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Two strictly local QCD sum rules, analytic extrapolation by conformal mapping and analytic
continuation by duality, are developed and presented in full detail. They allow the extrapolation of
the QCD amplitude to a single point near zero in the complex q' plane. Being orthogonal to the
usual QCD sum rules, they present a drastic enlargement of phenomenological applications. In ad-

dition, the stability of both methods is shown explicitly, a fact which makes them particularly reli-
able. The difterence between the two methods is illustrated in connection with the determination of
the hadronic (g —2) factor of the muon. Their eftectiveness is demonstrated in the calculation of the
topological susceptibility where both methods lead to y,' = 171+4 MeV.

I. INTRODUCTION

QCD, as the theory of strong interactions, is intimately
related to hadrons. In spite of this, the connection of
QCD with hadrons is a very difficult task. Consequently,
the connection between QCD and experiment is also ex-
tremely difficult to establish. The reason is that QCD is
formulated at the level of quarks and gluons and that at
present the solution of the confinement problem is still
lacking. However, after the pioneering work of Shifman,
Vainshtein, and Zahkarov' (SVZ) it was possible to deal
with this problem in a satisfactory way from the phenom-
enological point of view, with a method which is very
close to the field-theoretical framework. There are two
crucial steps in this framework. The first is to include in
the usual perturbative amplitude a nonperturbative con-
tribution, corresponding to the operator-product expan-
sion in the presence of a nonperturbative vacuum state
and involving terms with inverse powers in the momen-
tum transfer. Such a QCD amplitude continuing the per-
turbative and nonperturbative part is more appropriate
when we start from asymptotic freedom to approach the
confinement region (the hadrons). The second crucial
step is to use additional mathematical methods outside of
the domain of field theory to derive properties of hadrons
from the asymptotic amplitude and in this way to con-
nect the test QCD with experiment. These methods are
usually called QCD sum rules, even if sometimes one uses
this expression for the whole approach.

In the present paper we shall deal mainly with the
second step. We develop and present a new QCD sum
rule which we call, for obvious reasons, analytic extrapo-
lation by conformal mapping (AEC). It has been applied
in connection with the solution of the U(l) problem in
Ref. 2, where only the result was given. However, a de-
tailed presentation is necessary in order to put further
research in a position to make use of this extremely useful
sum rule. There are at least three reasons why we think
this worthwhile.

First, the above sum rule AEC, together with another
one, analytic continuation by duality (ACD), belongs to

a class of QCD sum rules which we call strictly local
QCD sum rules and which differ completely from the
usual QCD sum rules. They allow one to extrapolate the
asymptotic QCD amplitude (IIO valid in 1 ((

~
t~) to the

single point, i.e., t =0, where, using the usual (semiglobal
or global) methods, the QCD amplitude is connected with
expressions such as

t2f ImII(t)w (t)dt,
fI

with tv(t) a weight function. For this reason we call the
two methods AEC and ACD strictly local sum rules.
Therefore, it is also obvious that the domain of applica-
tions of the strictly local does not overlap the domain of
applications of the usual semiglobal or global QCD sum
rules.

Second, and surprisingly enough, as we are going to
show in this paper, the strictly local QCD sum rules are
stable. That means that they do not suffer from the Ha-
damard instability. (In the usual terminology, this is
called an ill-posed problem in the Hadamard sense. ) We
may realize that this result is not at all trivial from the
fact that of most of the semiglobal or global sum rules,
also the ones proposed by SVZ (the moments and the in-
verse Laplace-type sum rules) it is not known if they are
stable. Even more, there are examples where the Ha-
damard instability really appears here. [The usual stabili-
ty criteria (the existence of a plateau) do not guarantee
the absence of the Hadamard instability. ] This may hap-
pen in the following way. If we use a Breit-Wigner reso-
nance parametrization in order to derive the position of a
physical pole and after that try again to do the same, but
with a second, different parametrization with, say, one
free parameter more, it may turn out that the pole posi-
tion is completely differen. from the first one. In our
opinion, this does not mean that all the results of semi-
global or global QCD sum rules are incorrect, but this
shows that, being aware of this problem, one should be
more cautious with every distinct application of the semi-
global or global sum rules.

Third, as we shall show, semilocal QCD sum rules do
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noi require the use of resonance assumptions or parame-
trizations and in this sense the so obtained results are
model independent. Some of our results concerning the
stability are recent and therefore were not incorporated
in previous physical applications of the ACD method.

The plan of this paper is as follows. In the next section
we discuss the problem of low-energy extrapolation of the
asymptotic amplitude on general grounds. We shall see
why this is not so trivial and where the Hadamard insta-
bility comes from. In Sec. III we give a solution to this
problem in the form of the AEC method and we give the
proof that this strictly local QCD sum rule is stable. Our
treatment will be very detailed and as we hope clear
enough to be useful to those who want to apply it on vari-
ous QCD problems. Some more technical points are left
for Appendixes A, 8, and C. In Sec. IV we treat the
ACD method also from the point of view taken in Sec. II
in order to facilitate a comparison of the two methods,
and we also show its stability in an analogous way as for
the AEC method.

In Sec. V we test the applicability and the practical use
of the two methods taking a realistic model where every-
thing is exactly known. In particular, the assumptions
about the various errors are tested very carefully. We
show that both methods work extremely well. In Sec. VI,
using only the QCD expression, the determination of the
hadronic part of the (g —2) factor of the muon is ob-
tained by the ACD method. In this case, the AEC
method does not apply and the reason is explained. In
Sec. VII we apply both methods in connection with the
solution of the U(1) problem. We calculate the topologi-
cal susceptibility y, and we compare it with some recent
results of lattice gauge calculations. In Sec. VIII we
present some conclusions. In Appendix A, we give ex-
plicitly the conformal transformation which is necessary
in the AEC method and, in Appendix 8, we determine
the weight function C which is used in Sec. III. Appen-
dix C concerns some useful numerical details of the cal-
culation.

II. THK PROBI.KM OF I,O%'-ENERGY
EXTRAPOLATION IN QCD

The QCD amplitude we would like to discuss is the
two-point function Il(q ), without loss of generality, for
the electromagnetic currents:

(q "q g"'q')II—(q') = fd'«'"&01[J"(x)I (0)]I0&.

FIG. 1. The contour of integration in the complex t plane.

instability arises in the extrapolation to the resonance re-
gion and further applications beyond Refs. 1 and 5 have
recently been discussed in Ref. 6.) The extrapolation to a
single point to, below the cut near zero (or, e.g. , to=0),
leads to the strictly local QCD sum rules we are dealing
with in the present paper. We shall denote the so ob-
tained theoretical expression at to by II'""'(to). This is
the expression which we have to compare with experi-
ment in the end.

As already mentioned, our task is to obtain II'""'"(to)
from given information II""(t) on the large circle Cz,
Fig. 1. Here, as in all QCD sum rules, the starting point
is the Cauchy theorem or the Cauchy integral formula:

II(t, ) =—f ImII(t)dt
tp

+ . f II""(t)dt .1 1

2m CR t —to

Here we have tacitly assumed that II =II""on Cz. In
order to be more general, as it will be useful in the next
section, we allow the possibility of having also kernels
different from I /(t to), we tak—e a known auxiliary func-
tion g analytic in the cut disk. So we have, assuming

g (to)%0, similarly as above,

II(t, ) =—(t, ) —f Im[g (t)II(t)]dt1 1 & 1

g m' th t tp

II(t =q ) is expected to be an analytic function in the
complex cut plane. The corresponding QCD amplitude
IIO, as given, for example, by SVZ (Ref. 1), is an
asymptotic expression valid in the complex cut plane out-
side of a disk with a large radius R (for

l tl R), see Fig. 1.
We shall therefore denote it more generally, with
II"'(t) [II (t)=II" (t)].

What we would like to obtain from II""(t) is its extra-
polation at low energies. There are two possibilities. The
extrapolation in the resonance region leads to the semi-
global or global QCD sum rules. ' (How the Hadamard

Now we are confronted with two problems: (i) II is only
known on one part Cz of the boundary I =r,„,+C, ;
(ii) even on Cz we have only the asymptotic expression of
II [with II (without any index) we denote systematically
the true, physical amplitude] II"~ with

lII""(t)—II(t)l (e [e((1 but II""(t)XII(t)] .

If there was only problem (i), the treatment would be
straightforward: We choose a new function C(t) analytic
in the disk (see, e.g., Secs. III and IV for the explicit
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form) which allows us to obtain

ImCtg tHt (e1 ~ 1
(4)

and we have, from Eq. (3), assuming C(to)&O,

IItheor(
&

1 1

2vri C(t o)g(t 0)

X f, «g [C(t)II-y(t))+0(e) .g(t)
c~

(5)

This result is unstable in the sense of Hadamard. Small
changes in the input II""(t)may give huge changes in the
output II'""'(to). [E(e) may be of order much larger
than 1.] Without further information on II, no solution
to this problem is possible. However, if we add some
very weak phenomenological information, as the position
of the threshold and some very rough estimate of H on
the cut, we can stabilize the problem. This additional in-
formation acts in the present case (to our knowledge the
stability condition in the case of semiglobal or global sum
rules is not known) as a filter to eliminate the unwanted
and unphysical set of functions which possess similar
asymptotic behavior as H. Now the difFerent integral for-
mulas [for different g (t)) are no longer equivalent since
they are sensitive to difFerent kinds of additional informa-
tion and have difFerent efficiencies in using this informa-
tion. A concrete and satisfactory solution to the present
problem is given in the next sections.

So it is possible to calculate IIt"'o"(to) with any precision
llI'""'(to) —II(to)l &e by a good choice of C(t). Dif-
ferent choices of the kernel g (t) will lead to the same re-
sult.

The situation changes dramatically if in addition we
have problem (ii). Proceeding similarly as before, we may
obtain

IItheory( t
1 1

2rri C(to)g(to)

X dt C tH"~t+OEeg(t)
c~

C(w):—exp f da . ln
1 ~n e' +w 1

2'Ir —rr/2 e' —~ e (e' )

+ 1 3-~~d e +W,
cia W pPl era (9)

kernel, which has the great advantage of being positive
definite.

The stability of AEC can be explicitly proven if we use,
in addition, the position of the threshold and an upper
bound of H on the cut. In order to apply the original
method we have to perform a conformal mapping from
the cut disk (t plane) to the unit disk (w plane), see Fig. 2.

This can be done by five standard conformal mappings
which are given explicitly in Appendix A. We shall
denote the mapping of the t plane by E ' since it is its
inverse lr' which we have to use mostly [w =K '(t)].

We can now formulate the information we have of II(t)
in terms of the w plane. Since we expect that II""(t)will
be a good approximation for the true amplitude II(t) on
Cz, we have, with I t

=it '(Cit),

~II(K(w)) —II"y(K(w)}~ (ee(w) on I",

and from the upper bound of H on the cut we have, with
I 2=K '(I,„,),

~II(K(w))
~
(pm(m) on I 2 .

The functions e(w) and m (w) should not have essential
singularities and are normalized to 1 on the boundary of
I, and I 2 (at the end points of I, and I 2). The constants
e and p determine the scale. p is allowed to be a large
number.

After this preparation we now come to the essential
part of the construction: the determination of a weight
function C which allows us to minimize our ignorance"
about the function H on the cut and the derivation of the
ABC integral formula. For the function C we require the
following properties: (i) C has no zeros on the whole unit
disk (since it should be possible to extrapolate to every
point on the unit disk); (ii) C is analytic in the unit disk;
(iii) ~C(w)~=i/e(m) on I „~C(w)~=e/pm(w) on I 2.
C(w) is the so-called outer function and can be explicitly
constructed from (i) —(iii) (see Appendix B):

III. AEC (ANALYTIC EXTRAPOLATION
BY CONFORMAL MAPPING)

A. The method

This method was found by Ciulli, Pomponiu, and
Sabba-Stefanescu in order to extrapolate experimental
scattering amplitudes into regions of momentum space
which cannot be reached by experiment. Here we want
to extrapolate theoretical amplitudes to regions which
cannot be described by theory. Therefore, we have to
bring it in a form which is appropriate for applications in
QCD.

The method applies first on the unit disk (whereas our
physical amplitude is given on the cut disk), where many
powerful tools of complex analysis are at our disposal. It
corresponds to the choice of a specific kernel, the Poisson

t plane w plane

FIG. 2. The conforma1 mapping from the cut disk (t plane} to
the unit disk (w plane).
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For the product CII we have, from (7) and (8),

~C(w)II(K(w)) —C(w)II"~(K(w))~ (e on I, ,
(10)

~C(w)II(K(w))~ (e on I, .

We see now that the product CII is small (of order e) on
the cut. The final result is obtained (cf. also Sec. II) by
the use of the Poisson integral formula [f( wo )

dw P( w, wo)f (w)j for the product CII. The
Poisson kernel is given by

1

C(wo)

X f dw P(w, wo)iC(w)II(K(w))
1 l

—C(w)II""(K(w) }~

+ I' m, wp C wHKur
I~

Using the limits in (10) we obtain

1
P(w, wo)= Re2'

W +Np
N Mp

b( f dw P(w, wo)E+ f dw P( w, wo)eCwo r, r~

with w E I i+I 2 and wo=K '(to) So . we have for
II'""'(to)=II'""'(K(wo)) the AEC integral formula

II'""'(to)= f dw P(w, wo)C(w)II"~(K(w)) .
1

C(w

f dw P(w, wo) .Cw r+r,

Sowehave, from Jr +r dw P(w, wo)=1,
1 2

(17)

(12)

The not appropriate information on I 2 corresponds for-
mally to II"~~I 2=0.

B. The stability of the method

The fact that the Poisson kernel is positive definite al-
lows a very simple proof to show that the result is indeed
stable. To check the stability we consider the difference
to the true value:

a= ~11(K(w, ))—11'"-'(K(w, ))l

f dw P(w, wo)C(w)II(K(w))
1

I)+I2

—f dw P(w, wo)C(w)ll""(K(w))
1

(13)

This can also be written as

1

C(w, )

X f dw P(w, wo)[C(w)II(K(w))
1

l

E

iC(wo)[

This shows that the method is stable. Small changes in e
give rise only to small changes in the predicted II'""'(to).

Ciulli, Pomponiu, and Sabba-Stefanescu, in addition,
have proven that this sum rule is the best method in the
class of integral formulas, with the addition of an upper
bound on H on the cut. Any other sum rule of the form

Iltheor( t
1

C(wp)g (wo)

X f dw P(w, wo)g(w)C(w)II" (K(w))
1

(19)

with g analytic in the unit disk will give larger errors.

IV. ACD (ANALYTIC CONTINUATION
BY DUALITY)

The second strictly local QCD sum rule we have to dis-
cuss is the ACD method. In order to facilitate the com-
parison between the two methods, we give a derivation of
ACD which is similar in spirit to the derivation of the
AEC method and the general considerations of Sec. II.

So we have

—C(w)ll"~(K(w}) ~

+ f dw P(w, w)Co( )IwI(K(w))
I2

( 1

C(wo)

X f dw P(w, wo)[C(w)II(K(w) }r,
—C ( w }II""(K(w) ) ]

+ f dw P(w, wo}C(w)II(K(w)}
I2

Since P is real and positive, we can write

(15)

A. The method

ACD, as opposed to AEC, is formulated and derived
already in the physical t plane. Additional information
needed to stabilize the problem is again the position of a
threshold and a rough estimate of an upper bound of
ImH on the cut. This method is, in general, more Aexible
than ABC. Additional information can easily be imple-
mented in order either to take into account specific physi-
cal requirements, as, e.g. , the separate treatment of a pole
part in an amplitude, if present, ' or to lower the error.
However, the error is expected to be in both methods of
the same order. The main purpose of this and the next
subsection is neither to demonstrate the flexibility of the
method nor the smallness of the error, but to show the
stability of the ACD method. Therefore we try to
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proceed as we did in the previous section. For the func-
tion g (t) we take here g (t)= 1 (which corresponds to the
Cauchy kernel) and we denote the weight function by
D (t) instead of C(t) for distinction. The method is
characterized by the determination of the weight function
D, chosen in such a way as to "minimize our ignorance"
on the cut

IIth o( )
— d (

11 y(
2mi &g t —tp

or explicitly

(23)

the role of a stabilizing parameter. Now, proceeding
similarly as in Secs. II and III A, we obtain the ACD in-
tegral formula

N
D(t)=1 (t t—,—) g a„t", (2O) II'""'(t, ) = dt

1

2m i cg
—pa„t" II"y(t) .

to n=o
(24)

where the sum ga„t" is chosen to approximate the Cau-
chy kernel on the cut

= g a„t", tC[t,„,R] .
t —tp

(21)

This can be obtained by a least-squares fit (or equivalently
by orthogonal polynomials), where the coefficients a„are
determined by the following conditions:

dt —ga t" t =0
th t tp &

—p

for m =0, 1, . . . , X . (22)

The function D has these properties: (i) D is analytic on
the whole complex plane; (ii) [1/(t to)]D(—t) is approxi-
mately zero on the cut; (iii) D (to) =1. The choice of the
weight function D is the main diFerence in the AEC
method. D contrary to C (in the previous section) does
not contain any information on the function H. This, al-
though it may seem to be a disadvantage, allows more
flexibility of the method. Beyond that, a new parameter
N which determines the order of approximation of the
kernel 1/(t —to) has entered into the game. X will play

I

~II(t) —II" (t)~ (ee(t) on C&,

~lmII(t)~ (pm (t) on the cut .

(25)

(26)

The functions e (t) and m (t) and the constants e and p
correspond to the functions and constants of the AEC
method. We have now to determine the error which is
given by

[II(t ) —II'""'(t )I

For the amplitude II(to) we have

(27)

II(t, ) = f dt II(t)+ —f dt Imll(t) .1 D(t) 1 ~ D(t)
2+i cg t —to t —tp

(2&)

Putting (23) and (28) in (27), we easily obtain the inequali-
ty

B. The stability

In order to show the stability of the ACD method, we
shall follow closely the steps taken in Sec. III B. We may
similarly assume to have the following information on H:

D Re'~
~
II(to) —II'"' "(to)

~
& f dp R .

~

II(Re'~) —II"y(Re'~) ~+ —f dt ImII(t)
2~ Re'& —t, 7r &(g t to

~ easy+ befit (29)

There are two diFerent contributions to the total error:
One, which we call the asymptotic error (b," ), comes
from the circle C~ and the other, which we call the fit er-
ror (b,"'), from the integral on the cut. Taking into ac-
count the limits in Eqs. (25) and (26), we have, for the two

I

errors,

(3O)

N

f R dy —g a„R "e'"~
2% 0 Re'& —t, „=o

"

Xe(Re'~),

N

TABLE I. Fit coefficients for 1/t =g„oa„t"in the interval 0. 16 ~ t ~ 2.

ao

3.219 651
5.077 822
6.905 627
8.710920

10.502 856

—1.710 1S9
—6.249 119

—13.936 518
—24.823 696
—38.896 917

a2

0
2.101 370

10.427 741
30.098 908
66.598 818

a3

0
0

—2.569 868
—16.116911
—57.101 783

0
0
0
3.13S 890

23.774 409

a5

0
0
0
0

—3.821 948
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b"'(N) —=p —f dt
1

N—g a„t" m(t)'.
l' —to

(31)
V. COMPARISON BETWEEN AKC AND ACD

ON AN EXPLICITLY KNOWN MODEL AMPLITUDE

In order to show the stability, we have to study the role
of the stabilizing parameter ¹ Particularly we have to
show (i) that the total error b, (N) =5"~(N)+ b,"'(N) tends
to zero if we use the exact function II, i.e., for a=0, (ii)
and that A(N) reaches a minimum of a specific N =N, ,

The first requirement is easy to see. If @=0, then
"(N)=0 and since we can approximate I/(t —to) in

[t,h, R] to any accuracy by a polynomial, b"'(N) tends to
zero, too.

The second point requires lengthy calculations, since
the coefficient a„cannot be written easily in terms of t,h,
8, and to. So we prefer to illustrate the situation on a
simple but realistic example. We take to=0, e(t)=1,
m(t)=1, and alp, =10 . These choices are normally
satisfied in QCD, even if for II"" we take only the first
few terms in the operator-product expansion, as it is usu-
ally done.

For t,&
=0.16 and R =2 the coefficients a„are given in

Table I. The corresponding fit errors, asymptotic errors,
and total errors are plotted in Fig. 3. As we see, the total
error reaches its minimum at X =X, , =4. This X corre-
sponds nearly to the number of known terms in H"
which was also confirmed by our experience. We regard
the above results, summarized in Fig. 3, as a manifesta-
tion of the stability in ACD.

In practice, the total error can be lowered by making
use of more phenomenological information. For every
slowly varying ImII(t), the quantity b,"'(N „) is tiny; in
fact, as visible in Eq. (22),

1/2
4m

with v= 1— (32)

It is taken from a vertex graph in QED (Ref. 9). It has a
cut on the complex t plane at t & t,h =4m and represents
very weH, as a model, the physical amplitude II we are
actually interested in. The starting point for our investi-
gation is its asymptotic expression for 1«~t~. We can
easily obtain from (32) the first p terms

f""(t)=g (m )"+' „,(fkln tlm +—gi, ) .
Ic =0

(33)

The coefficients fk and gk are given for k =0, 1,2, 3,4
correspondingly by

—2
0

—12
14

—40
148
3

—140
533

3

In this section we would like to treat our problem
starting from the asymptotic expression taken from an
explicitly known function. This allows us to study the
quality of both methods since the result is already known,
the various errors are precisely calculable, and it is possi-
ble to test precisely any further assumption made in the
previous section.

The amplitude we want to discuss is given by

2 1 v —1f (t) =(1—U') ln
2v v+1

f d—r
1

tth 0

—ga„t" ImII(t)

vanishes exactly to the extent that Imll(t) can be
represented by polynomials of degree M & ¹

In the realistic situation, only the terms with p =2 or 3
are known. We have taken here one more term in order
to test some assumptions about the error estimate.

Our aim is to determine the value of f at t =0 from the
asymptotic expression (33):

0.4
&Isy&„ &fit&„

ft""'(0) .

We know of course from (32) that

f (0)=1 .

(34)

(35)
0.3

0 2

We fix m =0.04 and we take the radius R, where f"
should be valid, of order 10t,h or more.

We are coming now to the explicit calculations with
AEC and with ACD.

0 1

0.0

N ~ ~ ~ r

I i

A. f' ""(0)from AEC

In order to apply the results of Sec. II A, we first have
to know the upper limit corresponding to Eqs. (7) and (8):

8 N ~f(K(w)) f""(K(w))~ &ee(w) on—I i,
~f(K(w))

~
& pm(w) on I ~ .

(36)

(37)
FIG. 3. The errors of the ACD method are given in depen-

dence of the degree N of the fit polynomial. This behavior is in
general assuming the scale of the amplitude on the cut (jM) is 10
times larger than the accuracy of the asymptotic expansion (e).
The curves have no meaning, they should only guide the eye.

For the first condition, since we want to test the method,
we do not take f f"~ as it would be possibl—e from Eqs.
(32) and (33), but we make similar approximations as in
the practical situation. From the asymptotic expression
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(33) with p =2 or 3, taking e(t)=1 in order to facilitate
the numerical computation, we have, for e from the
f"" (k =p +1) term (p =3 or 4) with coefficients, e.g. , a
factor 2 larger than the order of magnitude of the known
terms fi, andg& (for k ~p), for R =1.5 (R/t, h=10),

e= 1.0X10 (for p =2)

1.2

f f 0)AEC AEC p 3

and

e=l.OX10 ' (for p =3) .

(38)

We can infer from f f"",a—s Fig. 4 shows, that this esti-
mate of the asymptotic error is a very good choice.

In this particular example, as opposed to the physical
situation, we have to take into account for the upper
bound of the amplitude off on the cut [corresponding to
Eq. (37)], the presence of a pole of f at the threshold
t =4m . We therefore have

o.a
2 3

rad l us R ( SeVI )

FIG. 5. AEC results as a function of the radius R.

(39)

p =2, f '""'(0)= 1.004+0.042,

p =3, f '""'(0)= 1.004+0.016 .
(40)

The first term represents the imaginary part of f on the
cut, E, and E~ are constants. E2 corresponds to the real
part of f. With this information using (9), (12), and (18),
we obtain, for R = 1.5,

need, of course, additional information on f in order to
give an estimate of the error. The determination of the
error itself is not less important. We therefore start with
the discussion of the various errors appearing in the
ACD method. For the determination of the fit error we
may use f""(R, k =p+1) (see the discussion in Sec. VA
and Fig. 4) and we have

bg(R, p)= Id/Re'~—
~

f""(Re'~,k =p+ 1)~ . (41)
2K 0

The corresponding results for various values of E are
given in Fig. 5.

B. f ' "'(0) from ACD and eoniparison

For the calculation of the numerical value of f'""(0),
it is sufficient to use f""only [see (24)]. Here too, we

For the fit errors we have two possibilities. We may first
use similar information of f corresponding to an upper
limit off on the cut

N

b~, (R)=—J dt ——g a„t" ~Imf (t) ~, (42)
tth t no

or we may use some information coming from the specific
form of the ACD method. In this case we have

0. 000 030

I & &zy I

(43)

0.000 025 For Imf we take

0.000O2O-
(44)

0.000 01S

FIG. 4. The diA'erence of the real function and the asymptot-
ic expansion {k ~ 2) as a function of the angle which
parametrizes the circle in the cut plane is compared with the
next-order term of the asymptotic expansion.

as in (39). The fit error b.~,(R) (the AEC-like error)
leads to a total error which is larger than the error in the
AEC method, as expected (since AEC leads to the
minimal possible error). The second fit error 6~2(R)
leads to a total error which is of the same order as the
one in the ABC method. It turns out that even with less
information on Imf, putting Imf =const, the corre-
sponding fit error is of the same order of magnitude as
above. A comparison of the two (total) errors b, , and Az
is given in the following (p =3):
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CioihCD hCD p 3, R15 hCD p~3. N 5

AOA
~ 0 «Q4 m~ m 4 p w w & w w I ~ ~ ~ ae ~ aa ae ~ w & ~ ee ea \s1 0~ 0

0.9 O. S

0.8
5 8

ataunt l lxfnI peraeetar N

O. S
2 3

radtue R (SeV~)

FIG. 6. ACD results as a function of the degree N of the At

polynomial. FIG. 7. The same as in Fig. 6, but as a function of R.

0.15
0.092
0.34
0.25

0.079
0.042
0.23
0.15

0.042
0.020
0.16
0.095

0.024
0.012
0.11
0.060

0.022
0.015
0.073
0.038

0.046
0.042
0.041
0.025

0.20
0.15
0.042
0.030

R =1.5

R =3.0

(4&)

Calculating now f '""'(0) with the ACD integral formula
(24) and the error b, =b,"'+b ", we obtain, for p =2,
R = 1.5, and X, , =4 (see Fig. 6),

f'""'(0)=0.990+0.030(+0.OS1) (46a)

part of the muon anomaly aH,

4 2
(47)

and for p =3, R =1.5, and %opt 5,

ftheor(0) —
Q 99Q+Q Q12(+Q Q24) (46b)

VI. ON THE HADRONIC PART OF THE MUON'S
E,
'g —2) FACTOR

The anomalous magnetic moment of the muon is an
example where the strictly local sum rules in its flexible
form ACD, allow one to test the full U(l) X SU(2) X SU(3)
theory, without using the e+e experimental data. This
is indeed possible since starting from the QCD amplitude
H given in Refs. 1 and 10 and using ACD, the crucial
low-energy contribution to the integral for the hadronic

The error 6, is given in the parentheses. For various
values of R the result is given in Fig. 7.

To compare it with AEC, the result of the previous
subsection is again displayed:

p =2, f'"""(0)=1.004+0.042,

p =3 f'""'(0)=1.004+0.016 .

As we see, the two methods lead to completely similar re-
sults; the same is also valid for the error estimates. f dt ImII(t) (4&)

using the asymptotic amplitudes H" =H~, valid out-
side of a disk of radius R. The function g (t) is given by

g(t)= dx
x (1—x)

x +t/(I —x)
(49)

For 4m „(t (m„ is the muon mass) and t (0, this can be
written as

can be calculated without use of any e+e data. ' This
has been discussed in short in Ref. 11 in connection with
the 8'and Z mass shift where by the same reasoning also
;he full U(l) X SU(2) X SU(3) theory can be tested without
use of e+e data.

Here we would like to discuss the muon anomaly from
the point of view of comparison between AEC and ACD.
It turns out that the AEC method cannot be applied to
this problem whereas the ACD method is flexible enough
to succeed. %'e shall first show how this can be achieved
within the ACD framework. The essential point is the
calculation of the low-energy integral
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g(t)= —,'u (2 —u )

+ (1+u) (1+u )[ln(1+u) —u+ —,'u ]
1

+ 1+U
21 (50)

corresponds to an infinite sum of all derivatives of H at
zero [II' '(0)]. Since the knowledge of only finite terms
is not su%cient, we understand why the AEC method
does not work in this case.

VII. THE TROPOLOGICAL SUSCEPTIBILITY
AND THE U(1) PROBLEM

with

1 —(1—4m„/t )'

1+(1—4m p2/t) I/2

So we have

2
1 ~p

lim g(t)- — +0
l&l 3 t

Pl p ln (51)

II'"""(0)g(0)= . II"~(t)g (t) —.1 1

2mi cg t
(53)

In the following we shall show that with QCD it is possi-
ble to overcome this difhculty but not with the AEC
method. Within ACD we approximate not 1/t, but the
function g (t)/t in the interval [t,„,R] by a polynomial

For Imt (0, g (t) develops a cut on the real negative axis
and we may think that essentially

g (t) -ln(t)

is valid. For this reason we can apply neither the AEC
nor the ACD integral formulas on the original form.
That means that we cannot write

In the last few years it was generally accepted that ihe
solution of the U(1) problem is directly connected with a
nonvanishing topological susceptibility. ' ' In the limit
X,—+ ~ the unexpected large mass of the g' meson is pro-
portional to the topological susceptibility of a pure
Yang-Mills theory, i.e., a theory without quarks.

The topological susceptibility is defined as

y, =U(q =0)
= —i f d x e'~ (0~7(g(x), g(o))~0&,

where
2

Q(x)= E" t' F„'(x)F' (x)

(59)

is the topological charge density of the pure Yang-Mills
theory. Using chiral Ward identities one can obtain the
Witten-Veneziano formula in the limit N, ~ ~ (Ref. 14)„

2

2 f
taking into account meson mixing as well. For X&=3 we
have the phenornenological value

1 N

g(t) = g a„t"—for t C [t,„,R] . (54) y, =(180 MeV)

So we have first

R N

f dt g(t)ImII(t)—= f dt g a„t" ImII(t)
th (~

—p

(55)

and using the Cauchy theorem for the expression on the
right-hand side we obtain

—f dt —g (t)ImII(t)

A theoretical calculation of y, has been lacking for a
long time. From (59) we see that we need the value of the
two-point function U(q ) at zero momentum transfer.
Apart from lattice theory the only methods for perforrn-
ing calculations in this momentum region are strictly lo-
cal QCD sum rules.

We found, using AEC and ACD QCD sum rules,

y,'~ =171+4 MeV, AEC method,

a t" H~ t . 56
2mt cg „(

This constitutes the solution of the problem within ACD
(Ref. 10). The predicted value for the anomaly magnetic
moment is, within an error of order 20/o, in excellent
agreement with experiment. '

In connection with the AEC method such a solution is
not possible. The reason is the cut in the function
g (t)-ln(t). Here we would have to use expressions such
as 9 I 2 216U„(q )= — + 2p, ss

1

ln( —
q /AvM)

y,'~ =170+6 MeV, ACD method,

in good agreement with the phenomenological value. To
perform the calculation we take the asymptotic expan-
sion of U(q ) for q ~ ~ from Ref. 15 and use the factor-
ization assumption. Furthermore, we drop the perturba-
tive part, since the topology susceptibility is a pure non-
perturbative efFect' and explicit computation gives zero
contribution. Then

f dt —g (t)II""(t)—f dt —ln(t)II"'(t) .
C~ c

This means that the integral

1f dt g(t)II(t)—
th t

(57)

(58)

x( *FF)
2 cx

135 +j'
q 88»( —q'/&vM) ~ vM

(61)
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with p, =200 MeV the instanton radius.
In (61) we need the values of the scale parameter AYM

and the gluon condensate ((a, /m)FF)vM of the pure
Yang-Mills theory. The corresponding amplitude of real
QCD, i.e., Yang-Mills theory with quarks, differs only in
the values of these parameters.

((a/m)FF)vM is expected to be quite different from
the usual gluon condensate. It has been estimated by No-
vikov, Shifman, Vainshtein, and Zakharov' using the re-
lation ((a/n. )FF)vM=((a/rr)FF)1, with ((a/rr)FF)&
corresponding to the QCD theory where all quarks are
taken heavy. They propose

FF =3 FF =0.035 GeV

200

1SO

0.05 0. 1 0. 15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
h ( GeV)

For AYM it is reasonable to take AQCD 150 MeV. Addi-
tionally, we need for the application of strictly local QCD
sum rules the position of the threshold, an upper bound
for U(q ) on the cut of the radius R. For the threshold
we take the mass of the first pseudoscalar glueball candi-
date t(1460) (Refs. 17 and 18):

t ~
——

gyes =2. ]3 GeV

As an upper bound for U(q ) on the cut we use the very
large constant

pm(q )=0.1 GeV

The dependence on the upper bound is very weak. For
R =20 GeV it is now an easy task to get from (19) to
(24) within the computational error

yt'i =171+4 MeV, ABC,

gt'~ =170+6 MeV, ACD .

The dependence on the threshold as given in Fig. 8 is
quite weak. The dependence on A is exhibited in Fig. 9.
For A=0. 15+0.05 GeV this dependence also is relatively
weak. The gluon condensate dependence is expected to
be linear Eq. (61). In Fig. 10 the topology susceptibility is
sketched against the QCD gluon condensate assuming

FIG. 9. The topological susceptibility as a function of A.

the relation ((a/m)FF)&M=3((a/m)FF). The topolo-
gy susceptibility increases with a larger gluon condensate.
In spite of this we prefer to keep the smaller value, since
the topology susceptibility of real QCD, i.e.,
((a/rr)FF ) vM substituted by ((a/n. )FF )&cD in the cal-
culation, should be very close to zero. '

At this point it may be interesting to give also a com-
parison with some lattice-gauge-theory results. ' The
computation of the topology susceptibility may be one of
the most reliable results of lattice gauge theory since no
quenched approximation is necessary.

The first calculation gave'

Xtl/2 55+10 Mev,

but more recent ones lead to larger values: e.g.,

yI~ =247+28 MeV (Ref. 19),
yt~4=221+13 MeV (Ref. 20) .

On the other hand, calculations which use cooling yield,
e.g. ,

200

X ti'4
t

iSO

1SO

200

1&0
1SD

180 lSD

1.0 1.b 2.0

P. ODS 0.O1 0 015 0 0& 0 025 0.03 0 035

I t uan condense te ( SeV ~ )

Rssi 0 f th» pseudasce i ar Ii oehal 1 ( SaY )

FIG. 8. The dependence of the topological susceptibility on
the mass of the lightest pseudoscalar glueball corresponding to
the threshold.

FIG. 10. The topological susceptibility as a function of the
QCD gluon condensate assuming the value of the pure gauge
theory's gluon condensate is three times the value of the QCD
gluon condensate.
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yIf"=190+7 MeV (Ref.21),

yI f"=146+11MeV (Ref. 22) .

So strictly local QCD sum rules enable at least as good
results as lattice gauge theory.

Another interesting bit of insight into the nature of
U(l)-symmetry breaking is only possible using strictly lo-
cal QCD sum rules. Taking Eq. (61) up to order 1/q
and neglecting the contribution of the light quarks in the
Witten-Veneziano formula, we obtain for the g' mass the
symmetry-breaking expression

2 2=m f=c —. -G, G) with c =0.27+0.06
X,
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APPENDIX A: THE CONFORMAL MAPPING

First we want to consider in detail the conformal map-
ping which transforms the integration contour in the
physical cut plane to the unit circle. This conformal
mapping, denoted with K, is built of five well-known
conformal rgappings.

Shrinking of the radius R to 1:

which is in close analogy to the famous symmetry-
breaking expression for the other pseudoscalar mesons:
e.g. ,

m'„f'= —2m, &qq& .

VIII. CONCLUSIONS

The strictly local sum rules AEC and ACD have been
presented. They allow one to extrapolate the asymptotic
QCD amplitude to a single point below the cut in the q
plane, at q =0 or q & 0. This by itself presents a drastic
enlargement of the domain of applications within the
framework of QCD sum rules. In addition, two salient
properties of the strictly local QCD sum rules have ap-
peared till now which may prove to be extremely useful
for future phenomology applications: First, to obtain
from the asymptotic QCD amplitude its value at q =0,
very weak phenomenological information is needed, less
than in the usual (global or semiglobal) QCD sum rules.
Second, as we have shown in this paper, the inverse prob-
lem which is connected with every extrapolation of the
asymptotic QCD amplitude to low energies, does not
cause any difhculties in our case. That means that Ha-
damard instability does not appear in the strictly local
QCD sum rules and therefore these sum rules have a reli-
able mathematical basis and the calculations can be trust-
ed.

Both methods, AEC and ACD, have been discussed in
a very detailed way, generally and in concrete examples.
They have been tested by the help of a generic function
which is exactly known and, of course, its asymptotic ex-
pression. A physical example which also shows the
difference between AEC and ACD is the determination
with ACD from QCD of the hadronic part of the (g —2)
factor of the muon without the use of any e +e data. A
second physical example which shows the effectiveness
and reliability of the strictly local QCD sum rules is the
determination from QCD by analytic methods of the to-
pological susceptibility y„an observable which is usually
believed to be only accessible to lattice gauge calcula-
tions.

t~t/R .

Enlarging the cut to the origin [Fig. 11(a)]:

t,h /R —t

tt, h /R —1

The cut disk to the upper half disk [Fig. 11(b)]:

t ~+t
The half disk to the upper half plane [Fig. 11(c)]:

I2t+1
t —+

t —1

The upper half plane to the unit disk [Fig. 11(d)]:

In practice we need the inverse mapping K in a very con-
densed form to save computer time. The best way is to
treat the mapping K, from the right of the unit circle I,
to the circle in the physical cut plane and the mapping
E2 from the left of the unit circle F2 to the cut separate-
ly. Then we can represent both mappings as real func-
tions in the following form.

K, :[—vr /2, vr /2 ]~ [0,2m ],

(b)

(c)

FICx. 11. The conformal mapping from the cut disk to the
unit disk in explicit form.
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4[1—cosO/(1+ sinO) ]&cosO/( 1+sinO)( t,h
—1)

O~arctan
[1—cosO/(1+sinO)] (t„h+1) —4cosO/(1+sinO)(t, h

—1)

0 for —m /2 ~ 8 & —Oo,

+ m for —OO~8~~/2 —Oo,

2~ for m /2 —
Oo ~ 8 ~ m. /2,

(Al)

where Oo is the zero of the denominator.
K2:[n./2, 3'/2] ~[t,„,R ],

t,h(1+u) +R (1—u)
O~r

t,h(1 —u) +R (1+u)

0=+~/2 of the modulus of C on I, the phase of C varies
extremely quickly. Therefore, the conventional numeri-
cal integration techniques cannot be used here. To solve
the problem we consider the explicit form of the function
C:

with v = —cosO
1+sinO

1 /2

(A2) C(w)=exp f, ln . da1 ~/2 e' +w 1

2m —~tv e' —w e (e' )

So we have

iK) (0)
Re ' for ~/2~8~rr/2,
K2(8) for m /2 ~ 8 ~ 3m /2 . (A3)

3m/2 e' +w 1+
~/2 e' —w m (e' )

1 3~»e' +w e+ ln —da
2& m/2 e ' —w p

(C2)

APPENDIX 8: CONSTRUCTION
OF THE WEIGHT FUNCTION C

1 3~/2 e' +w e
2 ~n e' —w imm(e' )

the desired result.

(B1)

APPENDIX C: TECHNIQUES
OF NUMERICAL INTEGRATION

During the calculation of the final integral (12) in Sec.
III there arise difBculties due to the discontinuity of the
weight function C (Ref. 25), so we cannot use standard
numerical integration techniques here.

Writing the Cauchy-Riemann equations for ln C ( w ) in
natural coordinates on the unit disk

In Sec. III we have introduced the weight function C,
the so-called outer function. It is possible to construct C
from the following three conditions: (1) C has no zeros on
the whole unit disk (since it should be possible to extrapo-
late to every point on the unit disk); (2) C is analytic; (3)
~C(w)~ =1/e(w) on I „C(w)=e/pm(w) on I 2. From
(i) and (ii) we know that also lnC is analytic in the unit
disk. Now we consider the function C'=lnC. We know
from (iii) the real part of C' (ReC'=lnC) on the bound-
ary of the unit disk. Then we use the Schwarz-Villat for-
mula, which produces the analytic function C' on the
whole unit disk from its real part ReC' on the unit circle
and we get

~/2 e +w

2m' —~/z e' —w e(e' )

We see the discontinuity comes only from the last term
(-inc/p, ), since the functions e and m are chosen to be
continuous (see Sec. III).

Therefore we treat the rapidly varying part separately,

1 6 3~/2 e +eC„„(e' )=exp —ln- daeia ei 0

i e {9+m/2=exp —ln —ln tan
7T p 2

(C3)

and expand around x =m /2+ 8=0:

l E'C„(e' )=exp —ln —(tanx/2)
'7T P

=exp l 6 X—ln ——
77 p 2

(i /vr)]ne/p
x
2

(C4)

Now we use the advantage that the integrals of
x't" ""'" multiplied by different powers of x, have
simple, closed expressions [r =( I/m. )inc/iM]:

dx x irx k (x k+I+ir x k+ i')+/( k + 1 +tr) (C5)j+1 j
Hence, we shall split off the slowly varying part of C
(denoted by C,„), multiply it with the asymptotic expan-
sion H„and the Poisson kernel and approximate this
product, in each interval [x,x, +, ], by second-degree
curves:

i) Im(lnC) ~) ln~C~

Bs Bn;
(C 1) P (e', W )II„„(K(e' ) )C,„(e' ) = g bkx ",

k=0

tells us that in the vicinity of the discontinuity points x, x x+, . (C6)
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Combining (C5) and (C6), the integrals in every interval
[x,x, +, ] are simple expressions of the form g& oat, bk.
In practice, we use these procedures for x =rr/2+8 ~ 0. 1

and divide the interval [0,0.1] in 20—30 subintervals.
At another critical point 8=+m/2 the problem is

treated in the same manner, since

lntan x+—=lncotx
2

=ln = —lntanx .
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