzcos20 and thus lighter than Mz.

b

In fact the usual standard SUSY GUT models always
predict one light neutral Higgs boson Hb (Ref. 19) and its
mass squared is in general written in terms of Mz, mH,

C

and cos28 such as in Eq. (4.32b). However, in this model
mH is quite heavy ()a few TeV) and hence the above

C

simple expression is derived for m~ .
b

Most of the SUSY particles and Higgs scalars in this
model are predicted to be too massive to be detected in
the accelerator experiments before the advent of the
Superconducting Super Collider (SSC). However, it is
highly expected that the top quark and one light neutral
Higgs boson will be soon observed. The discovery of
these particles and the knowledge of their masses will fur-
ther constrain the allowed ranges of the parameters, and
may possibly clarify the viability of this model.

There are other points of interest in this SI SO(10)
GUT model. Except for right-handed neutrinos, extra
(or "exotic") fields do not appear in the low-energy spec-
tra. In particular, the color-triplet fields g and g from the
10 rnultiplets, to which the light Higgs doublets belong,
become all massive modes at the compactification.
Hence the fast proton decays do not occur through g-
quark exchange. Also the extra neutral vector boson Z'
acquires a large mass due to the ISSB, and thus the well-
known Z-Z' mixing problem is avoided.

It may be fair to comment also on the less attractive
features of this model. First, we have introduced four
Higgs fields H», Hd &, H„2, and Hd2. H» and Hd &

are the
usual Weinberg-Salam Higgs doublets and we have as-

surned that they do not couple to Nz and Nz, so that H»
and Hd& remain light after the ISSB. Meanwhile, H„2
and Hd2 couple to N„and Nz, respectively, and we have
assumed equal strength for these Yukawa coupling con-
stants, i.e., v=17 at the compactification scale Mc, so that
Nz and Nz may have equal VEV's (Nz ) = (NJi ) at the
intermediate scale. These two assumptions seem to be
rather artificial and need to get some theoretical support
from, for- example, certain discrete symmetries.

Second, we have chosen M& = 1.5 X 10' GeV and
MI = 1.0 X 10' GeV in performing the numerical
analysis. Such a choice has been made since with these
values for Mz and MI, the predicted value for the Wein-
berg angle sin 8u, (Mu, ) and the SU(3)c gauge coupling
constant a3(M@,) both fall into the phenomenologically
acceptable range. However, the value of MI seems too
close to that of Mc. In other words we need to have a
rather early ISSB after the compactification. Here it
should be remarked that the above figures for Mz and MI
have been obtained by analyzing the evolution equations
for the gauge coupling constaots in one-loop approxima-
tions. It might be possible that inclusion of two-loop
effects to the evolution equations would improve the situ-
ation; i.e., the interval between Mc and MI would be
widened. We have not studied this possibility yet.

In this paper we have correlated the HdH„mixing
with the light-neutrino mass problem. Meanwhile, Kim
and Nilles discussed the HdH„mixing in conjunction
with the strong CP problem. Also the incorporation of
the light-neutrino masses and the resolution of the strong
CP problem was proposed by Kang and Shin. Then, it
would be a very interesting possibility that the strong CP
problem of quarks, the mixing problem of the Higgs fields
Hd and H„and the light-neutrino Inass problem may be
all intimately related to one another.
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APPENDIX A:EVOLUTION OF PARAMETERS ABOVE

1. RG equations for parameters from Mc to MI

Y, =h, /(4~), Y„=a /(4n. ), Y~=a /(4~) (A2)

The gauge coupling constants are subject to the RG
equations

do,
=2b a (p=3, 2, 1A, and 1B), (A3)

We collect here the RG equations followed by the pa-
rameters in the SI SO(10) GUT model presented in Sec.
III from the cornpactification scale M& to the intermedi-
ate scale MI. First, we define the quantities

r =ln(Mc/E), 0' =g~/(4~)

(p=3, 2, 1A, and 1B), (Al)
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where

b~ =9—2%I, bq =3—2N~
(A4)

bI~ = —5 —10' l3, b» = —35/12 —10NII3
j

for NI families. At the scale Mc (i.e., t=0) they obey

a3(Mc ) =a2(Mc ) =—,'a I q (Mc ) = ,'a I g
—(Mc )—:ap . (A5)

The gaugino masses evolve similarly as the gauge cou-
pling constants:

dmH
d1 2 2 4 — 2—6a&M&+2+I&M && + 3cxIJpM

dt

8m
= —4Y,(mz +mL. +m +m A, )

+81 A M 1 A +
3 6118M18

d 2

2Y—{m~ +mt +m +m A )

(A16)

(A17)

M, (t)
=const (p=3, 2, 1A, and 1B),

a (t)

with the initial conditions at Mz,

(A6)
+6cz~M~+2czI ~M] ~ +3aI~M I

Qm = —2Y„(m~ +mL +m~ +m A )

(A18)

M3(Mc ) =M2 (Mc ) =M] g (Mc ) =MIg (Mc ) =M . +6(x/Mp+2cx] gM I g +—,cxI/M Ig, (A19)

For the Yukawa couplings Y, and Y, we have

dY, = —12Y, + Y, ( ", a3+—6a2+—",a,„+—', a&s ),

(A7)

(A8)

The RG equations for m~—,mL—,and mH are obtained
R d2

from (A17), (A18), and (A19), respectively, by replace-
ment of m~, mL, mH-, , Y„, and A„with m~—,m~—„02 R

mH, Y ., and A . The initial conditions for scalar
masses at Mc are

dY„ = —8Y, + Y,(6a2+6a, „+—', a,s),
dt

(A9) m; (Mc )=m i =all scalars . (A20)

and the RG equation for Y is obtained from (A9) by re-

placing Y, with Y,.
For the soft-breaking trilinear scalar couplings, we

have

dA, = —12Y, A, + ( —", a3M3+6a2M2+ —', a»MI&

2. Formulas for the renormalized parameters above MI

Here we collect some formulas required for the expres-
sions of the renormalized parameters above the scale MI.
We use the similar notations which have been given in
Ref. 30. They are

+ 7—7a,~M, ~ ), (A10)

dA 1= —8Y„A,+ (6a2M2+6a, ~M, „+—,'a, ~M, e ),
dt m

(A 1 1)

and the one for 3 is obtained from (Al 1) by replacing
A and Y with A and Y, respectively. We assume the
usual initial conditions at Mz..

A, (Mc)=A, (Mc)=A (Mc)=A . (A12)

For the scalar masses, we have

8m = —2Y;(m&+m, +m +m A, )
01

+—32cz~M~ +6m~M~+ —cxI ~M I ~ +—cz(~M]~,

(A13}

8m
R —4Y'(m +m +m +m A )

R 01

P~=2a (Mc)b

ep(t)= 1

P

j,(t)= [1—e (t)'],1

P

with p=3, 2, 1A, and 18;

3l'b2 &tb1~ 7l6b1BE„(t)=e,(t) 'e»(t) '"e»(t)

F,(t)= f E,(t')dt',

F,(t) = f E,(t')dt',

D, (t) = 1+12Y,(0)F,(t),
D.(t) =1+8Y.(0)F„{t),

H2(t) = tap [—", e3(t)+6e2(t)+ —", ( ,' )e, ~ (t)—

(A21)

(A22)

(A23)

(A24)

(A25)

(A26)

(A27)

(A28)

(A29)

+—", +~M~+ —,'e]~M[~+ cx]HAMI~, (A14} +—', ( —', )e»(t)], (A30)
Gm~

6Y( 2+ 2 + 2 + 2g2)
mH

01

+6'/Mp+2cKI /M ]g +—,cxI/M Ig, (A15)

H2(t)=tap [6e2(t)+6( —,')e, „(t)+—,'( —,'}e)s(t}],

(A31)
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H', (t) = J H,'(t')E, (t')dt'= [tE,(t) —F,(t)],

(A32)

(A33)

(A34)

(A35)

H;(t)= f H;(t')E. (t')dt'
0

M [tE.(t) —F,(t)],

H,'(t)= f (H,'(t'))'E, (t')dt',
0

H, (t)= f (H;(t'))'E (t')dt',
0

G', (t) = M[——", f,(t)+3f2(t)+ ,' f, ~ (t)+——,'f»(t)],

m', (t)=G', (t)

+ I 3m 2 —12Y, (MC )[m H6(t)+ G2(t) ] ID, (t)

12Y,(MC )m
[ A'F, (t)+2AH', (t)

[D,(t)]'
—12Y, (MC)H3(t) ], (A51)

m,'(t) = —m'+M'[ —", f, (t) —
—,
'f» (t)+ —,

' f»(t)],
(A52)

m,'(t) = —3m'+M'[ —';f,(t)+3f,(t) —
—,
'f,„(t)

G, (t) = —M [3f2(t)+3f,„(t)+—',f,~(t)],
G,'(t)= f GI(t')E, (t')«',
G;(t)= f G;(t')E.(t')dt' .

3. The renormalixed parameters above Ml

(A36)

(A37)

(A38)

(A39)

m 4(t) =G;(t)

+ —,',f»(t)], (A53)

+ [3m —8Y,(Mc)[m H6(t)+G2(t)]I
D,(t)
8Y (Mc)m

[ A2F, (t)+2AH3(t)
[D.«)]'

We collect here the expressions for the renormalized
parameters after solving the RG equations given in A1.
They are expressed in terms of the formulas defined in A2
as follows:

—8 Y,(MC )H3(t)~],

m~(t)= —
—,', M f,~(t),

m6(t) = —m ~+M [3f2(t) f )~ (t)+f)~—(t)],

(A54)

(A55)

(A56)

a (t)=a (Mc, )e (t), M (t)=M (Mc)e (t)

(p=3, 2, lA, and 18),
APPENDIX B: EVOLUTION OF PARAMETERS

1. RG equations for parameters from Mr to Ms,

Y, (t)= Y, (M )E,(t)/D, (t),
Y.(t) = Y.(Mc)E,(t)/D. (t),

(A40)

(A41)

We collect here the RG equations which are obeyed by
the relevant parameters from the intermediate scale Ml
to the Weinberg-Salam scale M~. For the gauge cou-
pling constants, we have

12Y,(Mc )H3(t)
A, (t)= +H2(t)—

8Y (Mc)H3(t)
2 (t) = +H2(t)D, t D. t

(A42)

(A43)

de
, =2b'a (p=3, 2, Y),dt'

where

63 9—2', b2 =5—2', by= —1 ——', Xf

(81)

(82)

mg(t)= —,'m f(t)+- m2(t) —
—,'m3(t),

m, (t)= —,'m, (t) —m2(t)+ —,'m3(t),

mH (t)= —,'m, (t)+ —,'m2(t),

(A44)

(A45)

(A46)

for X families and t =ln(Mr/E). The initial conditionf
for a ~ at Mr (i.e., t '=0) is

' =—'a& w (Mr ) + "airr (Mr)—(83)

As before, the gaugino masses behave similarly as the
gauge coupling constants and we have

mH (t) =m —M [—,'f2(t)+ —,'f &z(t)+ —,'f &z(t)], (A47) M, (t')
=const (p=3, 2, Y)

a (t') (84)

my (t)= —,'m4(t) —
—,'ms(t),

mJ (t)= —,'m~(t)+ —,'m~(t)+ —,'m6(t),

m~ (t) =
—,'m 4(t) ,'m 5(t)+ —,'m—6—(t),

where

(A48)

(A49)

(A50)

and the initial condition for Mz at the scale Ml is given
by

Mi a (Mr )aim(Mr )+24Mirr (Mr )ai ~ (Mr )
M~(Mr ) =

24a, „(Mr )+a,s(Mr )

(85)
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dY,
,

= —12Y, + Y, ( —",a3+6a2+ —6ar),dt' (86)

dA, = —12Y, A, + ( —"a3M3+6a2M2+ —"arMr) .

For the Yukawa coupling Y, and the soft-breaking tri-
linear scalar coupling A„we have f (t')= [1—e (t')'],1

P

with p= 3, 2, and Y,
I I t

F,(t')= f E,(t")dt",

D, (t') =1+12Y,(Mi)F, (t'),

(818)

(819)

(820)

For the scalar masses, we have

dpi g = —2Y, (m&+m, +p„p+m—A, )

+ —"cz3M3 + 6(z2 2 +—'cz yMy, (88)

H 2(t') = [—", M3(MI )a3(t')+6M2(MI )a2(t')

+ 'g'My(MI )a~(t')],

H ',(t') =f H,'(t")E,(t")dt",

H,'(t') = f [H,'(t")]'E,(t")dt",

(821)

(822)

(823)

d77l
R 4I;—(mg+m, +p„—p +m A, )

+—"ct3M3 + —"(xyMy

dp„ = —6Y, (m&+m, +p„+m A, )

(89)

6 &(t')= —", M3(M—i)f3(t')—3M2(Mi)f~(t')

—i,'My(Mi )f~( t '),

6',(t')= f G', (t")E,(t")dt",
0

I I

q(t')= e( 't) 'e, (t') "/[D, (t')]'" .

(824)

(825)

(826)

+6a2M2+2arMr+2p (3a2+ar), (810)
3. The renormalized parameters below Ml

dpd
=6a~M2+2arMr+2p (3a2+ay —3Y;) .dt' (811)

The initial conditions for p„and p& at the scale MI are
given by

We collect here the expressions for the renormalized
parameters after solving the RG equations given in 81.
They are expressed in terms of the formulas defined in 82
as

p„(MJ)=mH (MI)+p (MI), (812) a (t')=a (MI)e (t'), M (t')=Mq(MI)ez(t')

p2d(MI ) =mH2„(MI )+p'(MI ) . (813) (p=3, 2, and Y), (827)

The mass parameter p obeys the RG equation

dp
, =2p (3a2+a„—3E;) (814)

Y, (t') = Y,(M, )E,(t')/D, (t'),

A,(Mi), 12Y,(MI )H 3(t')
A, (t') = +H,'(t')—

D, (t') D, (t')

(828)

(829)

and for its boundary value at the scale MI we have
chosen p (MI ) = 10 GeV .

2. Formulas for the renormalized parameters be1ow Ml

m&(t') =—,'m 7(t') —
—,'m 8(t') —

—,', m 9(t'),

m, (t')= —,'m7(t') —
—,'m (t's)+ —,'m9(t'),

p„(t') =
—,'m7(t')+ ,'m s(t')+——,'m 9(t')+p (t'),

(830)

(831)

(832)

p'„(t')=mH , (M, ) —-', M', (M, )f,(t')

,'Mr(MI )fr(t')+—p~(t'),Pp=2a (MI)b'

e~(t') =1/(1 —P t'),

(815)

(816) where

Here we collect some formulas required for the expres-
sions of the renormalized parameters below the scale MI.
They are

(833)
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Im7(t')= Img(MI)+m, (MI)+mH (Mt)
D, (t') R tt1

—12Y,(M, )[m'H,'(t')+G,'(t')] j

12K,(MI )m
[A, (Mt)F(t')+2A, (MI )H ~q(t')

D, (t')'
—12Y;(M, )H,'(t')']+ 6 ', (t'), +6p(MI )mF, (MI)

+M~(MI )a ~(t')]

p3(t' ) =q (t' ) p, (MI )
—2p(MI )t'[3M, (MI )a,(t' )

(837)

ms(t') = m, „(MI)+— ~, (M) )™g(MI)f3(

M2(M—t)f,(t')+ ', M~(M—I)fq(t'),
m29(t')= —2m'(MI)+m, (Mt)+ —',Ms(Mt)fp(t')

+3M2(MI )f2(t') 9M'(MI )fy(t')

(834)

(835)

(836)

with

A, (MI)F, (t')+H q(t')
X

D, (t')

p~(MI ) = Bm p(M—I ) .

(838)

(839)
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