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Neutral exotics in the composite model: Leptonic gluon
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In this and the subsequent papers we investigate the properties of neutral exotics, which survive
any ordinary exotic-forbidding mechanisms, and provide us early signatures of composite models.
In this paper, we concentrate on the leptonic gluon G„'", the vector boson made of the leptonic-
color-carrying subquark c(&) and its antiparticle. Starting with a dynamical model for subquarks, we
derive various physical quantities for the leptonic gluon. We also calculate cross sections for the
processes mediated by the leptonic gluon.

I. INTRODUCTION

The composite models of quarks and leptons are based
on the anticipation that the quantum number which re-
peatedly appears in the spectrum should be carried by
some common subconstituent (called "subquark" or
"preon"). ' From this point of view, the models are
summarized as follows. Repetition of the color triplets or
the SU(4) quartets including the leptonic color requires
the subconstituent c; (i =1,2, 3) carrying the colors, and
the subconstituent c~I~ carrying leptonic color. ' Repeti-
tion of the weak isodoublets requires the subconstituent
wj (j= 1,2) carrying the weak isospin. Also the genera-
tions possibly originate from the subconstituents hI,
(k =1,2, . . . , %; X is the number of the generations)
carrying the "horizontal spin. " In terms of them, the
quarks q and the leptons l are composed as

q —wc or whc, I —
wc~I~ or whc~I~ .

The former compositions in (1) without h require other
mechanisms to give rise to the generations. The weak
bosons can be composite of the type

W„' -wL Y'Y„wr (or Wt 7'B„wt ) (2)

if w is a spinor (scalar) particle. The Higgs scalar can be
composite: '

the subquark h, the other Q's are uniquely fixed as Q, =
—,
'

and Q, = —
—,'. In the models with h, if we take Qh =0,

we get the same result. This is natural, since the
subquarks w and c correspond to the actually observed
symmetry structure of the standard model, while h does
not. Hereafter, we adopt this "standard" charge assign-
ment.

An immediate question in this type of model is why the
other combinations ("exotics") ' such as ww, wcc, etc. ,
do not exist in the known low-energy spectrum. There
should be some mechanisms to forbid them. As candi-
dates, we can think of the strong U(l) forces, " confining
subcolors, ' the strong magnetic forces, ' etc. Some of
the exotics, however, are allowed by those mechanisms,
and should be found in the future. In particular, the neu-
tral exotics composed of a subquark and its antisubquark
have the quantum number of the vacuum, and are expect-
ed to survive any ordinary mechanisms to forbid exotics.
As examples of the neutral exotics, we have the leptonic
gluon'4

Gp c(t)/pc(t) (ol c(t)B~c(t) )
(~)

the color-singlet gluon'

G„-cy„c (or c B„c),
the isosinglet weak boson'

(o Lw ). (3) W„—wL, y„wL, (or wL B„w ),0

To be more radical, the gluons 6„' and even the photon
A„are also taken as composite:

G' -cA, 'y„c (or c X'()„c), (4)

A„-gsg, y s (or gstg, B„s), (5)

where g, is the electric charge of the subconstituent s
(s =w, h, c,c(t)). If we require freedom from the anomaly
of SU(2)L X U(1) in the subquark level, we have
Q~ = —Q =

—,
' (Ref. 10). Then, in the models without

and the horizontal-spin-singlet hh composite

H„-h y„h (or h ~()„h ) .

In general, neutral exotics with other spins are also ex-
pected. It is merely by analogy with the existing particles
that we have mentioned only the spin-1 bosons.

Important signatures for compositeness would be
brought by the new states such as the exotics ' and the
excited states, ' which should be observed in certain re-
gularities. In general, the excited states would have
masses of the order of the compositeness scale. The
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present-day experiments on the anomalous magnetic mo-
ments of the leptons, ' and the ve, vp, (Ref. 19), ee (Ref.
20), and pp scattering cross sections ' constrain the com-
positeness scale to be larger than hundreds of GeV's.
[Note that the values over TeV claimed in some experi-
rnental papers are obtained under the assumption that the
coupling strengths are unity, which is not the case in
many models, The more appropriate values of several
hundred GeV are obtained by multiplying them by a fac-
tor of O(&a), where u is the fine-structure constant. ] On
the other hand, to avoid the "unnaturalness" of fine-
tuning in mass renormalization in the Higgs sector, the
Fermi mass scale +6~ should be related with some scale
of new physics, which, we assume here, is supplied by
compositeness. Furthermore, if the weak bosons are real-
ly composite, it seems that the ground states are some-
what light compared with the compositeness scale. Thus,
we expect that some neutral exotics should be in the re-
gion of hundreds of CxeV's. It is worthwhile at present to
investigate the expected properties of the neutral exotics
in the composite models. They would be produced in ee,
pp, and pp collisions, and decay into a lepton pair, a
quark pair, or a 8'-boson pair. Among them, the lepton-
ic gluon would couple with the leptons, and the color-
singlet gluon would couple more strongly with the
quarks. The isosinglet weak boson and the boson 0 in
Eq. (9) couple equally with the quarks and leptons, and
the isosinglet weak boson couples also with the weak bo-
sons. Their mixing with the photon and the Z boson, and

mixing among themselves would modify the naive expec-
tations. In principle, all those quantities are determined
from the subquark dynamics. The purpose of this and

forthcoming papers is to derive quantitative predictions
on the properties of the neutral exotics. In particular, we
concentrate on investigations of the leptonic gluons in
this paper.

The plan of this paper is as follows. In Sec. II we
specify the fundamental dynamics of subquarks, and
derive the effective Lagrangian for composites. In Sec.
III we investigate the compositeness conditions among
coupling constants, and determine the coupling constant

I

of the leptonic gluon. In Sec. IV mixing among the pho-
ton, the neutral weak boson, and the leptonic gluon is di-
agonalized, and the experimental bound on the mass of
the diagonalized leptonic gluon is derived. In Sec. V cou-
plings with quarks, leptons, and S'bosons are investigat-
ed, the mass bounds from the neutrino scattering experi-
ments are derived, and the scattering cross sections at
high energies are calculated. In Sec. VI we discuss the
distinction between the neutral exotics in the composite
model and the extra U(1) gauge bosons in the grand
unification or superstring model, and we give a brief sum-
mary of this paper.

II. DYNAMICS

The dynamics of the composite quarks, leptons, and
bosons should be derived from the fundamental one
which is written in terms only of the subquarks. People
considered two complementary types of dynamics; that of
the Nambu —Jona-Lasinio type ' and that with funda-
rnental gauge interactions. " ' The former is perturba-
tively solvable for the composite states, while it requires
explicit momentum cutoff, and is not renorrnalizable. On
the other hand, the latter is renormalizable and confining
under appropriate conditions, while it is diScult to get
explicit solutions for the relativistic composite states.
The former is somewhat phenomenological, since we
need to prepare a fundamental interaction term in the
Lagrangian per each composite state. It could be an in-
termediate effective theory of the more fundamental one,
which, e.g. , could be the latter type of theory, i.e., a
gauge theory. In this paper we adopt the former type of
theory for the phenomenological purpose to investigate
the neutral exotics. The present authors recently ela-
borated a natural and realistic subquark model with solv-
able dynamics of the Narnbu —Jona-Lasinio type. We in-
corporate the leptonic gluon into the model in Ref. 25.
The basic Lagrangian is obtained by adding the four-e~1~
interaction term [the eighth term in Eq. (10) below] to
that of the model in Ref. 25:

X=w(iri —m )w+h(iB m(, )h+—c(i8 m, )c+c—(,~(i((I m, )c((~—+F( gsy„g, s '

S

+F2(wry~& wr, ) +F3(cy„l;c ) +F((((c(((y~c((() +Q F~P(w, h, c)P(w, h, c)+Q F(P(w, h, c((~)P(w, h, c((~), (10)

where m, (s =.w, h, c,c(&( ) is the mass of the subquark s, F&, F2, F3, F(&~, Fq, and F( are coupling constants, and P(w, h, c)
is the spin projection operator into a spin- —, state. The Lagrangian X. is equivalent to

X'=w(ig —m )w+h(ig —m&)h+c(ig —m, )c+c((~(ig —m, )c(&~
—

( J„)— (W„')
(I) 4F

( 6 „') —
( 6 '"

) +g qP ( w, h, c ) +H. c.+g l ( w, h, c(,~
)+H. c.—g qq g ll—

3 (1) q 1 q q 1 1

with

D„w =(8„+ig~A„+iyr r~W J„)w,

D„h =(8„+ig(,A„)h,
(12a)

(12b)

D„c=(B +ig, A„+iA;G „')c,

D„c„,=(a„+ig, 2,+iG„'")c„, .

(12c)

(12d)

where A„, -O'„, 6„, G „'", q, and l are auxiliary fields.
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The Lagrangians X and X' are equivalent, because their
generating functionals of the Green's functions coincide
with each other. We take the tight-binding limits F, , F3,
F, FI (x), while F2 and FfI~ are taken as finite. The
U(1), X SU(3), gauge symmetry is exact, but the SU(2)I
and U(1)G symmetries are broken.

(1)

The kinetic and the interaction terms of the auxiliary
fields are generated through the quantum efFects of the
subquarks. They are superficially divergent, but should
be cut o6'by the finite-size e6'ects. As an approximation,

I

we adopt a regularization scheme which is invariant un-
der the SU(3), XU(l), gauge transformations, and which
recovers the chiral symmetry of m in the limit m„~O.
The lowest-order diagrams in Fig. 1 dominate over
higher-loop diagrams because of a large number of sub-
colors (for a detailed argument, see Ref. 25). The explicit
calculations (see the Appendix in Ref. 25) lead to the fol-
lowing corrections to the Lagrangian, where we retain
only the most divergent terms in the bosonic and the fer-
mionic sectors:

~=—Ir(A„) —I [(8'„' +e'J A(„W')) +A„W —6(m 8'„') ] 2I, (G„'—)

I, [(—G „'") +2Q, A„,G „'"]++q(Jqi@ K~m—ii )q+g l(J i@ K, m —)l (13)

with

(14a)

(14b)

I, =[(g )'+(Q )']I +3(Q, )'I,

+(Q, ) I, +Ns(gi, ) Ih, (16)

G „'„=a„G„—a.G „'—2f'"G „"G:,

D„q =(d„+igq A„+iyl r'8'„'+i A;G ~)q,
Dl=(B„+ig,A +iy r'W„'+iG „'")l .

(14c)

(14d)

(14e)

(14f)

where Ns is the number of generations. The J (J&) and

K~ (K&) in (13) are the quartically divergent coefficients
of the two-loop diagrams with to, u, and c (c~&~) internal
lines [Figs. 1(d) and 1(e)].

In order to cast the kinetic terms into the standard
forms, we rescale the fields as

The I, (s =iU, h, c, ci&i) in Eq. (13) are the logarithmically
divergent coefficients of the s-loop diagrams [Figs.
1(a)- l(c)]:

A„'=2+Iy A„,

W„' =2+I N' ',
(17a)

(17b)

I, = ln
24~'

(s =ia, h, c,ciii), G„'=2+2I, G „', (17c)

where A, is the efFective cuto6' and X," is the number of
the subcolor. The I is that with two external photon
lines [Fig. 1(a)] and is written as

G(I) —2~ gI G (I)
p Q c(~) p

q=+J, q,

(17d)

(17e)

and

l=+Ji i, (17f)

and we rewrite the constants as

(b) (c)
(18a)

(18b)

subquark

(d)

composite
boson

(e)

composite
fe( p1 Ion

1gs= (18c)

FIG. 1. Subquark-loop diagrams.

(18d)
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(Mii, ) = +3(m )
1

8I'2I
KIm

mg— (1811)

1
(MG ) =

( I) c

E m

I
q

(18f)

(18g)

The effective Lagrangian X,(r is obtained by adding to the
X' the dominant contribution ~ from the quantum
corrections. The kinetic and the interaction terms among
composites are given by

2' 6„",'+ —,'MG (6„') +gq(ig —m )q+g!(ig —m()1 (19)

with

w„', =a„a„'-a,a„',

6„',=a„G;—a,G„' g,f'"'G„G—',
(20b)

(20c)

(20d)

tion" of Ref. 26, which turned out to hold experimentally
to a good accuracy. Under this condition, however, the
current mixing scheme coincides with that in the stan-
dard model, except for the Higgs sector, and we cannot
yet decide from this whether or not the weak bosons are
composite. On the other hand, the relation (21b) would
provide a test for compositeness of the leptonic gluon.

The compositeness condition of the photon (16) leads
to the relation

D„q = a„+ieQ A„'+ gyI r'—W„'+ —g, A, '6& (I,P 2 P

(20e) aem

4[(Q, )'+(Q., )'1 6(Q, )'
+

D„1= a„+ieQ, A„'+ gyLr'W„'—+ig(,)6„'" ',
and with

(20f) (Q, )'
+ '(I) + 2Ns(Qh )

ag
(22)

and

r~=e jg (2 la)

Arg =eQ /g(() (21b)

The X;(r " in (19) is the Lagrangian for the current mix-
ing scheme for photon A

& (to be diagonalized), weak
boson 8'„', gluon G„', leptonic gluon 6„'", quark q, and
lepton I. The constants e, g, g„and g(&~ are, respectively,
interpreted as the coupling constants of the electromag-
netic, the weak, the strong, and the leptonic gluon's in-
teractions. The M~, MG, mq, and m& become the

(i')

masses of the weak boson, the leptonic gluon, the quarks,
and the leptons, respectively. The A,r~ and krG are ther G(I)
mixing parameters between A„' and 8'„, and between A„'
and 6„'",respectively.

III. COMPOSITENESS CQNDITIQNS

The parameters in Eqs. (19) and (20a) —(20f) are related
with the quantities in the subquark dynamics by Eqs.
(15), (18a)—(18h), and further related by Eqs. (16), (21a),
and (2 lb). Eliminating the sublevel quantities from them,
we can get the compositeness conditions" among the pa-
rameters at the composite level. Compositeness of 8'and
6()) leads to the relations (2la) and (21b), respectively.
Among them, the relation (21a) is the "unification condi-

where a, =e /4m, az=g /4', a, =g, /4n, a(()=g(()/
4n, a), =g), /4m, and g), =1/+2Ii, . The gh becomes the
coupling constant for the (broken) horizontal gauge sym-
metry, when we incorporate the horizontal gauge boson
H' -riA, 'y„h into the model. For Qh =0, however, gh is
irrelevant to the relation (22), and we can determine the
value of the coupling constant a(&) for the leptonic gluon
from the known values of a,m, a2, and a, . The relation
(22) holds at the subquark scale A,„b, up to which the
coupling constants, we assume, to run with the scale p
according to the renormalization group equations:

a, (p) '=a, (0) ' — QQ&ln(p/m&&
7T

+ ln(p/Mii, &,
11

ln( p/m, & & p, /m, & & p/m, &, (23c)

where ( 2 &
=max ( A, 1 I . For a given A,„b, Eqs.

(23a) —(23c) fix the a, (A,„b), a2(A, „b), and a, (A,„b).

a2(p) '=a2(0) ' — ln(p/M~ &+ ln(m, /Mi), &,
3& 4m

(23b)

a, (p) = ln(p/A&(-D &

9
2m
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FIG. 2. The running coupling constants a, , a2, a„and o;(I)
vs the scale p. The solid (dashed) lines are those for A,„„=1
TeV (5 TeV).

FIG. 3. Dependence of a(() on Q, with Q), =0.
( I)

Then, we apply Eq. (22) to get a(&)(A,„b), and we finally
get a(&)(p) at the relevant scale p by

a())(p) =a(()(A,„b) ——ln(p/A, „b) .
4

(24)

This procedure is illustrated in Fig. 2. The obtained
a(&)(p) is almost independent of the scale p and choice of
A,„b, as far as we fix the subquark charge assignment.
We later use the values a(/) pg&

at p 20 GeV for the
low-energy neutrino scattering, a~I]= A/9

at p=80 GeV
for comparison with the weak-boson masses, and
o.'~I]= 257 at p=500 GeV for the high-energy predictions.
(These values are obtained by using A,„b=l TeV, the
QCD scale AQcD 0.2 GeV, and the top-quark mass
m, =40 GeV. Change in A,„b to 5 TeV causes 4% in-
crease in a(&], change in A&cD from 0.1 to 0.3 GeV causes
1% decrease in a(&), and change in m, to 200 GeV causes
0.5% decrease in a~&]. Note that A,„b cannot be too large

in our model, since it is taken as something related with
the weak-interaction scale. See Ref. 25.) On the other
hand, the a~I] depends strongly on choice of charge as-
signment of the subquarks (Fig. 3). As is stated in Sec. I
we adopt the standard assignment Q = —QWI W2= —Q, =

—,', Q, =—', Q), =0, which is free from

SU(2)I X U(1) anomaly at the subquark level.
One may wonder if the photon is really a composite.

In the models of this type, each of the other composite
bosons can be composed of a single pair of a subquark
and its antisubquark [see Eqs. (2)—(4) and (6)—(9)]. The
photon, however, should be the linear combination of all
the charged subquark pairs with the weight of the a priori
assigned charges [see Eq. (5)]. It is not sufficiently simple,
and there remains the question why the other linear com-
binations are not composed. Instead of the above model,
one can consider a model where the photon is taken as
elementary. Instead of the Lagrangian (10) we start with

X =w(i@ —m )w+h(iB" m), )h+c(ig ——m, )c+c(()(ig —m, )c()) ——'(B(„A I) +F2(wL year'wL )

+F3(c1 „A,'c ) +F(&)(c(&)1„c(&)) +p FqP(w, h, c)P(w, h, c)+p F(P(w, h, c(&) )P( wh, c
& ())

I
(25)

where

D„"s=(8„+ieQ,A„)s (s=w, h, c, c(&)) . (26)

In this case we again arrive at the same effective Lagrang-
ian as Eq. (19) with the parameters satisfying (21a) and
(21b). However, the sum rule (22) does not hold, since
the photon is not composite. Then, the coupling constant
g~I~ of the leptonic gluon becomes a free parameter. In
the following, we fix o,~I~ at the values of the photon com-
positeness condition, except for the case where we intend
to show the a~&] dependence of the quantities.

IV. BOSON MIXING

In general, the current and mass mixing among the n
vector bosons V„=( V', V„, . . . , V„" )' with the Lagrang-
ian

X = —
—,'a(„V', ,Ka,„V.I+ ,'V„'M'V„- (27)

(the K and M are constant n X n matrices) is diagonalized
as follows. Let U be the unitary matrix to diagonalize
the matrix MK 'M, and M' be its diagonalized form.
Then, the transformation
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V„'=TV„,
with

T=M'-'UM

casts the Lagrangian (27) into the diagonalized form

z = —
—,'a,„v.",a,„v.',+-,'v„'M'v„'

= ——'g (B(„v")) +—'g(M" v" )

(28)

(29)

(30)

For pure mass mixing K= 1, T becomes unitary (T=U),
while in general, T involves rescaling of the fields. When
one of the eigenvalues of M' tends to zero (let M', ~0,
without loss of generality) the form of T in (29) is singu-
lar. But T itself can be regular by taking infinitesimal
U. In this case, T becomes a triangular matrix with
+21 +31 ~n 1

We apply the above diagonalization procedure to mix-
ing among 2 „', 8'„, and G„'". It is achieved by consider-
ing the terms quadratic in these fields:

X „,d= —
—,'(B(„A'„))

—
—,'(B(„W,) )

—
—,'(B(„G'')') —

—,'A, „B(„A',)B(„W )
—

—,'l G B(„A')B(„G'„')'

(31)

First we transform 2 pinto Ap by

(32)

to get

Z,„„=—
—,'(a,„~., )' ——'(a,„W'., )' ——"(a,„G.",')' ——'a, „W',, a,„G."I+-,'M' (W„')'+-,'M,' (G„'")', (33)

where

a =1—(Ar~), b =1—(ArG ), c= Xr„—kyG

Then, we transform 8'„and 6„'"into Z„and L„by
T

(34)

8'„
G (1)

cosp sing Mz
—sing cosP M~ X„ (35)

to get the diagonalized form

—
—,'(B(„X,) ) +—,'Mz(Z„) +—,'Mx(X„), (36)

and

tang= ——I[1—a( MzM/~) j[b(M~/Mz) —6]I'~1

C

(38c)
where

M~(Mz cos P+Mz sin P) =a = 1 —(Ar ~) (37a)
with a, b, and c in Eq. (34) and

h=ab —c =1—(A, )
—(A, )y8' r G(l)

(39)
MG (Mz sin /+M~ cos $)=b =1—(A~G )

and

M~MG (M, —M~ )sing cosf=c = —
A, g A, ya

(37c)

Mz M~b /5—
aMz /Mw 1

Mza —Mwb
MG

a —M~2yMz2
'

(38a)

(38b)

These equations can be solved for the unknown variables
Mx, MG, and P in terms of the known variables:

(I)

Note that the diagonalized mass M~ is directly observ-
able, while the Mz is not.

( I)

If we know, in the near future, suf5ciently accurate
values of the M~ and Mz from experiment, we would be
able to predict the mass Mx, the angle P, and all the con-
cerning physical quantities with no free parameter. At
present, however, the experimental values only impose
the lower bound on Mx, and are consistent with the limit
Mz ~ 00, where the X;s coincides with that of the stan-
dard model (apart from the Higgs sector). In Fig. 4(a) we
show the contours with fixed M~ due to Eq. (38a) in the
M~-Mz plane (for a~&~= —„', , the value from photon com-
positeness), together with the region indicated by experi-
ment at present, where we have adopted the values
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a(f ) I I I I
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I I 1

0. I LOWER BOUND OF Mx

92

90
0.01

a(t )——1 /'259

88

86 ,
.

0.25 (b) BY M~(, S,q

0 001 + '''''1' ~ ~ '' 'i ~ ' ~ ~ ~ 'I'''''''l'''''''I''' '' 1 ''''''i'' ' 's
;;;;';'';; ''1

0. 1
~ ~ ~ ~ ~ ~ ~ ~

0.23

0.2 l

0.26

0.01

a(, 3
——1/'261

0.24

CO

0.22

0, 20
I

76 78 80 82 84 86

M~ (GBV)

0.01

FIG. 4. Contours with fixed Mz in (a) Ms -Mz plane [Eq.
(38a)], (b) Miv-S„~ plane [Eq. (51a)], and (c) Miv-S„, plane [Eq.
(51b)]. A, 8, C, and D indicate those for M&=200, 300, 500,
and 1000 GeV, respectively. The thick lines are contours for
M& = 00. The shaded regions are experimentally excluded {95%
C.L.).

and

M~=80. 76+1.71 GeV

(40)

M~ &290 GeV . (41)

In Fig. 5(a) the bounds on Mz are plotted as a function of
the coupling strength a(li. The lower M& is allowed for
the larger a(1), because the mixing parameter A.z& be-

(I)
comes small for the larger a&hi. Note that the mixing pa-
rameter A, G is proportional to 1/g(&~ [see Eq. (21b)].

(&)

On the other hand, a~i~ (ag, /(1 —e /g ) is forbidden,
(I)

because mixing becomes too strong for Eqs. (37a)—(37c)
to have a solution with positive M&.

We can eliminate from the Mz, MG, and P the factor
( I)

Mz 91.59+2. 14 GeV,

with the correlation r=0. 879, following Costa et al.
The lower bound on Mx (for a(1~ =+») to the 95% C.L. is
given by

Q. Q01
200 400 600 800 1000

Mx (GeV)

FIG. 5. The lower bounds of Mz for fixed a(1) by the experi-
mental values of (a) M~ and Mz, (b) M~ and S ~, and (c) M~
and S,. The dash-dotted lines indicate the value of 0.(l) deter-
mined from the photon compositeness condition. The shaded
regions are experimentally excluded (9S /a C.L.).

These relations enable us to calculate all the physical
quantities as functions of the parameter Mx. The values
of P according to Eq. (43b) are plotted against Mz in Fig.
6, for various values of a(I~.

V. COUPLING WITH QUARKS, LEPTONS,
AND W BOSONS

0.6

0 4
U

The full expression of X;ir under the transformations
(32) and (35) is given by

p —1 =~~/~za —1 (42) 0.2

which is the source of the large relative error', and get the
more accurate relations

(43a)
'Roo 200 300 500 1000

2MIMz ~r w ~y G, »
sin 2 (43b)

M„(GeV)

FIG. 6. The mixing angle P vs Mz due to Eq. (43b).
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ff -'(A„, )
——„'(2'„,) —4(Xq, )

—,'D—[„W+]D[„W,]
——„'(6,) +—,'Mz(Z„) + —,'Mx(X„)

+MwW„+W„+g Q(iB —m~)g (g=q~, q„,lL, I~), (44)

where

W„' =(W„'+ i W„')/&2,

A„=8[„A ]+ifrwww[„w ] I

Z„=B[„Z]+ifzwwW[„W ]

X„.=a[„X„]+fx wW,"„W.—, ,

(45a)

(45b)

(45c)

(45d)

ted in the gz,& & -g&& &
plane.

From the Lagrangian (44), we can deduce the effective
Lagrangian for the neutral-current interactions:

~Nc g Py&. (t)(A„Q)(g'Y„p')

qL qR lL 1R) (4g)

D.w= =(8„ ieA igzwwZ +igxwwX ) W„—,

D„P=(8„+ieQ&A„+igz&+„+igx&@„)g,

(Q=qz, qg, l Ll~) with

f,ww=e,

fzww =gMwcosg/Mz

fxww= —gMwsink/Mx

(45e)

(46a)

(46b)

(46c)

gxww=Mx[(g —eArw)sing/Mw —elrG cosP/MG ],
(1) (&)

(46e)

gzww=M, [(g elr—w)cosg/Mw+elrG sing/MG ],(I) (t)

(46d)

with

2
g7rji+Zg'g'P" t=

t —Mz+iMzI z

gxyQxqy
t —M~+iM~I ~

(49)

0 4

where t is the exchanged invariant mass squared, and I z
and I z are the decay widths of Z and X, respectively.
The I"s should be set to zero below the threshold. For
neutrino scattering at low energies! t! «Mz, we have

gzqq=Mz[(g Ty eQ&A r w)c—os//Mw

(g~~]L&
—eQ&A—&G )sing/MG ],

gx~'=Mx[(g T~ eQ~A, w)si—nP/Mw

+(g(I)L~ eQ~X G )c—os//MG ]. (46g)

The Q&, T&, and L& in Eqs. (46a) —(46g) are, respectively,
the electric charge, the third component of the weak iso-
spin, and the lepton number of the fermion g=q', qz, lz,
and lR. If we use the relation (21a) of our model, which
also holds experimentally to a good accuracy, we have

—0.2
—0.4

0.4

—0 2
x —0.4

0.4
0.2

I I I III
I I I I II[ I

I I ~

fzww=gzww an fxww=gxww. (47)

—0.2
Q

I I

I
~

I I I IIIIl

In Fig. 7, the values of the coupling constants in Eqs.
(46b) —(46g) are plotted against Mx and against a[1'. They
approach their Anite limiting values as Mz~ tx), and are
practically constant above M~ =300 GeV. In particular,
the coupling constants for Z tend to their values in the
standard model. At e(I)=—„', , the value from the photon
compositeness condition, the X on the whole couples
stronger with the right-handed components of the fer-
mions than the left-handed ones. The coupling with
quarks tends to zero with increasing n(I), while couplings
with leptons increase, and tend to vectorlike coupling.
This is because the mixing becomes the weaker for the
larger g[I' [see Eq. (21b)], and the X increases its
leptonic-gluon likelihood. It can be seen more clearly in
Fig. 8, where their trajectories with varying u(1) are plot-

0.4
0.2

0
—0.2
—0.4

200 50D 1000 0.005 O. 0&

Mx (GeV) CX(g )

FIG. 7. The coupling constants g&&& of the boson B=X
(thick lines) and Z (thin lines) with the currents Pz y„Pz (solid
lines) and gsy„gs (dashed lines) (P=u, d, v, l) vs Mx (for
A(I) 257) and vs a(, ) (for Mx =500 GeV). The dash-dotted lines

indicate the value of a(&) determined from the photon compos-
iteness condition n(I) =

257 ~
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gX4w4~q

0.4

0.2

—0.2
g~4'L4iL

p 4

FIG. 8. Contours in the g&& & -g&& & plane with varyingI. I. R R

a(&). The squares (circles) indicate the points with a(I)=

comes too strong for Eqs. (37a)—(37c) to have a solution
with positive Mz.

Now it is straightforward to calculate the scattering
cross sections of various processes. In Fig. 9(a) we show
the integrated cross section o of ee~pp versus the in-
variant mass &s of the ee system. In Figs. 9(b) and 9(c)
we show the cross sections s do /ds of pp ~ll+anything
vs V's at Qsc=2 TeV, and of pp~ll+anything vs &s
at +so=40 TeV, where s and sz are the invariant masses
squared of the ll and pp (or pp ) systems, respectively. In
the numerical calculation, we have used the parton distri-
bution Set I of Ref. 29. In both figures we can see clear
resonance peaks standing about a hundred times higher
than the background continuity. More detailed analysis
on the decay widths, the cross sections, and asymmetries
will appear in the subsequent paper.

S =(e/g ) (1+2Q, M~/MG ),
S,=(e/g) [1+2(Q, +g(1)/e )Mii /MG ] .

(51a)

(51b)

The S and S, are, respectively, determined by vp- and
ve-scattering experiments. ' They are nothing but the
"sin 0~" determined by assuming the standard model.
Following Costa et al. , we adopt the values

S =0.2283+0.0048,

S,=0.2271+0.0143 .
(52)

On the other hand, g in the expressions in Eqs. (5 la) and
(51b) depends on Mii, since g =4&26+M)i. In Figs.
4(b) and 4(c), the contours with fixed Mx due to Eqs.
(51a) and (51b) (for ai&) =,6, ) are plotted in the Mii, -S
and M~-S, planes, together with region indicated by the
experimental data at present [Eqs. (40) and (52)]. The
lower bound of Mx (for ai&) =+») by the vp scattering ex-
periments is

M~ &440 GeV, (53)

and no significant bound is obtained from the ve scatter-
ing experiments. In Figs. 5(b) and 5(c), the lower bounds
are plotted as functions of a[I~. By the vp scattering ex-
periments, the lower M~ is allowed for the larger a(I~ be-
cause the leptonic gluon G(I~ before mixing decouples
from quarks q, and because the mixing parameter A,&6(l)

becomes small for the larger a(I~. On the other hand, the
lower bound on Mz from the ve scattering experiments
becomes the larger for the larger a(I~, because the lepton-
ic gluon G(&~ does couple with leptons with the strength
a(1~ even before mixing. The a(1~ smaller than
aQ, /(1 —e /g ) is again forbidden, because mixing be-

(I)

P,&(t) = ,'g'( T&—Q&S,&)
—™ii,(tt'=rlL, , Q~, ll. , l~ ),

(50)

where S„& are independent of the chirality of f, and
given by

'I0

1 02

0 1

t3

10'.=-

10

1!
L

10

10
PP

10 E-
E

10

10

0 2

L

10

PP
10

100 200

~s (Gev)

500 1000

FICx. 9. 4,
'a} The integrated cross section o of ee~pP vs &s,

and the cross sections s do. lds of (b) pp~ Il +anything vs &s at
+so=2 TeV, and (c) pp~ll+anything vs &s at +so=40
TeV. A, 8, C, and d indicate those for M& =200, 300, and 500,
and 1000 GeV, respectively. The thick lines are those for
M~= 00.
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VI. DISCUSSIONS AND SUMMARY

J +' =qy qL +1y lL . (56)

On the other hand, the extra Z bosons couple with
quarks and 1eptons as fo1lows. The extra Z boson ZB
in the model with the breaking, SU(4)c~SU(3)c
X U(1)~ z, couples with the baryon-minus-lepton-
number current

JB—L l Jq Jl
P 3 P P (57)

The extra Z boson ZLR in the model with the breaking,
SU(2)I XSU(2)z XU(1)—+SU(2)L XU(1)&XU(1)Lz, cou-
ples with the current J„which is a linear combination
of J„and

J„'=2(uy„u~ dy„d~+vy„v~ —ey„e~) . (58—)

The extra Z boson Zz in the model with the breaking,
SO(10)~SU(5) XU(l)r, couples with the current

J„=—qy„qL + u y„uR —3d y„dR +3ly„IL +ey„eR .

(59)

(We retain only the part concerned with the light quarks
and leptons, because we are, for the time being, interested
in experimental tests in terms of them. ) The extra Z bo-

Now we briefly comment on distinction of the neutral
exotics in the composite models from the extra U(1)
gauge bosons ' (extra Z bosons) in the grand unification
models ' or in the superstring models. ' From the
phenomenological points of view, the neutral exotics
resemble the extra Z bosons in giving resonance peaks in
the ll, qq, and 8'+ 8' channels. There exist, however,
important differences. First, the neutral exotics couple
with the photon and the ordinary Z (not extra) boson via
current mixing due to the subquark-loop effects, while
the extra Z bosons couple via mass mixing due to the
Higgs mechanism. As for the ordinary Z (not extra) bo-
son itself in the Glashow-Salam-Weinberg (GSW) model,
the predictions at low energies coincide with those from
current mixing of the composite weak bosons, and we
cannot yet discriminate them by experiments. However,
this equivalence between the current and the mass mixing
schemes no longer persists for the neutral exotics and the
extra Z bosons. They coincide only for accidental
choices of the parameters.

Another difference is in their coupling with quarks and
leptons. The leptonic gluon 6„'" couples purely with the
lepton-number current

J„'=ly„l, (54)

and the color-singlet gluon G„couples with the pure
quark-number current

Jq=qy q . (55)

The boson H „ in Eq. (9) couples with their sum
Jq+' =Jq +J„', and the isosinglet weak boson 8'„
couples with the left-handed quark-plus-lepton-number
current

son Z& in the model with breaking E6~SO(10)XU(l)&
couples with the current

Jq =qy„qL —qypqR+ly lL —ey„eR . (60)

The extra Z boson Z„ in the model with breaking
E6—+SU(5) XU(1)„couples with the current J„"which is a
linear combination of J+ and J~. None of J„', J„,J„+',
and Jpq+l L which couple with the neutral exotics coincide
with any ofJ„,J„,J~, J~, and J„"which couple with
the extra Z bosons. Furthermore, we can explicitly show
linear independence of (i) the weak hypercharge current
J„;(ii) the neutral component of the weak isospin current

J„;(iii) any one of J„',J„,J„+', and J~+'; and (iv) any
one of JB-L

JAR Jxp Jp~, and Jp~. This means that the
couplings of the neutra1 exotics never coincide with those
of the extra Z bosons even after mixing with the photon
and Z boson, and we can, in principle, distinguish them
by detailed experimental analyses. Although the final
judgment should be formed from the more general points
of view including the full pattern of the spectra and the
substructure effects (the form factors, subquark jets,
etc.).

In summary, we have investigated the properties of the
leptonic gluon G„'" [Eq. (6)], the vector boson made of the
leptonic-color-carrying subquark e[l~ and its antiparticle.
Such neutral exotics as the leptonic gluon survive any or-
dinary exotic-forbidding mechanisms, and would provide
us early signatures of composite models. We started from
a dynamical model for subquarks [Eq. (10)], and derived
the effective Lagrangian for composites including the lep-
tonic gluon [Eq. (19)]. The subquark-loop eFects (Fig. 1)
cause current mixing among the photon, the neutral
weak boson, and the leptonic gluon. The parameters in
the effective Lagrangian for composites are related to the
quantities in the subquark dynamics [Eqs. (15) and
(18a)—(18h)]. Compositeness of the photon, the weak bo-
son, and the leptonic gluon impose the relations among
their coupling constants and the mixing parameters [Eqs.
(2la), (21b), and (22)]. Using them we determined the
coupling constant of the leptonic gluon (Fig. 2). Mixing
among the neutral bosons is diagonalized by a nonunitary
transformation involving rescaling of the fields [Eqs. (32)
and (35)]. In principle, from deviations of the weak-
boson masses from their standard-model values, we can
uniquely predict the mass and the mixing angle of the
leptonic gluon [Eqs. (38a) and (38c)]. At present, howev-
er, the experimental uncertainty does not allow it [Fig.
4(a)]. We can only get the bound on the (diagonalized)
leptonic gluon mass [Eq. (41) and Fig. 5(a)]. Then, we in-
vestigated the leptonic-gluon coupling with the quarks,
leptons, and W bosons [Eqs. (46a) —(46g) and Fig. 7]. Un-
der the photon compositeness condition, it is more like a
right-handed one coupling equally to the quarks and lep-
tons, while it approaches pure leptonic vector coupling
with increasing a~&~ (Fig. 8). Applying them to the experi-
mental results on neutrino scattering, we obtained a more
severe bound on the (diagonalized) leptonic gluon mass
[Eq. (53) and Figs. 5(b) and 5(c)]. We also calculated the
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cross sections at high energies [Figs. 9(a) and 9(b)], where
we can see clear resonance peaks a hundred times higher
than the background. Further detailed analysis on the
cross sections will appear in a separate paper. We hope
that these predictions will be tested at Fermilab Tevat-
ron, the Superconducting Super Collider and ee colliders
in the TeV region.
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